ITK
4.8.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv3/ImageRegistration3.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Given the numerous parameters involved in tuning a registration method for
// a particular application, it is not uncommon for a registration process to
// run for several minutes and still produce a useless result. To avoid
// this situation it is quite helpful to track the evolution of the
// registration as it progresses. The following section illustrates the
// mechanisms provided in ITK for monitoring the activity of the
// ImageRegistrationMethod class.
//
// Insight implements the \emph{Observer/Command} design pattern
// \cite{Gamma1995}.
// The classes involved in this implementation are the \doxygen{Object},
// \doxygen{Command} and \doxygen{EventObject} classes. The Object
// is the base class of most ITK objects. This class maintains a linked
// list of pointers to event observers. The role of observers is played by
// the Command class. Observers register themselves with an
// Object, declaring that they are interested in receiving
// notification when a particular event happens. A set of events is
// represented by the hierarchy of the Event class. Typical events
// are \code{Start}, \code{End}, \code{Progress} and \code{Iteration}.
//
// Registration is controlled by an \doxygen{Optimizer}, which generally
// executes an iterative process. Most Optimizer classes invoke an
// \doxygen{IterationEvent} at the end of each iteration. When an event is
// invoked by an object, this object goes through its list of registered
// observers (Commands) and checks whether any one of them has expressed
// interest in the current event type. Whenever such an observer is found,
// its corresponding \code{Execute()} method is invoked. In this context,
// \code{Execute()} methods should be considered \emph{callbacks}. As such,
// some of the common sense rules of callbacks should be respected. For
// example, \code{Execute()} methods should not perform heavy computational
// tasks. They are expected to execute rapidly, for example, printing out a
// message or updating a value in a GUI.
//
// \index{itk::ImageRegistrationMethod!Monitoring}
//
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethod.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMeanSquaresImageToImageMetric.h
"
#include "
itkRegularStepGradientDescentOptimizer.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// Software Guide : BeginLatex
//
// The following code illustrates a simple way of creating a
// Observer/Command to monitor a registration process. This new
// class derives from the Command class and provides a specific
// implementation of the \code{Execute()} method. First, the header file of
// the Command class must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkCommand.h
"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Our custom command class is called \code{CommandIterationUpdate}. It
// derives from the Command class and declares for convenience the
// types \code{Self} and \code{Superclass}. This facilitate the use of
// standard macros later in the class implementation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
class
CommandIterationUpdate :
public
itk::Command
{
public
:
typedef
CommandIterationUpdate
Self
;
typedef
itk::Command
Superclass
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following typedef declares the type of the SmartPointer capable of
// holding a reference to this object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::SmartPointer<Self>
Pointer
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{itkNewMacro} takes care of defining all the necessary code for
// the \code{New()} method. Those with curious minds are invited to see the
// details of the macro in the file \code{itkMacro.h} in the
// \code{Insight/Code/Common} directory.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itkNewMacro( Self );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In order to ensure that the \code{New()} method is used to instantiate
// the class (and not the C++ \code{new} operator), the constructor is
// declared \code{protected}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
protected
:
CommandIterationUpdate() {};
// Software Guide : EndCodeSnippet
public
:
// Software Guide : BeginLatex
//
// Since this Command object will be observing the optimizer,
// the following typedefs are useful for converting pointers when the
// \code{Execute()} method is invoked. Note the use of \code{const} on
// the declaration of \code{OptimizerPointer}. This is relevant since, in
// this case, the observer is not intending to modify the optimizer in any
// way. A \code{const} interface ensures that all operations invoked on the
// optimizer are read-only.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
typedef
const
OptimizerType * OptimizerPointer;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// ITK enforces const-correctness. There is hence a distinction between the
// \code{Execute()} method that can be invoked from a \code{const} object
// and the one that can be invoked from a non-\code{const} object. In this
// particular example the non-\code{const} version simply invoke the
// \code{const} version. In a more elaborate situation the implementation
// of both \code{Execute()} methods could be quite different. For example,
// you could imagine a non-\code{const} interaction in which the observer
// decides to stop the optimizer in response to a divergent behavior. A
// similar case could happen when a user is controlling the registration
// process from a GUI.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event)
{
Execute
( (
const
itk::Object
*)caller, event);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we get to the heart of the observer, the \code{Execute()} method.
// Two arguments are passed to this method. The first argument is the pointer
// to the object that invoked the event. The second argument is the event that
// was invoked.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the first argument is a pointer to an Object even
// though the actual object invoking the event is probably a subclass of
// Object. In our case we know that the actual object is an
// optimizer. Thus we can perform a \code{dynamic\_cast} to the real type
// of the object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OptimizerPointer optimizer =
static_cast<
OptimizerPointer
>
( object );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The next step is to verify that the event invoked is actually the one in
// which we are interested. This is checked using the RTTI\footnote{RTTI
// stands for: Run-Time Type Information} support. The \code{CheckEvent()}
// method allows us to compare the actual type of two events. In this case
// we compare the type of the received event with an IterationEvent. The
// comparison will return true if \code{event} is of type
// \code{IterationEvent} or derives from \code{IterationEvent}. If we find
// that the event is not of the expected type then the \code{Execute()}
// method of this command observer should return without any further action.
