ITK  4.8.0
Insight Segmentation and Registration Toolkit
Examples/RegistrationITKv4/MultiStageImageRegistration1.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1SliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17.png}
// OUTPUTS: {MultiStageImageRegistration1Output.png}
// ARGUMENTS: 100
// OUTPUTS: {MultiStageImageRegistration1CheckerboardBefore.png}
// OUTPUTS: {MultiStageImageRegistration1CheckerboardAfter.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of more complex components of the
// registration framework. In particular, it introduces a multistage,
// multi-resolution approach to run a multi-modal registration process
// using two linear \doxygen{TranslationTransform} and \doxygen{AffineTransform}.
// Also, it shows the use of \emph{Scale Estimators}
// for fine-tuning the scale parameters of the optimizer when an Affine
// transform is used. The \doxygen{RegistrationParameterScalesFromPhysicalShift}
// filter is used for automatic estimation of the parameters scales.
//
// \index{itk::ImageRegistrationMethodv4!AffineTransform}
// \index{itk::ImageRegistrationMethodv4!Scaling parameter space}
// \index{itk::AffineTransform!Image Registration}
// \index{itk::ImageRegistrationMethodv4!Multi-Stage}
// \index{itk::ImageRegistrationMethodv4!Multi-Resolution}
// \index{itk::ImageRegistrationMethodv4!Multi-Modality}
//
// To begin the example, we include the headers of the registration
// components we will use.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
#include "itkCommand.h"
// The following section of code implements a Command observer
// that will monitor the configurations of the registration process
// at every change of stage and resolution level.
//
template <typename TRegistration>
class RegistrationInterfaceCommand : public itk::Command
{
public:
typedef RegistrationInterfaceCommand Self;
itkNewMacro( Self );
protected:
RegistrationInterfaceCommand() {};
public:
typedef TRegistration RegistrationType;
// The Execute function simply calls another version of the \code{Execute()}
// method accepting a \code{const} input object
void Execute( itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) object , event );
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
if( !(itk::MultiResolutionIterationEvent().CheckEvent( &event ) ) )
{
return;
}
std::cout << "\nObserving from class " << object->GetNameOfClass();
if (!object->GetObjectName().empty())
{
std::cout << " \"" << object->GetObjectName() << "\"" << std::endl;
}
const RegistrationType * registration = static_cast<const RegistrationType *>( object );
unsigned int currentLevel = registration->GetCurrentLevel();
typename RegistrationType::ShrinkFactorsPerDimensionContainerType shrinkFactors =
registration->GetShrinkFactorsPerDimension( currentLevel );
typename RegistrationType::SmoothingSigmasArrayType smoothingSigmas =
registration->GetSmoothingSigmasPerLevel();
std::cout << "-------------------------------------" << std::endl;
std::cout << " Current multi-resolution level = " << currentLevel << std::endl;
std::cout << " shrink factor = " << shrinkFactors << std::endl;
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
std::cout << std::endl;
}
};
// The following section of code implements an observer
// that will monitor the evolution of the registration process.
//
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
itkNewMacro( Self );
protected:
CommandIterationUpdate(): m_CumulativeIterationIndex(0) {};
public:
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( !(itk::IterationEvent().CheckEvent( &event )) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << " " <<
m_CumulativeIterationIndex++ << std::endl;
}
private:
unsigned int m_CumulativeIterationIndex;
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [backgroundGrayLevel]";
std::cerr << " [checkerboardbefore] [CheckerBoardAfter]";
std::cerr << " [numberOfBins] " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// In a multistage scenario, each stage needs an individual instantiation
// of the \doxygen{ImageRegistrationMethodv4}, so each stage can possibly
// have a different transform, a different optimizer, and a different image
// metric and can be performed in multiple levels.
// The configuration of the registration method at each stage closely
// follows the procedure in the previous section.
//
// In early stages we can use simpler transforms and more aggressive optimization
// parameters to take big steps toward the optimal value. Then, at the final
// stage we can have a more complex transform to do fine adjustments of the final
// parameters.
//
// A possible scheme is to use a simple translation transform for initial
// coarse registration levels and upgrade to an affine transform at the
// finer level.
// Since we have two different types of transforms, we can use a multistage
// registration approach as shown in the current example.
