Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

itkTrainingFunctionBase.h

Go to the documentation of this file.
00001 /*=========================================================================
00002 
00003   Program:   Insight Segmentation & Registration Toolkit
00004   Module:    $RCSfile: itkTrainingFunctionBase.h,v $
00005   Language:  C++
00006   Date:      $Date: 2006/04/18 11:23:29 $
00007   Version:   $Revision: 1.6 $
00008 
00009   Copyright (c) Insight Software Consortium. All rights reserved.
00010   See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
00011 
00012      This software is distributed WITHOUT ANY WARRANTY; without even 
00013      the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
00014      PURPOSE.  See the above copyright notices for more information.
00015 
00016 =========================================================================*/
00017 
00018 #ifndef __itkTrainingFunctionBase_h
00019 #define __itkTrainingFunctionBase_h
00020 
00021 #include <iostream>
00022 #include "itkLightProcessObject.h"
00023 #include "itkNeuralNetworkObject.h"
00024 #include "itkSquaredDifferenceErrorFunction.h"
00025 #include "itkMeanSquaredErrorFunction.h"
00026 namespace itk
00027 {
00028 namespace Statistics
00029 {
00030 
00031 template<class TSample, class TOutput, class ScalarType>
00032 class TrainingFunctionBase : public LightProcessObject
00033 {
00034 public:
00035   typedef TrainingFunctionBase Self;
00036   typedef LightProcessObject Superclass;
00037   typedef SmartPointer<Self> Pointer;
00038   typedef SmartPointer<const Self> ConstPointer;
00039 
00041   itkTypeMacro(TrainingFunctionBase, LightProcessObject);
00042 
00044   itkNewMacro(Self);
00045 
00046   typedef ScalarType ValueType;
00047   typedef typename TSample::MeasurementVectorType VectorType;
00048   typedef typename TOutput::MeasurementVectorType OutputVectorType;
00049   typedef Array<ValueType> InternalVectorType;
00050 
00051   typedef std::vector<VectorType> InputSampleVectorType;
00052   typedef std::vector<OutputVectorType> OutputSampleVectorType;
00053   typedef NeuralNetworkObject<VectorType, OutputVectorType> NetworkType;
00054   typedef ErrorFunctionBase<InternalVectorType, ScalarType> PerformanceFunctionType;
00055   typedef SquaredDifferenceErrorFunction<InternalVectorType, ScalarType> DefaultPerformanceType;
00056   //typedef MeanSquaredErrorFunction<InternalVectorType, ScalarType> DefaultPerformanceType;
00057 
00058   void SetTrainingSamples(TSample* samples);
00059   void SetTargetValues(TOutput* targets);
00060   void SetLearningRate(ValueType);
00061 
00062   ValueType GetLearningRate();
00063 
00064   itkSetMacro(Iterations, long);
00065   itkGetConstReferenceMacro(Iterations, long);
00066 
00067   void SetPerformanceFunction(PerformanceFunctionType* f);
00068 
00069   virtual void
00070   Train(NetworkType* itkNotUsed(net), TSample* itkNotUsed(samples), TOutput* itkNotUsed(targets))
00071     {
00072     // not implemented
00073     };
00074 
00075   inline VectorType
00076   defaultconverter(typename TSample::MeasurementVectorType v)
00077     {
00078     VectorType temp;
00079     for (unsigned int i = 0; i < v.Size(); i++)
00080       {
00081       temp[i] = static_cast<ScalarType>(v[i]) ;
00082       }
00083     return temp;
00084     }
00085 
00086   inline OutputVectorType
00087   targetconverter(typename TOutput::MeasurementVectorType v)
00088     {
00089     OutputVectorType temp;
00090     
00091     for (unsigned int i = 0; i < v.Size(); i++)
00092       {
00093       temp[i] = static_cast<ScalarType>(v[i]) ;
00094       }
00095     return temp;
00096     }
00097 
00098 protected:
00099 
00100   TrainingFunctionBase();
00101   ~TrainingFunctionBase(){};
00102    
00104   virtual void PrintSelf( std::ostream& os, Indent indent ) const;
00105 
00106   TSample*                m_TrainingSamples;// original samples
00107   TOutput*                m_SampleTargets;  // original samples
00108   InputSampleVectorType   m_InputSamples;   // itk::vectors
00109   OutputSampleVectorType  m_Targets;        // itk::vectors
00110   long                    m_Iterations;    
00111   ValueType               m_LearningRate;
00112   typename PerformanceFunctionType::Pointer m_PerformanceFunction;
00113 };
00114 
00115 } // end namespace Statistics
00116 } // end namespace itk
00117 #ifndef ITK_MANUAL_INSTANTIATION
00118 #include "itkTrainingFunctionBase.txx"
00119 #endif
00120 
00121 #endif
00122 

Generated at Mon Mar 12 03:13:34 2007 for ITK by doxygen 1.5.1 written by Dimitri van Heesch, © 1997-2000