<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type">
<title></title>
</head>
<body bgcolor="#ffffff" text="#000000">
Hi Luis,<br>
<br>
thanks for ur reply.<br>
<br>
Actually I am getting an exception abort at the first iteration.<br>
<br>
I have already verified that the imported images are OK. <br>
<br>
In a first step, I did the registration without using the
normalizeImagerFilter and the DiscreteGaussianImageFilter. <br>
Meaning that I run the registration on the original images that I
imported without filtering them and the program works fine. <br>
But when I try to use the Filters before registration, I am getting
that exception. <br>
To precise my question:<br>
I am using the <u>versor3DRigidTransform</u> and it needs the <u>CenteredTransformInitializer</u>
to initialize the transform. <br>
<pre wrap="">        initializer->SetFixedImage( importFilter1->GetOutput() );
        initializer->SetMovingImage( importFilter2->GetOutput() );</pre>
Now I am confused, what should be the input of the initializer?
Should I use the filtered data as input to initialize the transform
or should I use the original data without any processing to
initialize the transform. <br>
Actually in my code, I am using the original data (and it works
fine), but when I try to use the filtered data, the registration
abort with an exception at the first iteration.<br>
<br>
Thanks in advance for your reply.<br>
<br>
Gael.<br>
<br>
<br>
Am 22/02/2011 00:51, schrieb Luis Ibanez:
<blockquote
cite="mid:AANLkTi=NL0vHUCd5B1TY-F6cMcx3pwpaOD_FZ17jDAZm@mail.gmail.com"
type="cite">
<pre wrap="">Hi Gael,
What sort of errors do you get ?
a) Segmentation fault ?
b) Exceptions abort ?
c) Warning messages ?
Do the errors happen in the first iteration ?
or do you get to see several iterations before the errors happen ?
You are using data importers in your code:
have you verified that the imported images make it to the
ITK level, before attempting to use them as input to the
registration ?
An easy way to do that is to write them to disk using the
ImageFileWriter.
Luis
-------------------------
On Mon, Feb 21, 2011 at 9:54 AM, Gael Pentang
<a class="moz-txt-link-rfc2396E" href="mailto:gael.pentang@med.uni-duesseldorf.de"><gael.pentang@med.uni-duesseldorf.de></a> wrote:
</pre>
<blockquote type="cite">
<blockquote type="cite">
<pre wrap="">
Hi there,
I am trying to register two 3-D images,
using the MattesMutualInformationMetric with the versor3Drigid transform
and the
</pre>
</blockquote>
<pre wrap="">VersorRigid3DTransformOptimizer optimizer .
Actually after reading the images, I am using the normalizeImageFilter and
the DiscreteGaussianImageFilter
to preprocess the images before registration.
But when I am calling the registration routine, I am getting errors.
I guess there may be errors when I am calling the
CenteredTransformInitializer, Could someone
check my code and help me?
Here is my code:
// imreg.cpp : Defines the entry point for the DLL application.
//
// imreg.cpp : Defines the entry point for the DLL application.
