<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><span class="Apple-style-span" style="font-family: arial; font-size: 16px; "><div id="res" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; "><div style="color: rgb(0, 0, 0); font-family: arial, sans-serif; "><div class="g" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; "><br></div><div class="g" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; ">This might also be useful</div><div class="g" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; ">GeoInterp: Contour Interpolation with Geodesic Snakes</div><div class="g" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; "><a href="http://www.insight-journal.org/midas/view_item.php?itemid=512">http://www.insight-journal.org/midas/view_item.php?itemid=512</a></div><div class="g" style="color: rgb(0, 0, 0); font-family: arial, sans-serif; margin-top: 1em; margin-right: 0px; margin-bottom: 1em; margin-left: 0px; ">/ghassan</div></div></div></span><div><div>On 30-Apr-08, at 1:45 PM, Luis Ibanez wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><br>Hi Kun,<br><br>What is the genus of the surface that you plan to obtain ?<br><br>Is it homologous to a Sphere ?<br><br>If so, one thing you could do is to use the conformal mapping<br>to a sphere, do a spherical Delaunay triangulation, and then<br>map back to the original space.<br><br>It may be possible to do this by mapping to a plane, perform<br>Delaunay triangulation in the plane and then mapping back to<br>the original space.<br><br>You may want to take a look at the following paper in the<br>Insight Journal:<br><br><a href="http://insight-journal.org/InsightJournalManager/view_reviews.php?pubid=112">http://insight-journal.org/InsightJournalManager/view_reviews.php?pubid=112</a><br><br><br>The source code of this method is currently available in the<br>directory:<br><br> Insight/Code/Review/itkConformalFlatteningMeshFilter.h<br><br><br><br><br> Regards,<br><br><br> Luis<br><br><br><br>----------------<br>Kun wrote:<br><blockquote type="cite">Hi,all<br></blockquote><blockquote type="cite">I am a new ITK user. And now I am trying to do some 3D surface interpolation with ITK. The situation is like below:<br></blockquote><blockquote type="cite">Suppose there is a 3D object, which contains many points(maybe 2000) on its surface Now I have known part points( suppose 1500) on the surface, so the surface should be open.<br></blockquote><blockquote type="cite">Then how can I do the interpolation on the surface to make it close ?<br></blockquote><blockquote type="cite"> Is there any code in ITK to solve this problem ?<br></blockquote><blockquote type="cite">Would somebody help me? Thanks a lot.<br></blockquote><blockquote type="cite">Best Regards.<br></blockquote><blockquote type="cite">Kun<br></blockquote><blockquote type="cite"> ------------------------------------------------------------------------<br></blockquote><blockquote type="cite">_______________________________________________<br></blockquote><blockquote type="cite">Insight-users mailing list<br></blockquote><blockquote type="cite">Insight-users@itk.org<br></blockquote><blockquote type="cite">http://www.itk.org/mailman/listinfo/insight-users<br></blockquote>_______________________________________________<br>Insight-users mailing list<br>Insight-users@itk.org<br>http://www.itk.org/mailman/listinfo/insight-users<br></blockquote></div><br></body></html>