ITK  4.13.0
Insight Segmentation and Registration Toolkit
Examples/Statistics/ScalarImageMarkovRandomField1.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// INPUTS: {BrainT1Slice_labelled.png}
// OUTPUTS: {ScalarImageMarkovRandomField1Output.png}
// ARGUMENTS: 50 3 3 14.8 91.6 134.9
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example shows how to use the Markov Random Field approach for
// classifying the pixel of a scalar image.
//
// The \subdoxygen{Statistics}{MRFImageFilter} is used for refining an initial
// classification by introducing the spatial coherence of the labels. The user
// should provide two images as input. The first image is the one to be
// classified while the second image is an image of labels representing an
// initial classification.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The following headers are related to reading input images, writing the
// output image, and making the necessary conversions between scalar and vector
// images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following headers are related to the statistical classification classes.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int main( int argc, char * argv [] )
{
if( argc < 7 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0];
std::cerr << " inputScalarImage inputLabeledImage";
std::cerr << " outputLabeledImage numberOfIterations";
std::cerr << " smoothingFactor numberOfClasses";
std::cerr << " mean1 mean2 ... meanN " << std::endl;
return EXIT_FAILURE;
}
const char * inputImageFileName = argv[1];
const char * inputLabelImageFileName = argv[2];
const char * outputImageFileName = argv[3];
const unsigned int numberOfIterations = atoi( argv[4] );
const double smoothingFactor = atof( argv[5] );
const unsigned int numberOfClasses = atoi( argv[6] );
const unsigned int numberOfArgumentsBeforeMeans = 7;
if( static_cast<unsigned int>(argc) <
numberOfClasses + numberOfArgumentsBeforeMeans )
{
std::cerr << "Error: " << std::endl;
std::cerr << numberOfClasses << " classes have been specified ";
std::cerr << "but not enough means have been provided in the command ";
std::cerr << "line arguments " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// First we define the pixel type and dimension of the image that we intend to
// classify. With this image type we can also declare the
// \doxygen{ImageFileReader} needed for reading the input image, create one and
// set its input filename. In this particular case we choose to use
// \code{signed short} as pixel type, which is typical for MicroMRI and CT data
// sets.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef signed short PixelType;
const unsigned int Dimension = 2;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( inputImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As a second step we define the pixel type and dimension of the image of
// labels that provides the initial classification of the pixels from the first
// image. This initial labeled image can be the output of a K-Means method like
// the one illustrated in section \ref{sec:KMeansClassifier}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char LabelPixelType;
typedef itk::ImageFileReader< LabelImageType > LabelReaderType;
LabelReaderType::Pointer labelReader = LabelReaderType::New();
labelReader->SetFileName( inputLabelImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the Markov Random Field algorithm is defined in general for images
// whose pixels have multiple components, that is, images of vector type, we
// must adapt our scalar image in order to satisfy the interface expected by
// the \code{MRFImageFilter}. We do this by using the
// \doxygen{ComposeImageFilter}. With this filter we will present our
// scalar image as a vector image whose vector pixels contain a single
// component.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::FixedArray<LabelPixelType,1> ArrayPixelType;
ImageType, ArrayImageType > ScalarToArrayFilterType;
ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();
scalarToArrayFilter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With the input image type \code{ImageType} and labeled image type
// \code{LabelImageType} we instantiate the type of the
// \doxygen{MRFImageFilter} that will apply the Markov Random Field algorithm
// in order to refine the pixel classification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MRFFilterType::Pointer mrfFilter = MRFFilterType::New();
mrfFilter->SetInput( scalarToArrayFilter->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set now some of the parameters for the MRF filter. In particular, the
// number of classes to be used during the classification, the maximum number
// of iterations to be run in this filter and the error tolerance that will be
// used as a criterion for convergence.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNumberOfClasses( numberOfClasses );
mrfFilter->SetMaximumNumberOfIterations( numberOfIterations );
mrfFilter->SetErrorTolerance( 1e-7 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing factor represents the tradeoff between fidelity to the
// observed image and the smoothness of the segmented image. Typical smoothing
// factors have values between 1~5. This factor will multiply the weights that
// define the influence of neighbors on the classification of a given pixel.
