ITK
4.13.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv3/ImageRegistration13.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Rigid Transform
// and with MutualInformation metric.
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethod.h
"
#include "
itkCenteredRigid2DTransform.h
"
#include "
itkCenteredTransformInitializer.h
"
// Software Guide : BeginCodeSnippet
#include "
itkMattesMutualInformationImageToImageMetric.h
"
// Software Guide : EndCodeSnippet
#include "
itkRegularStepGradientDescentOptimizer.h
"
#include "
itkMersenneTwisterRandomVariateGenerator.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
typedef
CommandIterationUpdate
Self
;
typedef
itk::Command
Superclass
;
typedef
itk::SmartPointer<Self>
Pointer
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate() {};
public
:
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
typedef
const
OptimizerType * OptimizerPointer;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event) ITK_OVERRIDE
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event) ITK_OVERRIDE
{
OptimizerPointer optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 3 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile "
;
std::cerr <<
"[useExplicitPDFderivatives ] "
;
std::cerr <<
"[useCachingBSplineWeights ] "
<< std::endl;
return
EXIT_FAILURE;
}
const
unsigned
int
Dimension
= 2;
typedef
unsigned
char
PixelType;
typedef
itk::Image< PixelType, Dimension >
FixedImageType;
typedef
itk::Image< PixelType, Dimension >
MovingImageType;
// Software Guide : BeginLatex
// The CenteredRigid2DTransform applies a rigid transform in 2D space.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::CenteredRigid2DTransform< double >
TransformType;
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
// Software Guide : EndCodeSnippet
typedef
itk::LinearInterpolateImageFunction
<
MovingImageType,
double
> InterpolatorType;
typedef
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType > RegistrationType;
// Software Guide : BeginCodeSnippet
typedef
itk::MattesMutualInformationImageToImageMetric
<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
// Software Guide : EndCodeSnippet
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
metric->SetNumberOfHistogramBins( 20 );
metric->SetNumberOfSpatialSamples( 10000 );
// For consistent results when regression testing.
metric->ReinitializeSeed( 121212 );
if
( argc > 4 )
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the Transform
// parameters, or doing it by progressively accumulating contributions from
// each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives( atoi( argv[4] ) );
}
if
( argc > 5 )
{
// Define whether to cache the BSpline weights and indexes corresponding to
// each one of the samples used to compute the metric. Enabling caching will
// make the algorithm run faster but it will have a cost on the amount of memory
// that needs to be allocated. This option is only relevant when using the
// BSplineTransform.
metric->SetUseCachingOfBSplineWeights( atoi( argv[5] ) );
}
typedef
itk::ImageFileReader< FixedImageType >
FixedImageReaderType;
typedef
itk::ImageFileReader< MovingImageType >
MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : BeginLatex
// The \doxygen{CenteredRigid2DTransform} is initialized by 5 parameters,
// indicating the angle of rotation, the center coordinates and the
// translation to be applied after rotation. The initialization is done
// by the \doxygen{CenteredTransformInitializer}.
// The transform can operate in two modes, one assumes that the
// anatomical objects to be registered are centered in their respective
// images. Hence the best initial guess for the registration is the one
// that superimposes those two centers.
// This second approach assumes that the moments of the anatomical
// objects are similar for both images and hence the best initial guess
// for registration is to superimpose both mass centers. The center of
// mass is computed from the moments obtained from the gray level values.
// Here we adopt the first approach. The \code{GeometryOn()} method
// toggles between the approaches.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::CenteredTransformInitializer
<
TransformType, FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer
= TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->GeometryOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
transform->SetAngle( 0.0 );
registration->SetInitialTransformParameters( transform->GetParameters() );
// Software Guide : BeginLatex
// The optimizer scales the metrics (the gradient in this case) by the
// scales during each iteration. Hence a large value of the center scale
// will prevent movement along the center during optimization. Here we
// assume that the fixed and moving images are likely to be related by
// a translation.
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const
double
translationScale = 1.0 / 128.0;
const
double
centerScale = 1000.0;
// prevents it from moving
// during the optimization
optimizerScales[0] = 1.0;
optimizerScales[1] = centerScale;
optimizerScales[2] = centerScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizer->SetScales( optimizerScales );
optimizer->SetMaximumStepLength( 0.5 );
optimizer->SetMinimumStepLength( 0.0001 );
optimizer->SetNumberOfIterations( 400 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout <<
"Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
typedef
RegistrationType::ParametersType ParametersType;
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
finalAngle = finalParameters[0];
const
double
finalRotationCenterX = finalParameters[1];
const
double
finalRotationCenterY = finalParameters[2];
const
double
finalTranslationX = finalParameters[3];
const
double
finalTranslationY = finalParameters[4];
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
double
bestValue = optimizer->GetValue();
// Print out results
//
const
double
finalAngleInDegrees = finalAngle * 180 /
itk::Math::pi
;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Angle (radians) "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Center X = "
<< finalRotationCenterX << std::endl;
std::cout <<
" Center Y = "
<< finalRotationCenterY << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
typedef
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef
itk::Image< PixelType, Dimension >
OutputImageType;
typedef
itk::ImageFileWriter< OutputImageType >
WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( resample->GetOutput() );
writer->Update();
return
EXIT_SUCCESS;
}
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySlice.png}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \end{itemize}
//
// The second image is the result of intentionally shifting the first
// image by $20mm$ in $X$ and $20mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration1}. The example
// yielded the following results.
//
// \begin{verbatim}
// Translation X = 20
// Translation Y = 20
// \end{verbatim}
// These values match the true misalignment introduced in the moving image.
// Software Guide : EndLatex
Generated on Tue Dec 19 2017 03:56:26 for ITK by
1.8.5