//
#include "stdafx.h"
// Header files for ITK image registration
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkMutualInformationImageToImageMetric.h"
#include "itkMeanReciprocalSquareDifferenceImageToImageMetric.h"
#include "itkNormalizedCorrelationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkImage.h"
#include "itkTimeProbesCollectorBase.h"
#ifdef ITK_USE_REVIEW
#include "itkMemoryProbesCollectorBase.h"
#define itkProbesCreate() \
itk::TimeProbesCollectorBase chronometer; \
itk::MemoryProbesCollectorBase memorymeter
#define itkProbesStart( text ) memorymeter.Start( text ); chronometer.Start(
text )
#define itkProbesStop( text ) chronometer.Stop( text ); memorymeter.Stop(
text )
#define itkProbesReport( stream ) chronometer.Report( stream );
memorymeter.Report( stream )
#else
#define itkProbesCreate() \
itk::TimeProbesCollectorBase chronometer
#define itkProbesStart( text ) chronometer.Start( text )
#define itkProbesStop( text ) chronometer.Stop( text )
#define itkProbesReport( stream ) chronometer.Report( stream )
#endif
#include "itkBSplineDeformableTransform.h"
#include "itkLBFGSBOptimizer.h"
#include "itkVersorRigid3DTransform.h"
#include "itkCenteredTransformInitializer.h"
#include "itkVersorRigid3DTransformOptimizer.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"
#include "itkImportImageFilter.h"
#include "itkMultiThreader.h"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "itkCommand.h"
#include "itkNormalizeImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#define WM_MESSAGE_STATUS WM_USER +13
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::VersorRigid3DTransformOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
BOOL APIENTRY DllMain( HANDLE hModule,
DWORD ul_reason_for_call,
LPVOID lpReserved
                                         )
{
return TRUE;
}
__declspec(dllexport) int RegisterImage2to1(short *pixdata1, short
*pixdata2, int xdim, int ydim, int zdim){
        // define image dimension and data type
        const unsigned int ImageDimension = 3;
        typedef float PixelType;
        // define fixed and moving image
        typedef itk::Image< PixelType, ImageDimension > FixedImageType;
        typedef itk::Image< PixelType, ImageDimension > MovingImageType;
        typedef float InternalPixelType;
        typedef itk::Image< InternalPixelType, ImageDimension > InternalImageType;
        typedef itk::VersorRigid3DTransform< double > TransformType;
        const unsigned int SpaceDimension = ImageDimension;
        const unsigned int SplineOrder = 3;
        typedef double CoordinateRepType;
        typedef itk::VersorRigid3DTransformOptimizer OptimizerType;
        /*typedef itk::NormalizedCorrelationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;*/
        
        /*typedef itk::MeanReciprocalSquareDifferenceImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;*/
        /*typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
         typedef itk::MutualInformationImageToImageMetric<
InternalImageType,
InternalImageType >
MetricType;*/
        typedef itk::MattesMutualInformationImageToImageMetric<
InternalImageType,
InternalImageType > MetricType;
        typedef itk:: LinearInterpolateImageFunction<
InternalImageType,
double > InterpolatorType;
        typedef itk::ImageRegistrationMethod<
InternalImageType,
InternalImageType > RegistrationType;
        MetricType::Pointer metric = MetricType::New();
        OptimizerType::Pointer optimizer = OptimizerType::New();
        InterpolatorType::Pointer interpolator = InterpolatorType::New();
        RegistrationType::Pointer registration = RegistrationType::New();
        registration->SetMetric( metric );
        registration->SetOptimizer( optimizer );
        registration->SetInterpolator( interpolator );
        TransformType::Pointer transform = TransformType::New();
        registration->SetTransform( transform );
        /*metric->SetFixedImageStandardDeviation( 0.4 );
        metric->SetMovingImageStandardDeviation( 0.4 );*/
        // define import filter #1 and #2 for data import to itk
        typedef itk::ImportImageFilter< PixelType, ImageDimension>
ImportFilterType;
        ImportFilterType::Pointer importFilter1 = ImportFilterType::New();
