ITK
4.8.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv4/ImageRegistration16.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Translation Transform,
// the Normalized Mutual Information metric and the Amoeba optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageRegistrationMethod.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMattesMutualInformationImageToImageMetric.h
"
#include "
itkAmoebaOptimizer.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
typedef
CommandIterationUpdate
Self
;
typedef
itk::Command
Superclass
;
typedef
itk::SmartPointer<Self>
Pointer
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate()
{
m_IterationNumber=0;
}
public
:
typedef
itk::AmoebaOptimizer
OptimizerType;
typedef
const
OptimizerType * OptimizerPointer;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event) ITK_OVERRIDE
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event) ITK_OVERRIDE
{
OptimizerPointer optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << m_IterationNumber++ <<
" "
;
std::cout << optimizer->GetCachedValue() <<
" "
;
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
private
:
unsigned
long
m_IterationNumber;
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 4 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
" outputImagefile "
;
std::cerr <<
" [initialTx] [initialTy]"
;
std::cerr <<
"[useExplicitPDFderivatives ] "
<< std::endl;
return
EXIT_FAILURE;
}
const
unsigned
int
Dimension = 2;
typedef
unsigned
char
PixelType;
typedef
itk::Image< PixelType, Dimension >
FixedImageType;
typedef
itk::Image< PixelType, Dimension >
MovingImageType;
typedef
itk::TranslationTransform< double, Dimension >
TransformType;
typedef
itk::AmoebaOptimizer
OptimizerType;
typedef
itk::LinearInterpolateImageFunction
<
MovingImageType,
double
> InterpolatorType;
typedef
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType > RegistrationType;
typedef
itk::MattesMutualInformationImageToImageMetric
<
FixedImageType,
MovingImageType > MetricType;
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
// Software Guide : BeginLatex
//
// The metric requires two parameters to be selected: the number
// of bins used to compute the entropy and the number of spatial samples
// used to compute the density estimates. In typical application, 50
// histogram bins are sufficient and the metric is relatively insensitive
// to changes in the number of bins. The number of spatial samples
// to be used depends on the content of the image. If the images are
// smooth and do not contain much detail, then using approximately
// $1$ percent of the pixels will do. On the other hand, if the images
// are detailed, it may be necessary to use a much higher proportion,
// such as $20$ percent.
//
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfHistogramBins()}
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetNumberOfHistogramBins( 20 );
metric->SetNumberOfSpatialSamples( 10000 );
// Software Guide : EndCodeSnippet
if
( argc > 6 )
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the Transform
// parameters, or doing it by progressively accumulating contributions from
// each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives( atoi( argv[6] ) );
}
const
unsigned
int
numberOfParameters = transform->GetNumberOfParameters();
typedef
itk::ImageFileReader< FixedImageType >
FixedImageReaderType;
typedef
itk::ImageFileReader< MovingImageType >
MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
movingImageReader->Update();
FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput();
registration->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
transform->SetIdentity();
typedef
RegistrationType::ParametersType ParametersType;
ParametersType initialParameters = transform->GetParameters();
initialParameters[0] = 0.0;
initialParameters[1] = 0.0;
if
( argc > 5 )
{
initialParameters[0] = atof( argv[4] );
initialParameters[1] = atof( argv[5] );
}
registration->SetInitialTransformParameters( initialParameters );
std::cout <<
"Initial transform parameters = "
;
std::cout << initialParameters << std::endl;
// Software Guide : BeginLatex
//
// The AmoebaOptimizer moves a simplex around the cost surface. Here we set
// the initial size of the simplex (5 units in each of the parameters)
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OptimizerType::ParametersType simplexDelta( numberOfParameters );
simplexDelta.Fill( 5.0 );
optimizer->AutomaticInitialSimplexOff();
optimizer->SetInitialSimplexDelta( simplexDelta );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also adjust the tolerances on the optimizer to define convergence.
// Here, we used a tolerance on the parameters of 0.1 (which will be one
// tenth of image unit, in this case pixels). We also set the tolerance on
// the cost function value to define convergence. The metric we are using
// returns the value of Mutual Information. So we set the function
// convergence to be 0.001 bits (bits are the appropriate units for
// measuring Information).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetParametersConvergenceTolerance( 0.1 );
// 1/10th pixel
optimizer->SetFunctionConvergenceTolerance(0.001);
// 0.001 bits
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case where the optimizer never succeeds in reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetMaximumNumberOfIterations()}.
//
// \index{itk::Amoeba\-Optimizer!SetMaximumNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumNumberOfIterations( 200 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
finalTranslationX = finalParameters[0];
const
double
finalTranslationY = finalParameters[1];
double
bestValue = optimizer->GetValue();
// Print out results
//
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
typedef
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef
itk::Image< PixelType, Dimension >
OutputImageType;
typedef
itk::ImageFileWriter< OutputImageType >
WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( resample->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
return
EXIT_SUCCESS;
}
Generated on Fri Jul 3 2015 02:47:14 for ITK by
1.8.5