ITK
4.8.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv3/ImageRegistration12.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use SpatialObjects as masks for selecting the
// pixels that should contribute to the computation of Image Metrics. This
// example is almost identical to ImageRegistration6 with the exception that
// the SpatialObject masks are created and passed to the image metric.
//
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethod.h
"
#include "
itkMeanSquaresImageToImageMetric.h
"
#include "
itkRegularStepGradientDescentOptimizer.h
"
#include "
itkCenteredRigid2DTransform.h
"
#include "
itkCenteredTransformInitializer.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkSquaredDifferenceImageFilter.h
"
// Software Guide : BeginLatex
//
// The most important header in this example is the one corresponding to the
// \doxygen{ImageMaskSpatialObject} class.
//
// \index{itk::ImageMaskSpatialObject!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageMaskSpatialObject.h
"
// Software Guide : EndCodeSnippet
//
// The following section of code implements a command observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
typedef
CommandIterationUpdate
Self
;
typedef
itk::Command
Superclass
;
typedef
itk::SmartPointer<Self>
Pointer
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate() {};
public
:
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
typedef
const
OptimizerType * OptimizerPointer;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event)
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
{
OptimizerPointer optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 5 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile fixedImageMaskFile"
;
std::cerr <<
" outputImagefile [differenceOutputfile] "
;
std::cerr <<
" [differenceBeforeRegistration] "
<< std::endl;
return
EXIT_FAILURE;
}
const
unsigned
int
Dimension = 2;
typedef
float
PixelType;
typedef
itk::Image< PixelType, Dimension >
FixedImageType;
typedef
itk::Image< PixelType, Dimension >
MovingImageType;
typedef
itk::CenteredRigid2DTransform< double >
TransformType;
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
typedef
itk::MeanSquaresImageToImageMetric
<
FixedImageType,
MovingImageType > MetricType;
typedef
itk:: LinearInterpolateImageFunction
<
MovingImageType,
double
> InterpolatorType;
typedef
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
TransformType::Pointer transform = TransformType::New();
registration->SetTransform( transform );
typedef
itk::ImageFileReader< FixedImageType >
FixedImageReaderType;
typedef
itk::ImageFileReader< MovingImageType >
MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
typedef
itk::CenteredTransformInitializer
<
TransformType,
FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer = TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
transform->SetAngle( 0.0 );
registration->SetInitialTransformParameters( transform->GetParameters() );
typedef
OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const
double
translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizer->SetScales( optimizerScales );
optimizer->SetMaximumStepLength( 0.1 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 200 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : BeginLatex
//
// Here we instantiate the type of the \doxygen{ImageMaskSpatialObject}
// using the same dimension of the images to be registered.
//
// \index{itk::ImageMaskSpatialObject!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::ImageMaskSpatialObject< Dimension >
MaskType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we use the type for creating the spatial object mask that will
// restrict the registration to a reduced region of the image.
//
// \index{itk::ImageMaskSpatialObject!New}
// \index{itk::ImageMaskSpatialObject!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MaskType::Pointer spatialObjectMask = MaskType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The mask in this case is read from a binary file using the
// \code{ImageFileReader} instantiated for an \code{unsigned char} pixel
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::Image< unsigned char, Dimension >
ImageMaskType;
typedef
itk::ImageFileReader< ImageMaskType >
MaskReaderType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The reader is constructed and a filename is passed to it.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MaskReaderType::Pointer maskReader = MaskReaderType::New();
maskReader->SetFileName( argv[3] );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As usual, the reader is triggered by invoking its \code{Update()} method.
// Since this may eventually throw an exception, the call must be placed in
// a \code{try/catch} block. Note that a full fledged application will place
// this \code{try/catch} block at a much higher level, probably under the
// control of the GUI.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
maskReader->Update();
}
catch
(
itk::ExceptionObject
& err )
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the mask reader is connected as input to the
// \code{ImageMaskSpatialObject}.
//
// \index{itk::ImageMaskSpatialObject!SetImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
spatialObjectMask->SetImage( maskReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the spatial object mask is passed to the image metric.
//
// \index{itk::ImageToImageMetric!SetFixedImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetFixedImageMask( spatialObjectMask );
// Software Guide : EndCodeSnippet
try
{
registration->Update();
std::cout <<
"Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
const
double
finalAngle = finalParameters[0];
const
double
finalRotationCenterX = finalParameters[1];
const
double
finalRotationCenterY = finalParameters[2];
const
double
finalTranslationX = finalParameters[3];
const
double
finalTranslationY = finalParameters[4];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
//
const
double
finalAngleInDegrees = finalAngle * 45.0 / std::atan(1.0);
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Angle (radians) "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Center X = "
<< finalRotationCenterX << std::endl;
std::cout <<
" Center Y = "
<< finalRotationCenterY << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration5}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transform->SetParameters( finalParameters );
TransformType::MatrixType matrix = transform->GetMatrix();
TransformType::OffsetType offset = transform->GetOffset();
std::cout <<
"Matrix = "
<< std::endl << matrix << std::endl;
std::cout <<
"Offset = "
<< std::endl << offset << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we resample the moving image using the transform resulting from the
// registration process.
//
// Software Guide : EndLatex
typedef
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef
unsigned
char
OutputPixelType;
typedef
itk::Image< OutputPixelType, Dimension >
OutputImageType;
typedef
itk::CastImageFilter
<
FixedImageType,
OutputImageType > CastFilterType;
typedef
itk::ImageFileWriter< OutputImageType >
WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[4] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
typedef
itk::SquaredDifferenceImageFilter
<
FixedImageType,
FixedImageType,
OutputImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if
( argc >= 6 )
{
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
writer2->SetFileName( argv[5] );
writer2->Update();
}
// Compute the difference image between the
// fixed and moving image before registration.
if
( argc >= 7 )
{
writer2->SetFileName( argv[6] );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( movingImageReader->GetOutput() );
writer2->Update();
}
return
EXIT_SUCCESS;
}
Generated on Fri Jul 3 2015 02:47:09 for ITK by
1.8.5