        ImportFilterType::Pointer importFilter2 = ImportFilterType::New();
        ImportFilterType::SizeType size;
        size[0] = xdim;
        size[1] = ydim;
        size[2] = zdim;
        ImportFilterType::IndexType start;
        start.Fill( 0 );
        ImportFilterType::RegionType region;
        region.SetIndex( start );
        region.SetSize( size );
        importFilter1->SetRegion( region );
        importFilter2->SetRegion( region );
        double origin[ ImageDimension ];
        origin[0] = 0.0;
        origin[1] = 0.0;
        origin[2] = 0.0;
        importFilter1->SetOrigin( origin );
        importFilter2->SetOrigin( origin );
        double spacing[ ImageDimension ];
        spacing[0] = 1.0;
        spacing[1] = 1.0;
        spacing[2] = 1.0;
        importFilter1->SetSpacing( spacing);
        importFilter2->SetSpacing( spacing);
        // create buffers for images
        const unsigned int numberOfPixels = size[0]*size[1]*size[2];
        PixelType * localBuffer1 = new PixelType[ numberOfPixels ];
        PixelType * it1 = localBuffer1;
        PixelType * localBuffer2 = new PixelType[ numberOfPixels ];
        PixelType * it2 = localBuffer2;
        // set pixels into image #1: fixed image
        for(unsigned int i=0;i<size[0]*size[1]*size[2];i++){
                *it1++ = (float) pixdata1[i];
                // uncomment following lines for thresholding before registration
                /*if(pixdata1[i] > 16)
                        *it1++ = (float) pixdata1[i];
                else
                        *it1++ = 0;*/
        }
        importFilter1->SetImportPointer( localBuffer1, numberOfPixels, true);
        //registration->SetFixedImage( importFilter1->GetOutput() );
        importFilter1->Update();
        typedef FixedImageType::SpacingType SpacingType;
        typedef FixedImageType::PointType OriginType;
        typedef FixedImageType::RegionType RegionType;
        typedef FixedImageType::SizeType SizeType;
        FixedImageType::Pointer fixedImage = importFilter1->GetOutput();
        const SpacingType fixedSpacing = fixedImage->GetSpacing();
        const OriginType fixedOrigin = fixedImage->GetOrigin();
        const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();
        const SizeType fixedSize = fixedRegion.GetSize();
        TransformType::InputPointType centerFixed;        
        centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;
        centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;
        centerFixed[2] = fixedOrigin[2] + fixedSpacing[2] * fixedSize[2] / 2.0;
        // set pixels into image #2 moving image
        for(unsigned int i=0;i<size[0]*size[1]*size[2];i++){
                *it2++ = (float) pixdata2[i];
                // uncomment following lines for thresholding before registration
                /*if(pixdata2[i] > 16)
                        *it2++ = (float) pixdata2[i];
                else
                        *it2++ = 0;*/
        }
        importFilter2->SetImportPointer( localBuffer2, numberOfPixels, true);
        //registration->SetMovingImage( importFilter2->GetOutput() );
        importFilter2->Update();
        MovingImageType::Pointer movingImage = importFilter2->GetOutput();
        // set center of image
        const SpacingType movingSpacing = movingImage->GetSpacing();
        const OriginType movingOrigin = movingImage->GetOrigin();
        const RegionType movingRegion = movingImage->GetLargestPossibleRegion();
        const SizeType movingSize = movingRegion.GetSize();
        TransformType::InputPointType centerMoving;
        centerMoving[0] = movingOrigin[0] + movingSpacing[0] * movingSize[0] / 2.0;
        centerMoving[1] = movingOrigin[1] + movingSpacing[1] * movingSize[1] / 2.0;
        centerMoving[2] = movingOrigin[2] + movingSpacing[2] * movingSize[2] / 2.0;
        //FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();
        registration->SetFixedImageRegion( fixedRegion );
        
        /*typedef TransformType::RegionType RegionType;
        RegionType bsplineRegion;
        RegionType::SizeType gridSizeOnImage;
        RegionType::SizeType gridBorderSize;
        RegionType::SizeType totalGridSize;
        gridSizeOnImage.Fill( 5 );        // 12 ?