//
// First we need to configure the registration components of the initial stage.
// The instantiation of the transform type requires only the
// dimension of the space and the type used for representing space coordinates.
//
// \index{itk::TranslationTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of other registration components are defined here.\newline
// \doxygen{RegularStepGradientDescentOptimizerv4} is used as the
// optimizer of the first stage. Also, we use
// \doxygen{MattesMutualInformationImageToImageMetricv4} as the metric
// since it is fitted for a multi-modal registration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedImageType,
MovingImageType > MetricType;
FixedImageType,
MovingImageType,
TTransformType > TRegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, all the components are instantiated using their \code{New()} method
// and connected to the registration object as in previous examples.
//
// Software Guide : EndLatex
TOptimizerType::Pointer transOptimizer = TOptimizerType::New();
MetricType::Pointer transMetric = MetricType::New();
TRegistrationType::Pointer transRegistration = TRegistrationType::New();
transRegistration->SetOptimizer( transOptimizer );
transRegistration->SetMetric( transMetric );
// Software Guide : BeginLatex
//
// The output transform of the registration process will be constructed
// internally in the registration filter since the related \emph{TransformType}
// is already passed to the registration method as a template parameter.
// However, we should provide an initial moving transform for the
// registration method if needed.
//
// \index{itk::TranslationTransform!New()}
// \index{itk::TranslationTransform!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TTransformType::Pointer movingInitTx = TTransformType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After setting the initial parameters, the initial transform can be
// passed to the registration filter by \code{SetMovingInitialTransform()} method.
//
// \index{itk::Image\-Registration\-Methodv4!SetMovingInitialTransform()}
//
// Software Guide : EndLatex
typedef TOptimizerType::ParametersType ParametersType;
ParametersType initialParameters( movingInitTx->GetNumberOfParameters() );
initialParameters[0] = 3.0; // Initial offset in mm along X
initialParameters[1] = 5.0; // Initial offset in mm along Y
movingInitTx->SetParameters( initialParameters );
// Software Guide : BeginCodeSnippet
transRegistration->SetMovingInitialTransform( movingInitTx );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can use a \doxygen{CompositeTransform} to stack all the output
// transforms resulted from multiple stages. This composite
// transform should also hold the moving initial transform (if it exists)
// because as explained in section \ref{sec:RigidRegistrationIn2D},
// the output of each registration stage does not include the input
// initial transform to that stage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CompositeTransform< double,
Dimension > CompositeTransformType;
CompositeTransformType::Pointer compositeTransform =
CompositeTransformType::New();
compositeTransform->AddTransform( movingInitTx );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
transRegistration->SetFixedImage( fixedImageReader->GetOutput() );
transRegistration->SetMovingImage( movingImageReader->GetOutput() );
transRegistration->SetObjectName("TranslationRegistration");
// Software Guide : BeginLatex
//
// In the case of this simple example, the first stage is run only
// in one level of registration at a coarse resolution.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels1 = 1;
TRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel1;
shrinkFactorsPerLevel1.SetSize( numberOfLevels1 );
shrinkFactorsPerLevel1[0] = 3;
TRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel1;
smoothingSigmasPerLevel1.SetSize( numberOfLevels1 );
smoothingSigmasPerLevel1[0] = 2;
transRegistration->SetNumberOfLevels ( numberOfLevels1 );
transRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel1 );
transRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel1 );
// Software Guide : EndCodeSnippet
transMetric->SetNumberOfHistogramBins( 24 );
if( argc > 7 )
{
// optionally, override the values with numbers taken from the command line arguments.
transMetric->SetNumberOfHistogramBins( atoi( argv[7] ) );
}
transOptimizer->SetNumberOfIterations( 200 );
transOptimizer->SetRelaxationFactor( 0.5 );
// Software Guide : BeginLatex
//
// Also, for this initial stage we can use a more agressive parameter
// set for the optimizer by taking a big step size and relaxing
// stop criteria.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transOptimizer->SetLearningRate( 16 );
transOptimizer->SetMinimumStepLength( 1.5 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer1 = CommandIterationUpdate::New();
transOptimizer->AddObserver( itk::IterationEvent(), observer1 );
// Create the Registration interface observer and register it with the registration
// method.
