|
class | itk::Statistics::BackPropagationLayer< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType > |
|
class | itk::Statistics::CompletelyConnectedWeightSet< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::ErrorBackPropagationLearningFunctionBase< LayerType, TTargetVector > |
|
class | itk::Statistics::ErrorBackPropagationLearningWithMomentum< LayerType, TTargetVector > |
|
class | itk::Statistics::ErrorFunctionBase< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::GaussianRadialBasisFunction< ScalarType > |
|
class | itk::Statistics::GaussianTransferFunction< ScalarType > |
|
class | itk::Statistics::HardLimitTransferFunction< ScalarType > |
|
class | itk::Statistics::IdentityTransferFunction< ScalarType > |
|
class | itk::Statistics::InputFunctionBase< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType > |
|
class | itk::Statistics::LayerBase< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::LearningFunctionBase< LayerType, TTargetVector > |
|
class | itk::Statistics::LogSigmoidTransferFunction< ScalarType > |
|
class | MeanSquaredErrorFunction_ |
|
class | itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer > |
|
class | itk::Statistics::MultiquadricRadialBasisFunction< ScalarType > |
|
class | itk::Statistics::NeuralNetworkObject< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::NNetDistanceMetricBase< TMeasurementVector > |
|
class | itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::ProductInputFunction< TMeasurementVector, ScalarType > |
|
class | itk::Statistics::QuickPropLearningRule< LayerType, TTargetVector > |
|
class | itk::Statistics::RadialBasisFunctionBase< ScalarType > |
|
class | itk::Statistics::RBFBackPropagationLearningFunction< LayerType, TTargetVector > |
|
class | itk::Statistics::RBFLayer< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::RBFNetwork< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::SigmoidTransferFunction< ScalarType > |
|
class | itk::Statistics::SignedHardLimitTransferFunction< ScalarType > |
|
class | itk::Statistics::SquaredDifferenceErrorFunction< TMeasurementVector, ScalarType > |
|
class | itk::Statistics::SumInputFunction< TMeasurementVector, ScalarType > |
|
class | itk::Statistics::SymmetricSigmoidTransferFunction< ScalarType > |
|
class | itk::Statistics::TanHTransferFunction< ScalarType > |
|
class | itk::Statistics::TanSigmoidTransferFunction< ScalarType > |
|
class | itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType > |
|
class | itk::Statistics::TransferFunctionBase< ScalarType > |
|
class | itk::Statistics::TwoHiddenLayerBackPropagationNeuralNetwork< TMeasurementVector, TTargetVector > |
|
class | itk::Statistics::WeightSetBase< TMeasurementVector, TTargetVector > |
|
This module contains classes and support classes for the calculation of artificial neural networks. This can be used, for instance, for image classification.