        gridBorderSize.Fill( 3 ); // Border for spline order = 3 ( 1 lower, 2
upper )
        totalGridSize = gridSizeOnImage + gridBorderSize;
        bsplineRegion.SetSize( totalGridSize );
        //typedef TransformType::SpacingType SpacingType;
        //SpacingType spacing = fixedImage->GetSpacing();
        //typedef TransformType::OriginType OriginType;
        //OriginType origin = fixedImage->GetOrigin();;
        FixedImageType::SizeType fixedImageSize = fixedRegion.GetSize();
        for(unsigned int r=0; r<ImageDimension; r++)
                {
                spacing[r] *= static_cast<double>(fixedImageSize[r] - 1) /
                                        static_cast<double>(gridSizeOnImage[r] - 1);
                origin[r] -= spacing[r];
                }
        transform->SetGridSpacing( spacing );
        transform->SetGridOrigin( origin );
        transform->SetGridRegion( bsplineRegion );
        transform->SetGridDirection( fixedImage->GetDirection() );*/
        
        typedef itk::NormalizeImageFilter<
                                                        FixedImageType,
                                                        InternalImageType
                                                                        > FixedNormalizeFilterType;
        typedef itk::NormalizeImageFilter<
                                                        MovingImageType,
                                                        InternalImageType
                                                                                 > MovingNormalizeFilterType;
        FixedNormalizeFilterType::Pointer fixedNormalizer =
                                                                                FixedNormalizeFilterType::New();
        MovingNormalizeFilterType::Pointer movingNormalizer =
                                                                                MovingNormalizeFilterType::New();
        typedef itk::DiscreteGaussianImageFilter<
                                                                 InternalImageType,
                                                                 InternalImageType
                                                                                                > GaussianFilterType;
        GaussianFilterType::Pointer fixedSmoother = GaussianFilterType::New();
        GaussianFilterType::Pointer movingSmoother = GaussianFilterType::New();
        fixedSmoother->SetVariance( 2.0 );
        movingSmoother->SetVariance( 2.0 );
        fixedNormalizer->SetInput( importFilter1->GetOutput() );
        movingNormalizer->SetInput( importFilter2->GetOutput() );
        fixedSmoother->SetInput( fixedNormalizer->GetOutput() );
        movingSmoother->SetInput( movingNormalizer->GetOutput() );
        registration->SetFixedImage( fixedSmoother->GetOutput() );
        registration->SetMovingImage( movingSmoother->GetOutput() );
        fixedNormalizer->Update();
        FixedImageType::RegionType fixedImageRegion =
fixedNormalizer->GetOutput()->GetBufferedRegion();
        registration->SetFixedImageRegion( fixedImageRegion );
        typedef itk::CenteredTransformInitializer< TransformType,
FixedImageType,
MovingImageType
>
TransformInitializerType;
TransformInitializerType::Pointer initializer =
TransformInitializerType::New();
        initializer->SetTransform( transform );
initializer->SetFixedImage( importFilter1->GetOutput() );
initializer->SetMovingImage( importFilter2->GetOutput() );
        initializer->MomentsOn();
        initializer->InitializeTransform();
        typedef TransformType::VersorType VersorType;
        typedef VersorType::VectorType VectorType;
        VersorType rotation;
        VectorType axis;
        
        axis[0] = 0.0;
        axis[1] = 0.0;
        axis[2] = 1.0;
        const double angle = 0.0;
        rotation.Set( axis, angle );
        transform->SetRotation( rotation );
        registration->SetInitialTransformParameters( transform->GetParameters() );
        typedef OptimizerType::ScalesType OptimizerScalesType;
        OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
        const double translationScale = 1.0 / 1000.0;
        optimizerScales[0] = 1.0;
        optimizerScales[1] = 1.0;
        optimizerScales[2] = 1.0;
        optimizerScales[3] = translationScale;
        optimizerScales[4] = translationScale;
        optimizerScales[5] = translationScale;
        optimizer->SetScales( optimizerScales );
        optimizer->SetMaximumStepLength( 0.2000 );
        optimizer->SetMinimumStepLength( 0.0001 );
