ITK  4.1.0
Insight Segmentation and Registration Toolkit
itkBatchSupervisedTrainingFunction.h
Go to the documentation of this file.
00001 /*=========================================================================
00002  *
00003  *  Copyright Insight Software Consortium
00004  *
00005  *  Licensed under the Apache License, Version 2.0 (the "License");
00006  *  you may not use this file except in compliance with the License.
00007  *  You may obtain a copy of the License at
00008  *
00009  *         http://www.apache.org/licenses/LICENSE-2.0.txt
00010  *
00011  *  Unless required by applicable law or agreed to in writing, software
00012  *  distributed under the License is distributed on an "AS IS" BASIS,
00013  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00014  *  See the License for the specific language governing permissions and
00015  *  limitations under the License.
00016  *
00017  *=========================================================================*/
00018 #ifndef __itkBatchSupervisedTrainingFunction_h
00019 #define __itkBatchSupervisedTrainingFunction_h
00020 
00021 #include "itkTrainingFunctionBase.h"
00022 
00023 namespace itk
00024 {
00025 namespace Statistics
00026 {
00033 template<class TSample, class TTargetVector, class ScalarType>
00034 class BatchSupervisedTrainingFunction : public TrainingFunctionBase<TSample, TTargetVector, ScalarType>
00035 {
00036 public:
00037 
00038   typedef BatchSupervisedTrainingFunction  Self;
00039   typedef TrainingFunctionBase<TSample, TTargetVector, ScalarType>
00040                                            Superclass;
00041   typedef SmartPointer<Self>               Pointer;
00042   typedef SmartPointer<const Self>         ConstPointer;
00043 
00045   itkTypeMacro(BatchSupervisedTrainingFunction, TrainingFunctionBase);
00046 
00048   itkNewMacro(Self);
00049 
00050   typedef typename Superclass::NetworkType        NetworkType;
00051   typedef typename Superclass::InternalVectorType InternalVectorType;
00052 
00054   void SetNumOfIterations(SizeValueType i);
00055 
00056   virtual void Train(NetworkType* net, TSample* samples, TTargetVector* targets);
00057 
00058   itkSetMacro(Threshold, ScalarType);
00059 
00060 protected:
00061 
00062   BatchSupervisedTrainingFunction();
00063   virtual ~BatchSupervisedTrainingFunction(){};
00064 
00066   virtual void PrintSelf( std::ostream& os, Indent indent ) const;
00067 
00068   ScalarType  m_Threshold;
00069   bool        m_Stop; //stop condition
00070 };
00071 
00072 } // end namespace Statistics
00073 } // end namespace itk
00074 
00075 #ifndef ITK_MANUAL_INSTANTIATION
00076   #include "itkBatchSupervisedTrainingFunction.hxx"
00077 #endif
00078 
00079 #endif
00080