ITK  4.6.0
Insight Segmentation and Registration Toolkit
RegistrationITKv3/ModelToImageRegistration2.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{SpatialObject} as a
// component of the registration framework in order to perform model based
// registration. In this case, a SpatialObject is used for generating a
// \doxygen{PointSet} whose points are located in a narrow band around the
// edges of the SpatialObject. This PointSet is then used in order to perform
// PointSet to Image registration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// In this example we use the \doxygen{BoxSpatialObject}, that is one of the
// simplest SpatialObjects in ITK.
//
// \index{itk::BoxSpatialObject!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The generation of the PointSet is done in two stages. First the
// SpatialObject is rasterized in order to generate an image containing a
// binary mask that represents the inside and outside of the SpatialObject.
// Second, this mask is used for computing a distance map, and the points
// close to the boundary of the mask are taken as elements of the final
// PointSet. The pixel values associated to the point in the PointSet are the
// values of distance from each point to the binary mask. The first stage is
// performed by the \doxygen{SpatialObjectToImageFilter}, while the second
// stage is performed witht eh \doxygen{BinaryMaskToNarrowBandPointSetFilter}
//
// \index{itk::Spatial\-Object\-To\-Image\-Filter!header}
// \index{itk::Binary\-Mask\-To\-Narrow\-Band\-Point\-Set\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
#include "itkPointSet.h"
//
// Observer to the optimizer
//
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{
return;
}
OptimizerType::DerivativeType gradient = optimizer->GetGradient();
OptimizerType::ScalesType scales = optimizer->GetScales();
double magnitude2 = 0.0;
for(unsigned int i=0; i<gradient.size(); i++)
{
const double fc = gradient[i] / scales[i];
magnitude2 += fc * fc;
}
const double gradientMagnitude = std::sqrt( magnitude2 );
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << gradientMagnitude << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char * argv [] )
{
if( argc < 2 )
{
std::cerr << "Missing argument" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " movingImageFileName [initialX initialY] " << std::endl;
std::cerr << "[rasterizedObjectFileName] [BoxSizeX BoxSizeY]" << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned char MaskPixelType;
typedef itk::BoxSpatialObject< Dimension > SpatialObjectType;
SpatialObjectType,
MaskImageType
> SpatialObjectToImageFilterType;
typedef itk::PointSet< float, Dimension > FixedPointSetType;
MaskImageType,
FixedPointSetType
> NarrowBandFilterType;
typedef signed short PixelType;
typedef unsigned char MaskPixelType;
typedef itk::Rigid2DTransform< double > TransformType;
typedef TransformType::ParametersType ParametersType;
ImageType,
double > LinearInterpolatorType;
FixedPointSetType,
ImageType > MetricType;
typedef OptimizerType::ScalesType OptimizerScalesType;
FixedPointSetType,
ImageType > RegistrationType;
typedef CommandIterationUpdate IterationObserverType;
typedef itk::ImageFileReader< ImageType > ImageReaderType;
SpatialObjectType::Pointer spatialObject;
TransformType::Pointer transform;
OptimizerType::Pointer optimizer;
IterationObserverType::Pointer iterationObserver;
LinearInterpolatorType::Pointer linearInterpolator;
MetricType::Pointer metric;
RegistrationType::Pointer registrationMethod;
ImageReaderType::Pointer movingImageReader;
FixedPointSetType::Pointer fixedPointSet;
ImageType::ConstPointer movingImage;
SpatialObjectToImageFilterType::Pointer rasterizationFilter;
NarrowBandFilterType::Pointer narrowBandPointSetFilter;
metric = MetricType::New();
transform = TransformType::New();
optimizer = OptimizerType::New();
linearInterpolator = LinearInterpolatorType::New();
registrationMethod = RegistrationType::New();
iterationObserver = IterationObserverType::New();
spatialObject = SpatialObjectType::New();
rasterizationFilter = SpatialObjectToImageFilterType::New();
narrowBandPointSetFilter = NarrowBandFilterType::New();
movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[1] );
try
{
movingImageReader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem reading Moving image from = " << std::endl;
std::cerr << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
movingImage = movingImageReader->GetOutput();
SpatialObjectType::SizeType boxSize;
boxSize[0] = 60.0; // mm
boxSize[1] = 60.0; // mm
if( argc > 6 )
{
boxSize[0] = atof( argv[5] );
boxSize[1] = atof( argv[6] );
}
//
// The geometry of the BoxSpatialObject is such that one of
// its corners is located at the origin of coordinates.
//
spatialObject->SetSize( boxSize );
ImageType::RegionType region =
movingImage->GetLargestPossibleRegion();
ImageType::SizeType imageSize = region.GetSize();
ImageType::SpacingType spacing = movingImage->GetSpacing();
ImageType::PointType origin;
origin[0] = ( boxSize[0] - imageSize[0] * spacing[0] ) / 2.0;
origin[1] = ( boxSize[1] - imageSize[1] * spacing[1] ) / 2.0;
rasterizationFilter->SetInput( spatialObject );
rasterizationFilter->SetSize( imageSize );
rasterizationFilter->SetSpacing( spacing );
rasterizationFilter->SetOrigin( origin );
narrowBandPointSetFilter->SetBandWidth( 5.0 );
narrowBandPointSetFilter->SetInput(
rasterizationFilter->GetOutput() );
narrowBandPointSetFilter->Update();
if( argc > 4 )
{
typedef itk::ImageFileWriter< MaskImageType > MaskWriterType;
MaskWriterType::Pointer maskWriter = MaskWriterType::New();
maskWriter->SetInput( rasterizationFilter->GetOutput() );
maskWriter->SetFileName( argv[4] );
maskWriter->Update();
}
fixedPointSet = narrowBandPointSetFilter->GetOutput();
fixedPointSet->Print( std::cout );
registrationMethod->SetOptimizer( optimizer );
registrationMethod->SetInterpolator( linearInterpolator );
registrationMethod->SetMetric( metric );
registrationMethod->SetTransform( transform );
registrationMethod->SetMovingImage( movingImage );
registrationMethod->SetFixedPointSet( fixedPointSet );
optimizer->SetMaximumStepLength( 1.00 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 300 );
optimizer->SetRelaxationFactor( 0.90 );
optimizer->SetGradientMagnitudeTolerance( 0.05 );
optimizer->MinimizeOn();
optimizer->AddObserver( itk::IterationEvent(), iterationObserver );
TransformType::TranslationType initialTranslation;
initialTranslation[0] = 0.0;
initialTranslation[1] = 0.0;
if( argc >= 4 )
{
initialTranslation[0] = atof( argv[2] );
initialTranslation[1] = atof( argv[3] );
}
TransformType::OutputPointType rotationCenter;
rotationCenter[0] = boxSize[0] / 2.0;
rotationCenter[1] = boxSize[1] / 2.0;
transform->SetIdentity();
transform->SetCenter( rotationCenter );
transform->SetTranslation( initialTranslation );
registrationMethod->SetInitialTransformParameters(
transform->GetParameters() );
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizer->SetScales( optimizerScales );
try
{
registrationMethod->Update();
std::cout << "Optimizer stop condition: "
<< registrationMethod->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem found during the registration" << std::endl;
std::cerr << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
ParametersType transformParameters =
registrationMethod->GetLastTransformParameters();
TransformType::OutputPointType center = transform->GetCenter();
std::cout << "Registration parameter = " << std::endl;
std::cout << "Rotation center = " << center << std::endl;
std::cout << "Parameters = " << transformParameters << std::endl;
return EXIT_SUCCESS;
}