        optimizer->SetNumberOfIterations( 200 );
        CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
        optimizer->AddObserver( itk::IterationEvent(), observer );
        try
                {
                registration->StartRegistration();
                }
        catch( itk::ExceptionObject & err )
                {
                std::cerr << "ExceptionObject caught !" << std::endl;
                std::cerr << err << std::endl;
                return EXIT_FAILURE;
                }
        
        OptimizerType::ParametersType finalParameters =
                                                registration->GetLastTransformParameters();
        const double versorX = finalParameters[0];
        const double versorY = finalParameters[1];
        const double versorZ = finalParameters[2];
        const double finalTranslationX = finalParameters[3];
        const double finalTranslationY = finalParameters[4];
        const double finalTranslationZ = finalParameters[5];
        const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
        const double bestValue = optimizer->GetValue();
        transform->SetParameters( finalParameters );
        TransformType::MatrixType matrix = transform->GetRotationMatrix();
        TransformType::OffsetType offset = transform->GetOffset();
        typedef itk::ResampleImageFilter<
                                                                MovingImageType,
                                                                FixedImageType > ResampleFilterType;
        TransformType::Pointer finalTransform = TransformType::New();
        finalTransform->SetCenter( transform->GetCenter() );
        finalTransform->SetParameters( finalParameters );
        ResampleFilterType::Pointer resampler = ResampleFilterType::New();
        resampler->SetTransform( finalTransform );
        resampler->SetInput( movingImage );
        
        resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
        resampler->SetOutputOrigin( fixedImage->GetOrigin() );
        resampler->SetOutputSpacing( fixedImage->GetSpacing() );
        resampler->SetOutputDirection( fixedImage->GetDirection() );
        resampler->SetDefaultPixelValue( 0 );
        //resampler->SetDefaultPixelValue( 100 );
        
        movingImage = resampler->GetOutput();
        resampler->Update();
        // give back the registered image
        typedef itk::ImageRegionConstIterator< MovingImageType > IteratorType;
        IteratorType it( movingImage, region );
        it.GoToBegin();
        int k=0;
        while(! it.IsAtEnd()){
                pixdata2[k] = (short) it.Get();
                k++;
                ++it;
        }
        return EXIT_SUCCESS;
        return 0;
};
</pre>
<blockquote type="cite">
<pre wrap="">Thanks in advance for your help
</pre>
</blockquote>
<pre wrap="">Gael
</pre>
<blockquote type="cite">
<pre wrap="">
</pre>
</blockquote>
<pre wrap="">
--
M.Sc. Comp. Eng. Gael Pentang
Research Assistent
University Dusseldorf
Medical Faculty
Department of Diagnostic and Interventional Radiology
Moorenstrasse 5
D-40225 Dusseldorf
Germany
Tel.: +49 211 8117430
Mail: <a class="moz-txt-link-abbreviated" href="mailto:gael.pentang@med.uni-duesseldorf.de">gael.pentang@med.uni-duesseldorf.de</a>
_____________________________________
Powered by <a class="moz-txt-link-abbreviated" href="http://www.kitware.com">www.kitware.com</a>
Visit other Kitware open-source projects at
<a class="moz-txt-link-freetext" href="http://www.kitware.com/opensource/opensource.html">http://www.kitware.com/opensource/opensource.html</a>
Kitware offers ITK Training Courses, for more information visit:
<a class="moz-txt-link-freetext" href="http://www.kitware.com/products/protraining.html">http://www.kitware.com/products/protraining.html</a>
Please keep messages on-topic and check the ITK FAQ at:
<a class="moz-txt-link-freetext" href="http://www.itk.org/Wiki/ITK_FAQ">http://www.itk.org/Wiki/ITK_FAQ</a>
Follow this link to subscribe/unsubscribe:
<a class="moz-txt-link-freetext" href="http://www.itk.org/mailman/listinfo/insight-users">http://www.itk.org/mailman/listinfo/insight-users</a>
</pre>
</blockquote>
</blockquote>
<br>
<pre class="moz-signature" cols="72">--
M.Sc. Comp. Eng. Gael Pentang
Research Assistent
University Dusseldorf
Medical Faculty
Department of Diagnostic and Interventional Radiology
Moorenstrasse 5
D-40225 Dusseldorf
Germany
Tel.: +49 211 8117430
Mail: <a class="moz-txt-link-abbreviated" href="mailto:gael.pentang@med.uni-duesseldorf.de">gael.pentang@med.uni-duesseldorf.de</a></pre>
</body>
</html>