ITK  4.6.0
Insight Segmentation and Registration Toolkit
Filtering/CompositeFilterExample.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// The composite filter we will build combines three filters: a gradient
// magnitude operator, which will calculate the first-order derivative of
// the image; a thresholding step to select edges over a given strength;
// and finally a rescaling filter, to ensure the resulting image data is
// visible by scaling the intensity to the full spectrum of the output
// image type.
//
// Since this filter takes an image and produces another image (of
// identical type), we will specialize the ImageToImageFilter:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we include headers for the component filters:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we can declare the filter itself. It is within the ITK namespace,
// and we decide to make it use the same image type for both input and
// output, thus the template declaration needs only one parameter.
// Deriving from \code{ImageToImageFilter} provides default behavior for
// several important aspects, notably allocating the output image (and
// making it the same dimensions as the input).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
namespace itk {
template <class TImageType>
class CompositeExampleImageFilter :
public ImageToImageFilter<TImageType, TImageType>
{
public:
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we have the standard declarations, used for object creation with
// the object factory:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef CompositeExampleImageFilter Self;
typedef ImageToImageFilter<TImageType,TImageType> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
// Software Guide : EndCodeSnippet
itkNewMacro(Self);
itkTypeMacro(CompositeExampleImageFilter, ImageToImageFilter);
void PrintSelf( std::ostream& os, Indent indent ) const;
// Software Guide : BeginLatex
//
// Here we declare an alias (to save typing) for the image's pixel type,
// which determines the type of the threshold value. We then use the
// convenience macros to define the Get and Set methods for this parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef typename TImageType::PixelType PixelType;
itkGetMacro( Threshold, PixelType);
itkSetMacro( Threshold, PixelType);
// Software Guide : EndCodeSnippet
protected:
CompositeExampleImageFilter();
// Software Guide : BeginLatex
//
// Now we can declare the component filter types, templated over the
// enclosing image type:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
protected:
typedef ThresholdImageFilter< TImageType > ThresholdType;
typedef GradientMagnitudeImageFilter< TImageType, TImageType > GradientType;
typedef RescaleIntensityImageFilter< TImageType, TImageType > RescalerType;
// Software Guide : EndCodeSnippet
void GenerateData();
private:
CompositeExampleImageFilter(Self&); // intentionally not implemented
void operator=(const Self&); // intentionally not implemented
// Software Guide : BeginLatex
//
// The component filters are declared as data members, all using the smart
// pointer types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typename GradientType::Pointer m_GradientFilter;
typename ThresholdType::Pointer m_ThresholdFilter;
typename RescalerType::Pointer m_RescaleFilter;
PixelType m_Threshold;
};
} /* namespace itk */
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The constructor sets up the pipeline, which involves creating the
// stages, connecting them together, and setting default parameters.
//
// Software Guide : EndLatex
namespace itk
{
// Software Guide : BeginCodeSnippet
template <class TImageType>
CompositeExampleImageFilter<TImageType>
::CompositeExampleImageFilter()
{
m_Threshold = 1;
m_GradientFilter = GradientType::New();
m_ThresholdFilter = ThresholdType::New();
m_ThresholdFilter->SetInput( m_GradientFilter->GetOutput() );
m_RescaleFilter = RescalerType::New();
m_RescaleFilter->SetInput( m_ThresholdFilter->GetOutput() );
m_RescaleFilter->SetOutputMinimum(
m_RescaleFilter->SetOutputMaximum(NumericTraits<PixelType>::max());
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{GenerateData()} is where the composite magic happens. First,
// we connect the first component filter to the inputs of the composite
// filter (the actual input, supplied by the upstream stage). Then we
// graft the output of the last stage onto the output of the composite,
// which ensures the filter regions are updated. We force the composite
// pipeline to be processed by calling \code{Update()} on the final stage,
// then graft the output back onto the output of the enclosing filter, so
// it has the result available to the downstream filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
GenerateData()
{
m_GradientFilter->SetInput( this->GetInput() );
m_ThresholdFilter->ThresholdBelow( this->m_Threshold );
m_RescaleFilter->GraftOutput( this->GetOutput() );
m_RescaleFilter->Update();
this->GraftOutput( m_RescaleFilter->GetOutput() );
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we define the \code{PrintSelf} method, which (by convention)
// prints the filter parameters. Note how it invokes the superclass to
// print itself first, and also how the indentation prefixes each line.
//
// Software Guide : EndLatex
//
// Software Guide : BeginCodeSnippet
template <class TImageType>
void
CompositeExampleImageFilter<TImageType>::
PrintSelf( std::ostream& os, Indent indent ) const
{
Superclass::PrintSelf(os,indent);
os
<< indent << "Threshold:" << this->m_Threshold
<< std::endl;
}
} /* end namespace itk */
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is important to note that in the above example, none of the internal
// details of the pipeline were exposed to users of the class. The interface
// consisted of the Threshold parameter (which happened to change the value in
// the component filter) and the regular ImageToImageFilter interface. This
// example pipeline is illustrated in
// Figure~\ref{fig:CompositeExamplePipeline}.
//
// Software Guide : EndLatex
int main( int argc, char* argv[] )
{
if( argc < 3 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile" << std::endl;
return EXIT_FAILURE;
}
typedef itk::Image<short, 2> ImageType;
typedef itk::ImageFileReader<ImageType> ReaderType;
typedef itk::ImageFileWriter<ImageType> WriterType;
typedef itk::CompositeExampleImageFilter<ImageType> FilterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
reader->SetFileName( argv[1] );
filter->SetInput( reader->GetOutput() );
filter->SetThreshold( 20 );
writer->SetInput( filter->GetOutput() );
writer->SetFileName( argv[2] );
try
{
writer->Update();
}
catch ( itk::ExceptionObject & e )
{
std::cerr << "Error: " << e << std::endl;
}
return 0;
}