//
typedef RegistrationInterfaceCommand<TRegistrationType> TranslationCommandType;
TranslationCommandType::Pointer command1 = TranslationCommandType::New();
transRegistration->AddObserver( itk::MultiResolutionIterationEvent(), command1 );
// Software Guide : BeginLatex
//
// Once all the registration components are in place, we trigger the registration
// process by calling \code{Update()} and add the result output transform to the final
// composite transform, so this composite transform can be used to initialize the next
// registration stage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
transRegistration->Update();
std::cout << "Optimizer stop condition: "
<< transRegistration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(
transRegistration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we can upgrade to an Affine transform as the second stage of registration
// process.
// The AffineTransform is a linear transformation that maps lines into
// lines. It can be used to represent translations, rotations, anisotropic
// scaling, shearing or any combination of them. Details about the affine
// transform can be seen in Section~\ref{sec:AffineTransform}.
// The instantiation of the transform type requires only the dimension of the
// space and the type used for representing space coordinates.
//
// \index{itk::AffineTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also use a different optimizer in configuration of the second stage while
// the metric is kept the same as before.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double > AOptimizerType;
FixedImageType,
MovingImageType,
ATransformType > ARegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Again all the components are instantiated using their \code{New()} method
// and connected to the registration object like in previous stages.
//
// Software Guide : EndLatex
AOptimizerType::Pointer affineOptimizer = AOptimizerType::New();
MetricType::Pointer affineMetric = MetricType::New();
ARegistrationType::Pointer affineRegistration = ARegistrationType::New();
affineRegistration->SetOptimizer( affineOptimizer );
affineRegistration->SetMetric( affineMetric );
// Software Guide : BeginLatex
//
// The current stage can be initialized using the initial transform of the
// registration and the result transform of the previous stage, so that both
// are concatenated into the composite transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineRegistration->SetMovingInitialTransform( compositeTransform );
// Software Guide : EndCodeSnippet
affineRegistration->SetFixedImage( fixedImageReader->GetOutput() );
affineRegistration->SetMovingImage( movingImageReader->GetOutput() );
affineRegistration->SetObjectName("AffineRegistration");
affineMetric->SetNumberOfHistogramBins( 24 );
if( argc > 7 )
{
// optionally, override the values with numbers taken from the command line arguments.
affineMetric->SetNumberOfHistogramBins( atoi( argv[7] ) );
}
// Software Guide : BeginLatex
//
// In Section \ref{sec:InitializingRegistrationWithMoments} we showed
// the importance of center of rotation in the registration process.
// In Affine transforms, the center of rotation is defined by the fixed
// parameters set, which are set by default to [0, 0].
// However, consider a situation where the
// origin of the virtual space, in which the registration is run, is far away
// from the zero origin. In such cases, leaving the center of rotation
// as the default value can make the optimization process unstable. Therefore,
// we are always interested to set the center of rotation to the center of virtual
// space which is usually the fixed image space.
//
// Note that either center of gravity or geometrical center can be used
// as the center of rotation. In this example center of rotation is set
// to the geometrical center of the fixed image. We could also use
// \doxygen{ImageMomentsCalculator} filter to compute the center of mass.
//
// Based on the above discussion, the user must set the fixed parameters of
// the registration transform outside of the registraton method, so first
// we instantiate an object of the output transform type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ATransformType::Pointer affineTx = ATransformType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we compute the physical center of the fixed image and set
// that as the center of the output Affine transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef FixedImageType::SpacingType SpacingType;
typedef FixedImageType::PointType OriginType;
typedef FixedImageType::RegionType RegionType;
typedef FixedImageType::SizeType SizeType;
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
const SpacingType fixedSpacing = fixedImage->GetSpacing();
const OriginType fixedOrigin = fixedImage->GetOrigin();
const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();
const SizeType fixedSize = fixedRegion.GetSize();
ATransformType::InputPointType centerFixed;
centerFixed[0] =
fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;
centerFixed[1] =
fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;
const unsigned int numberOfFixedParameters =
affineTx->GetFixedParameters().Size();
ATransformType::ParametersType fixedParameters( numberOfFixedParameters );
for (unsigned int i = 0; i < numberOfFixedParameters; ++i)
{
fixedParameters[i] = centerFixed[i];
}
affineTx->SetFixedParameters( fixedParameters );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the initialized output transform should be connected to
// the registration object by using \code{SetInitialTransform()} method.
