ITK  4.13.0
Insight Segmentation and Registration Toolkit
Examples/Statistics/ImageHistogram2.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// From the previous example you will have noticed that there is a significant
// number of operations to perform to compute the simple histogram of
// a scalar image. Given that this is a relatively common operation, it is
// convenient to encapsulate many of these operations in a single helper class.
//
// The \subdoxygen{Statistics}{ScalarImageToHistogramGenerator} is the result
// of such encapsulation. This example illustrates how to compute the
// histogram of a scalar image using this helper class.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// We should first include the header of the histogram generator and the image
// class.
//
// \index{itk::Statistics::Scalar\-Image\-To\-Histogram\-Generator!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv [] )
{
if( argc < 2 )
{
std::cerr << "Missing command line arguments" << std::endl;
std::cerr << "Usage : ImageHistogram1 inputImageFileName " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The image type must be defined using the typical pair of pixel type and
// dimension specification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
const unsigned int Dimension = 2;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem reading image file : " << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We use now the image type in order to instantiate the type of the
// corresponding histogram generator class, and invoke its \code{New()} method
// in order to construct one.
//
// \index{itk::Statistics::Scalar\-Image\-To\-Histogram\-Generator!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType > HistogramGeneratorType;
HistogramGeneratorType::Pointer histogramGenerator =
HistogramGeneratorType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image to be passed as input to the histogram generator is taken in this
// case from the output of an image reader.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramGenerator->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We define also the typical parameters that specify the characteristics of
// the histogram to be computed.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramGenerator->SetNumberOfBins( 256 );
histogramGenerator->SetMarginalScale( 10.0 );
histogramGenerator->SetHistogramMin( -0.5 );
histogramGenerator->SetHistogramMax( 255.5 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we trigger the computation of the histogram by invoking the
// \code{Compute()} method of the generator. Note again, that a generator is
// not a pipeline object and therefore it is up to you to make sure that the
// filters providing the input image have been updated.
//
// \index{itk::Statistics::Scalar\-Image\-To\-Histogram\-Generator!Compute()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramGenerator->Compute();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The resulting histogram can be obtained from the generator by invoking its
// \code{GetOutput()} method. It is also convenient to get the Histogram type
// from the traits of the generator type itself as shown in the code below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HistogramGeneratorType::HistogramType HistogramType;
const HistogramType * histogram = histogramGenerator->GetOutput();
// Software Guide : EndCodeSnippet
const unsigned int histogramSize = histogram->Size();
std::cout << "Histogram size " << histogramSize << std::endl;
unsigned int bin;
for( bin=0; bin < histogramSize; bin++ )
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency( bin, 0 ) << std::endl;
}
// Software Guide : BeginLatex
//
// In this case we simply print out the frequency values of the histogram.
// These values can be accessed by using iterators.
//
// \index{itk::Statistics::Histogram!Iterators}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
HistogramType::ConstIterator itr = histogram->Begin();
HistogramType::ConstIterator end = histogram->End();
unsigned int binNumber = 0;
while( itr != end )
{
std::cout << "bin = " << binNumber << " frequency = ";
std::cout << itr.GetFrequency() << std::endl;
++itr;
++binNumber;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}