// The higher the value, the more uniform will be the regions resulting from
// the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor( smoothingFactor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Given that the MRF filter need to continually relabel the pixels, it needs
// access to a set of membership functions that will measure to what degree
// every pixel belongs to a particular class. The classification is performed
// by the \doxygen{ImageClassifierBase} class, that is instantiated using the
// type of the input vector image and the type of the labeled image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ArrayImageType,
LabelImageType > SupervisedClassifierType;
SupervisedClassifierType::Pointer classifier =
SupervisedClassifierType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The classifier need a decision rule to be set by the user. Note that we must
// use \code{GetPointer()} in the call of the \code{SetDecisionRule()} method
// because we are passing a SmartPointer, and smart pointer cannot perform
// polymorphism, we must then extract the raw pointer that is associated to the
// smart pointer. This extraction is done with the GetPointer() method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer classifierDecisionRule = DecisionRuleType::New();
classifier->SetDecisionRule( classifierDecisionRule.GetPointer() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now instantiate the membership functions. In this case we use the
// \subdoxygen{Statistics}{DistanceToCentroidMembershipFunction} class
// templated over the pixel type of the vector image, that in our example
// happens to be a vector of dimension 1.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ArrayPixelType >
MembershipFunctionType;
typedef MembershipFunctionType::Pointer MembershipFunctionPointer;
double meanDistance = 0;
MembershipFunctionType::CentroidType centroid(1);
for( unsigned int i=0; i < numberOfClasses; i++ )
{
MembershipFunctionPointer membershipFunction =
MembershipFunctionType::New();
centroid[0] = atof( argv[i+numberOfArgumentsBeforeMeans] );
membershipFunction->SetCentroid( centroid );
classifier->AddMembershipFunction( membershipFunction );
meanDistance += static_cast< double > (centroid[0]);
}
if (numberOfClasses > 0)
{
meanDistance /= numberOfClasses;
}
else
{
std::cerr << "ERROR: numberOfClasses is 0" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the Smoothing factor. This factor will multiply the weights that
// define the influence of neighbors on the classification of a given pixel.
// The higher the value, the more uniform will be the regions resulting from
// the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor( smoothingFactor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// and we set the neighborhood radius that will define the size of the clique
// to be used in the computation of the neighbors' influence in the
// classification of any given pixel. Note that despite the fact that we call
// this a radius, it is actually the half size of an hypercube. That is, the
// actual region of influence will not be circular but rather an N-Dimensional
// box. For example, a neighborhood radius of 2 in a 3D image will result in a
// clique of size 5x5x5 pixels, and a radius of 1 will result in a clique of
// size 3x3x3 pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNeighborhoodRadius( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We should now set the weights used for the neighbors. This is done by
// passing an array of values that contains the linear sequence of weights for
// the neighbors. For example, in a neighborhood of size 3x3x3, we should
// provide a linear array of 9 weight values. The values are packaged in a
// \code{std::vector} and are supposed to be \code{double}. The following lines
// illustrate a typical set of values for a 3x3x3 neighborhood. The array is
// arranged and then passed to the filter by using the method
// \code{SetMRFNeighborhoodWeight()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector< double > weights;
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now scale weights so that the smoothing function and the image fidelity
// functions have comparable value. This is necessary since the label
// image and the input image can have different dynamic ranges. The fidelity
// function is usually computed using a distance function, such as the
// \doxygen{DistanceToCentroidMembershipFunction} or one of the other
// membership functions. They tend to have values in the order of the means
// specified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double totalWeight = 0;
for(std::vector< double >::const_iterator wcIt = weights.begin();
wcIt != weights.end(); ++wcIt )
{
totalWeight += *wcIt;
}
for(std::vector< double >::iterator wIt = weights.begin();
wIt != weights.end(); ++wIt )
{
*wIt = static_cast< double > ( (*wIt) * meanDistance / (2 * totalWeight));
}
mrfFilter->SetMRFNeighborhoodWeight( weights );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the classifier class is connected to the Markof Random Fields filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetClassifier( classifier );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image produced by the \doxygen{MRFImageFilter} has the same pixel
// type as the labeled input image. In the following lines we use the
// \code{OutputImageType} in order to instantiate the type of a
// \doxygen{ImageFileWriter}. Then create one, and connect it to the output of
// the classification filter after passing it through an intensity rescaler
// to rescale it to an 8 bit dynamic range
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef MRFFilterType::OutputImageType OutputImageType;
// Software Guide : EndCodeSnippet
// Rescale outputs to the dynamic range of the display
typedef itk::Image< unsigned char, Dimension > RescaledOutputImageType;
OutputImageType, RescaledOutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
intensityRescaler->SetInput( mrfFilter->GetOutput() );
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetInput( intensityRescaler->GetOutput() );
writer->SetFileName( outputImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We are now ready for triggering the execution of the pipeline. This is done
// by simply invoking the \code{Update()} method in the writer. This call will
// propagate the update request to the reader and then to the MRF filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
std::cout << "Number of Iterations : ";
std::cout << mrfFilter->GetNumberOfIterations() << std::endl;
std::cout << "Stop condition: " << std::endl;
std::cout << " (1) Maximum number of iterations " << std::endl;
std::cout << " (2) Error tolerance: " << std::endl;
std::cout << mrfFilter->GetStopCondition() << std::endl;
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{ScalarImageMarkovRandomField1Output}
// \itkcaption[Output of the ScalarImageMarkovRandomField]{Effect of the
// MRF filter on a T1 slice of the brain.}
// \label{fig:ScalarImageMarkovRandomFieldInputOutput}
// \end{figure}
//
// Figure \ref{fig:ScalarImageMarkovRandomFieldInputOutput}
// illustrates the effect of this filter with three classes.
// In this example the filter was run with a smoothing factor of 3.
// The labeled image was produced by ScalarImageKmeansClassifier.cxx
// and the means were estimated by ScalarImageKmeansModelEstimator.cxx.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}