ITK  4.13.0
Insight Segmentation and Registration Toolkit
Examples/Statistics/ImageEntropy1.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
//
// This example shows how to compute the entropy of an image. More formally
// this should be said : The reduction in uncertainty gained when we measure
// the intensity of \emph{one} randomly selected pixel in this image, given
// that we already know the statistical distribution of the image intensity
// values.
//
// In practice it is almost never possible to know the real statistical
// distribution of intensities and we are forced to estimate it from the
// evaluation of the histogram from one or several images of similar nature.
// We can use the counts in histogram bins in order to compute frequencies and
// then consider those frequencies to be estimations of the probablility of a
// new value to belong to the intensity range of that bin.
//
// \index{Entropy!Images}
// \index{Image!Entropy}
// \index{Image!Amount of information}
// \index{Amount of information!Image}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Since the first stage in estimating the entropy of an image is to compute
// its histogram, we must start by including the headers of the classes that
// will perform such a computation. In this case, we are going to use a scalar
// image as input, therefore we need the
// \subdoxygen{Statistics}{ScalarImageToHistogramGenerator} class, as well as
// the image class.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv [] )
{
if( argc < 3 )
{
std::cerr << "Missing command line arguments" << std::endl;
std::cerr << "Usage : ImageEntropy1 inputImageFileName ";
std::cerr << "numberOfHistogramBins" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The pixel type and dimension of the image are explicitly declared and then
// used for instantiating the image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
const unsigned int Dimension = 3;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The image type is used as template parameter for instantiating the histogram
// generator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType > HistogramGeneratorType;
HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The parameters of the desired histogram are defined, including the
// number of bins and the marginal scale. For convenience in this example, we
// read the number of bins from the command line arguments. In this way we can
// easily experiment with different values for the number of bins and see how
// that choice affects the computation of the entropy.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfHistogramBins = atoi( argv[2] );
histogramGenerator->SetNumberOfBins( numberOfHistogramBins );
histogramGenerator->SetMarginalScale( 10.0 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can then connect as input the output image from a reader and trigger the
// histogram computation by invoking the \code{Compute()} method in the
// generator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramGenerator->SetInput( reader->GetOutput() );
histogramGenerator->Compute();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The resulting histogram can be recovered from the generator by using the
// \code{GetOutput()} method. A histogram class can be declared using the
// \code{HistogramType} trait from the generator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HistogramGeneratorType::HistogramType HistogramType;
const HistogramType * histogram = histogramGenerator->GetOutput();
// Software Guide : EndCodeSnippet
const unsigned int histogramSize = histogram->Size();
std::cout << "Histogram size " << histogramSize << std::endl;
for (unsigned int bin=0; bin < histogramSize; ++bin)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency( bin, 0 ) << std::endl;
}
// Software Guide : BeginLatex
//
// We proceed now to compute the \emph{estimation} of entropy given the
// histogram. The first conceptual jump to be done here is to assume that
// the histogram, which is the simple count of frequency of occurrence for the
// gray scale values of the image pixels, can be normalized in order to estimate
// the probability density function \textbf{PDF} of the actual statistical
// distribution of pixel values.
//
// First we declare an iterator that will visit all the bins in the histogram.
// Then we obtain the total number of counts using the
// \code{GetTotalFrequency()} method, and we initialize the entropy variable
// to zero.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();
double Sum = histogram->GetTotalFrequency();
double Entropy = 0.0;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We start now visiting every bin and estimating the probability of a pixel to
// have a value in the range of that bin. The base 2 logarithm of that
// probability is computed, and then weighted by the probability in order to
// compute the expected amount of information for any given pixel. Note that a
// minimum value is imposed for the probability in order to avoid computing
// logarithms of zeros.
//
// Note that the $\log{(2)}$ factor is used to convert the natural logarithm
// in to a logarithm of base 2, and makes it possible to report the entropy
// in its natural unit: the bit.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
while( itr != end )
{
const double probability = itr.GetFrequency() / Sum;
if( probability > 0.99 / Sum )
{
Entropy += - probability * std::log( probability ) / std::log( 2.0 );
}
++itr;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The result of this sum is considered to be our estimation of the image
// entropy. Note that the Entropy value will change depending on the number of
// histogram bins that we use for computing the histogram. This is particularly
// important when dealing with images whose pixel values have dynamic ranges so
// large that our number of bins will always underestimate the variability of
// the data.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "Image entropy = " << Entropy << " bits " << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As an illustration, the application of this program to the image
//
// \begin{itemize}
// \item \code{Examples/Data/BrainProtonDensitySlice.png}
// \end{itemize}
//
// results in the following values of entropy for different values of number of
// histogram bins.
//
// \begin{center}
// \begin{tabular}{|l|r|r|r|r|r|}
// \hline
// Number of Histogram Bins & 16 & 32 & 64 & 128 & 255 \cr
// \hline
// Estimated Entropy (bits) & 3.02 & 3.98 & 4.92 & 5.89 & 6.88 \cr
// \hline
// \end{tabular}
// \end{center}
//
//
// This table highlights the importance of carefully considering the
// characteristics of the histograms used for estimating Information Theory
// measures such as the entropy.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}