ITK  4.13.0
Insight Segmentation and Registration Toolkit
Examples/Segmentation/GibbsPriorImageFilter1.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{RGBGibbsPriorFilter}.
// The filter outputs a binary segmentation that can be improved by the
// deformable model. It is the first part of our hybrid framework.
//
// First, we include the appropriate header file.
//
// Software Guide : EndLatex
#include <iostream>
#include <string>
#include <math.h>
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// classes help the Gibbs filter to segment the image
// image storage and I/O classes
#include "itkSize.h"
#include "itkImage.h"
#include "itkVector.h"
#define NUM_CLASSES 3
#define MAX_NUM_ITER 1
int main( int argc, char *argv[] )
{
if( argc != 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage trainimage outputImage" << std::endl;
return EXIT_FAILURE;
}
std::cout<< "Gibbs Prior Test Begins: " << std::endl;
// Software Guide : BeginLatex
//
// The input is a single channel 2D image; the channel number is
// \code{NUMBANDS} = 1, and \code{NDIMENSION} is set to 3.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned short NUMBANDS = 1;
const unsigned short NDIMENSION = 3;
NDIMENSION> VecImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Gibbs prior segmentation is performed first to generate a rough
// segmentation that yields a sample of tissue from a region to be
// segmented, which will be combined to form the input for the
// isocontouring method. We define the pixel type of the output of the
// Gibbs prior filter to be \code{unsigned short}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// We instantiate reader and writer types
//
ReaderType::Pointer inputimagereader = ReaderType::New();
ReaderType::Pointer trainingimagereader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
inputimagereader->SetFileName( argv[1] );
trainingimagereader->SetFileName( argv[2] );
writer->SetFileName( argv[3] );
// We convert the input into vector images
//
VecImageType::Pointer vecImage = VecImageType::New();
typedef VecImageType::PixelType VecImagePixelType;
VecImageType::SizeType vecImgSize = { {181 , 217, 1} };
index.Fill(0);
VecImageType::RegionType region;
region.SetSize( vecImgSize );
region.SetIndex( index );
vecImage->SetLargestPossibleRegion( region );
vecImage->SetBufferedRegion( region );
vecImage->Allocate();
enum { VecImageDimension = VecImageType::ImageDimension };
VecIterator vecIt( vecImage, vecImage->GetBufferedRegion() );
vecIt.GoToBegin();
inputimagereader->Update();
trainingimagereader->Update();
ClassIterator inputIt( inputimagereader->GetOutput(), inputimagereader->GetOutput()->GetBufferedRegion() );
inputIt.GoToBegin();
//Set up the vector to store the image data
typedef VecImageType::PixelType DataVector;
DataVector dblVec;
while ( !vecIt.IsAtEnd() )
{
dblVec[0] = inputIt.Get();
vecIt.Set(dblVec);
++vecIt;
++inputIt;
}
//----------------------------------------------------------------------
//Set membership function (Using the statistics objects)
//----------------------------------------------------------------------
namespace stat = itk::Statistics;
typedef VecImageType::PixelType VecImagePixelType;
typedef stat::MahalanobisDistanceMembershipFunction< VecImagePixelType >
MembershipFunctionType;
typedef MembershipFunctionType::Pointer MembershipFunctionPointer;
typedef std::vector< MembershipFunctionPointer >
MembershipFunctionPointerVector;
//----------------------------------------------------------------------
// Set the image model estimator (train the class models)
//----------------------------------------------------------------------
typedef itk::ImageGaussianModelEstimator<VecImageType,
MembershipFunctionType, ClassImageType>
ImageGaussianModelEstimatorType;
ImageGaussianModelEstimatorType::Pointer
applyEstimateModel = ImageGaussianModelEstimatorType::New();
applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
applyEstimateModel->SetInputImage(vecImage);
applyEstimateModel->SetTrainingImage(trainingimagereader->GetOutput());
//Run the gaussian classifier algorithm
applyEstimateModel->Update();
std::cout << " site 1 " << std::endl;
applyEstimateModel->Print(std::cout);
MembershipFunctionPointerVector membershipFunctions =
applyEstimateModel->GetMembershipFunctions();
std::cout << " site 2 " << std::endl;
//----------------------------------------------------------------------
//Set the decision rule
//----------------------------------------------------------------------
typedef itk::Statistics::DecisionRule::Pointer DecisionRuleBasePointer;
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer myDecisionRule = DecisionRuleType::New();
std::cout << " site 3 " << std::endl;
//----------------------------------------------------------------------
// Set the classifier to be used and assigne the parameters for the
// supervised classifier algorithm except the input image which is
// grabbed from the Gibbs application pipeline.
//----------------------------------------------------------------------
//---------------------------------------------------------------------
// Software Guide : BeginLatex
//
// Then we define the classifier that is needed
// for the Gibbs prior model to make correct segmenting decisions.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageClassifierBase< VecImageType,
ClassImageType > ClassifierType;
typedef ClassifierType::Pointer ClassifierPointer;
ClassifierPointer myClassifier = ClassifierType::New();
// Software Guide : EndCodeSnippet
// Set the Classifier parameters
myClassifier->SetNumberOfClasses(NUM_CLASSES);
// Set the decison rule
myClassifier->SetDecisionRule((DecisionRuleBasePointer) myDecisionRule );
//Add the membership functions
for (unsigned int i=0; i<NUM_CLASSES; ++i)
{
myClassifier->AddMembershipFunction( membershipFunctions[i] );
}
//Set the Gibbs Prior labeller
// Software Guide : BeginLatex
//
// After that we can define the multi-channel Gibbs prior model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
GibbsPriorFilterType;
GibbsPriorFilterType::Pointer applyGibbsImageFilter =
GibbsPriorFilterType::New();
// Software Guide : EndCodeSnippet
// Set the MRF labeller parameters
// Software Guide : BeginLatex
//
// The parameters for the Gibbs prior filter are defined
// below. \code{NumberOfClasses} indicates how many different objects are in
// the image. The maximum number of iterations is the number of
// minimization steps. \code{ClusterSize} sets the lower limit on the
// object's size. The boundary gradient is the estimate of the variance
// between objects and background at the boundary region.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->SetNumberOfClasses(NUM_CLASSES);
applyGibbsImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
applyGibbsImageFilter->SetClusterSize(10);
applyGibbsImageFilter->SetBoundaryGradient(6);
applyGibbsImageFilter->SetObjectLabel(1);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now set the input classifier for the Gibbs prior filter and the
// input to the classifier. The classifier will calculate the mean and
// variance of the object using the class image, and the results will be
// used as parameters for the Gibbs prior model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->SetInput(vecImage);
applyGibbsImageFilter->SetClassifier( myClassifier );
applyGibbsImageFilter->SetTrainingImage(trainingimagereader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we execute the Gibbs prior filter using the Update() method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->Update();
// Software Guide : EndCodeSnippet
std::cout << "applyGibbsImageFilter: " << applyGibbsImageFilter;
writer->SetInput( applyGibbsImageFilter->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// We execute this program on the image \code{brainweb89.png}. The
// following parameters are passed to the command line:
//
// \small
// \begin{verbatim}
//GibbsGuide.exe brainweb89.png brainweb89_train.png brainweb_gp.png
// \end{verbatim}
// \normalsize
//
// \code{brainweb89train} is a training image that helps to estimate the object statistics.
//
// Note that in order to successfully segment other images, one has to
// create suitable training images for them. We can also segment color
// (RGB) and other multi-channel images.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}