//
// \index{itk::EventObject!CheckEvent}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If the event matches the type we are looking for, we are ready to
// query data from the optimizer. Here, for example, we get the current
// number of iterations, the current value of the cost function and the
// current position on the parameter space. All of these values are printed
// to the standard output. You could imagine more elaborate actions like
// updating a GUI or refreshing a visualization pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << optimizer->GetCurrentIteration() <<
" = "
;
std::cout << optimizer->GetValue() <<
" : "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
// Software Guide : EndCodeSnippet
}
// Software Guide : BeginLatex
//
// This concludes our implementation of a minimal Command class
// capable of observing our registration method. We can now move on to
// configuring the registration process.
//
// Software Guide : EndLatex
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 4 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile "
<< std::endl;
return
EXIT_FAILURE;
}
const
unsigned
int
Dimension = 2;
typedef
unsigned
short
PixelType;
typedef
itk::Image< PixelType, Dimension >
FixedImageType;
typedef
itk::Image< PixelType, Dimension >
MovingImageType;
typedef
itk::TranslationTransform< double, Dimension >
TransformType;
typedef
itk::RegularStepGradientDescentOptimizer
OptimizerType;
typedef
itk::LinearInterpolateImageFunction
<
MovingImageType,
double
> InterpolatorType;
typedef
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType > RegistrationType;
typedef
itk::MeanSquaresImageToImageMetric
<
FixedImageType,
MovingImageType > MetricType;
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
typedef
itk::ImageFileReader< FixedImageType >
FixedImageReaderType;
typedef
itk::ImageFileReader< MovingImageType >
MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
// This is needed to make the BufferedRegion below valid.
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
typedef
RegistrationType::ParametersType ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters[0] = 0.0;
// Initial offset in mm along X
initialParameters[1] = 0.0;
// Initial offset in mm along Y
registration->SetInitialTransformParameters( initialParameters );
optimizer->SetMaximumStepLength( 4.00 );
optimizer->SetMinimumStepLength( 0.01 );
optimizer->SetNumberOfIterations( 200 );
optimizer->MaximizeOff();
// Software Guide : BeginLatex
//
// Once all the registration components are in place we can create one
// instance of our observer. This is done with the standard \code{New()}
// method and assigned to a SmartPointer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration3Observer}
// \itkcaption[Command/Observer and the Registration Framework]{Interaction
// between the Command/Observer and the Registration Method.}
// \label{fig:ImageRegistration3Observer}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The newly created command is registered as observer on the
// optimizer, using the \code{AddObserver()} method. Note
// that the event type is provided as the first argument to this
// method. In order for the RTTI mechanism to work correctly, a newly
// created event of the desired type must be passed as the first
// argument. The second argument is simply the smart pointer to the
// optimizer. Figure \ref{fig:ImageRegistration3Observer} illustrates the
// interaction between the Command/Observer class and the registration
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point, we are ready to execute the registration. The
// typical call to \code{Update()} will do it. Note again the
// use of the \code{try/catch} block around the \code{Update()}
// method in case an exception is thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is applied to the following images in \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// It produces the following output.
//
// \begin{verbatim}
// 0 = 4499.45 : [2.9287, 2.72447]
// 1 = 3860.84 : [5.62751, 5.67683]
// 2 = 3450.68 : [8.85516, 8.03952]
// 3 = 3152.07 : [11.7997, 10.7469]
// 4 = 2189.97 : [13.3628, 14.4288]
// 5 = 1047.21 : [11.292, 17.851]
// 6 = 900.189 : [13.1602, 17.1372]
// 7 = 19.6301 : [12.3268, 16.5846]
// 8 = 237.317 : [12.7824, 16.7906]
// 9 = 38.1331 : [13.1833, 17.0894]
// 10 = 18.9201 : [12.949, 17.002]
// 11 = 1.15456 : [13.074, 16.9979]
// 12 = 2.42488 : [13.0115, 16.9994]
// 13 = 0.0590549 : [12.949, 17.002]
// 14 = 1.15451 : [12.9803, 17.001]
// 15 = 0.173731 : [13.0115, 16.9997]
// 16 = 0.0586584 : [12.9959, 17.0001]
// \end{verbatim}
// You can verify from the code in the \code{Execute()} method that the first
// column is the iteration number, the second column is the metric value and
// the third and fourth columns are the parameters of the transform, which
// is a $2D$ translation transform in this case. By tracking these values as
// the registration progresses, you will be able to determine whether the
// optimizer is advancing in the right direction and whether the step-length
// is reasonable or not. That will allow you to interrupt the registration
// process and fine-tune parameters without having to wait until the
// optimizer stops by itself.
//
// Software Guide : EndLatex
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
TranslationAlongX = finalParameters[0];
const
double
TranslationAlongY = finalParameters[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
std::cout <<
"Registration done !"
<< std::endl;
std::cout <<
"Number of iterations = "
<< numberOfIterations << std::endl;
std::cout <<
"Translation along X = "
<< TranslationAlongX << std::endl;
std::cout <<
"Translation along Y = "
<< TranslationAlongY << std::endl;
std::cout <<
"Optimal metric value = "
<< bestValue << std::endl;
// Prepare the resampling filter in order to map the moving image.
//
typedef
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
// Prepare a writer and caster filters to send the resampled moving image to
// a file
//
typedef
unsigned
char
OutputPixelType;
typedef
itk::Image< OutputPixelType, Dimension >
OutputImageType;
typedef
itk::CastImageFilter
<
FixedImageType,
OutputImageType > CastFilterType;
typedef
itk::ImageFileWriter< OutputImageType >
WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
return
EXIT_SUCCESS;
}
Generated on Fri Jul 3 2015 02:47:10 for ITK by
1.8.5