ITK  4.8.0
Insight Segmentation and Registration Toolkit
Examples/Iterators/NeighborhoodIterators6.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImage.h"
// Software Guide : BeginLatex
//
// Some image processing routines do not need to visit every pixel in an
// image. Flood-fill and connected-component algorithms, for example, only
// visit pixels that are locally connected to one another. Algorithms
// such as these can be efficiently written using the random access
// capabilities of the neighborhood iterator.
//
// The following example finds local minima. Given a seed point, we can search
// the neighborhood of that point and pick the smallest value $m$. While $m$
// is not at the center of our current neighborhood, we move in the direction
// of $m$ and repeat the analysis. Eventually we discover a local minimum and
// stop. This algorithm is made trivially simple in ND using an ITK
// neighborhood iterator.
//
// To illustrate the process, we create an image that descends everywhere to a
// single minimum: a positive distance transform to a point. The details of
// creating the distance transform are not relevant to the discussion of
// neighborhood iterators, but can be found in the source code of this
// example. Some noise has been added to the distance transform image for
// additional interest.
//
// Software Guide : EndLatex
int main( int argc, char ** argv )
{
if ( argc < 4 )
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " outputImageFile startX startY"
<< std::endl;
return -1;
}
typedef float PixelType;
typedef itk::Image< PixelType, 2 > ImageType;
typedef itk::NeighborhoodIterator< ImageType > NeighborhoodIteratorType;
FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();
ImageType::IndexType seedPosition;
seedPosition[0] = 128;
seedPosition[1] = 128;
const double initialDistance = 1.0;
NodeType node;
const double seedValue = - initialDistance;
ImageType::SizeType size = {{256, 256}};
node.SetValue( seedValue );
node.SetIndex( seedPosition );
seeds->Initialize();
seeds->InsertElement( 0, node );
fastMarching->SetTrialPoints( seeds );
fastMarching->SetSpeedConstant( 1.0 );
noise->SetSize(size.m_Size);
noise->SetMin(-.7);
noise->SetMax(.8);
adder->SetInput1(noise->GetOutput());
adder->SetInput2(fastMarching->GetOutput());
try
{
fastMarching->SetOutputSize( size );
fastMarching->Update();
adder->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
ImageType::Pointer input = adder->GetOutput();
// Software Guide : BeginLatex
//
// The variable \code{input} is the pointer to the distance transform image.
// The local minimum algorithm is initialized with a seed point read from the
// command line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType index;
index[0] = ::atoi(argv[2]);
index[1] = ::atoi(argv[3]);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we create the neighborhood iterator and position it at the seed point.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NeighborhoodIteratorType::RadiusType radius;
radius.Fill(1);
NeighborhoodIteratorType it(radius, input, input->GetRequestedRegion());
it.SetLocation(index);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Searching for the local minimum involves finding the minimum in the current
// neighborhood, then shifting the neighborhood in the direction of that
// minimum. The \code{for} loop below records the \doxygen{Offset} of the
// minimum neighborhood pixel. The neighborhood iterator is then moved using
// that offset. When a local minimum is detected, \code{flag} will remain
// false and the \code{while} loop will exit. Note that this code is
// valid for an image of any dimensionality.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
bool flag = true;
while ( flag == true )
{
NeighborhoodIteratorType::OffsetType nextMove;
nextMove.Fill(0);
flag = false;
PixelType min = it.GetCenterPixel();
for (unsigned i = 0; i < it.Size(); i++)
{
if ( it.GetPixel(i) < min )
{
min = it.GetPixel(i);
nextMove = it.GetOffset(i);
flag = true;
}
}
it.SetCenterPixel( 255.0 );
it += nextMove;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Figure~\ref{fig:NeighborhoodExample6} shows the results of the algorithm
// for several seed points. The white line is the path of the iterator from
// the seed point to the minimum in the center of the image. The effect of the
// additive noise is visible as the small perturbations in the paths.
//
// \begin{figure} \centering
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6a}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6b}
// \includegraphics[width=0.3\textwidth]{NeighborhoodIterators6c}
// \itkcaption[Finding local minima]{Paths traversed by the neighborhood
// iterator from different seed points to the local minimum.
// The true minimum is at the center
// of the image. The path of the iterator is shown in white. The effect of
// noise in the image is seen as small perturbations in each path. }
// \protect\label{fig:NeighborhoodExample6} \end{figure}
//
// Software Guide : EndLatex
typedef unsigned char WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
WriteImageType > RescaleFilterType;
RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
rescaler->SetInput( input );
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[1] );
writer->SetInput( rescaler->GetOutput() );
try
{
writer->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return -1;
}
return 0;
}