//
// It is important to distinguish between the \code{SetInitialTransform()}
// and \code{SetMovingInitialTransform()} that was used to initialize the
// registration stage based on the results of the previous stages.
// You can assume that the first one is used for direct manipulation of the
// optimizable transform in current registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineRegistration->SetInitialTransform( affineTx );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The set of optimizable parameters in the Affine transform have different
// dynamic ranges. Typically the parameters associated with the matrix
// have values around $[-1:1]$, although they are not restricted to this
// interval. Parameters associated with translations, on the other hand,
// tend to have much higher values, typically on the order of $10.0$ to
// $100.0$. This difference in dynamic range negatively affects the
// performance of gradient descent optimizers. ITK provides some mechanisms to
// compensate for such differences in values among the parameters when
// they are passed to the optimizer.
//
// The first mechanism consists of providing an
// array of scale factors to the optimizer. These factors re-normalize the
// gradient components before they are used to compute the step of the
// optimizer at the current iteration.
// These scales are estimated by the user intuitively as shown in previous
// examples of this chapter. In our particular case, a common choice
// for the scale parameters is to set all those associated
// with the matrix coefficients to $1.0$, that is, the first $N \times N$
// factors. Then, we set the remaining scale factors to a small value.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Here the affine transform is represented by the matrix $\bf{M}$ and the
// vector $\bf{T}$. The transformation of a point $\bf{P}$ into $\bf{P'}$
// is expressed as
//
// \begin{equation}
// \left[
// \begin{array}{c}
// {P'}_x \\ {P'}_y \\ \end{array}
// \right]
// =
// \left[
// \begin{array}{cc}
// M_{11} & M_{12} \\ M_{21} & M_{22} \\ \end{array}
// \right]
// \cdot
// \left[
// \begin{array}{c}
// P_x \\ P_y \\ \end{array}
// \right]
// +
// \left[
// \begin{array}{c}
// T_x \\ T_y \\ \end{array}
// \right]
// \end{equation}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Based on the above discussion, we need much smaller scales for translation
// parameters of vector $\bf{T}$ ($T_x$, $T_y$) compared to the parameters
// of matrix $\bf{M}$ ($M_{11}$, $M_{12}$, $M_{21}$, $M_{22}$).
// However, it is not easy to have an intuitive estimation of all parameter
// scales when we have to deal with a large paramter space.
//
// Fortunately, ITKv4 provides a framework for automated parameter scaling.
// \doxygen{RegistrationParameterScalesEstimator} vastly reduces the
// difficulty of tuning parameters for different transform/metric combinations.
// Parameter scales are estimated by analyzing the result of a small parameter
// update on the change in the magnitude of physical space deformation induced
// by the transformation.
//
// The impact from a unit change of a parameter may be defined in multiple ways,
// such as the maximum shift of voxels in index or physical space, or the average
// norm of transform Jacobian.
// Filters \doxygen{RegistrationParameterScalesFromPhysicalShift}
// and \doxygen{RegistrationParameterScalesFromIndexShift} use the first definition
// to estimate the scales, while the \doxygen{RegistrationParameterScalesFromJacobian}
// filter estimates scales based on the later definition.
// In all methods, the goal is to rescale the transform parameters such that
// a unit change of each \emph{scaled parameter} will have the same impact on deformation.
//
// In this example the first filter is chosen to estimate the parameter scales. The
// scales estimator will then be passed to optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType> ScalesEstimatorType;
ScalesEstimatorType::Pointer scalesEstimator =
ScalesEstimatorType::New();
scalesEstimator->SetMetric( affineMetric );
scalesEstimator->SetTransformForward( true );
affineOptimizer->SetScalesEstimator( scalesEstimator );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The step length has to be proportional to the expected values of the
// parameters in the search space. Since the expected values of the matrix
// coefficients are around $1.0$, the initial step of the optimization
// should be a small number compared to $1.0$. As a guideline, it is
// useful to think of the matrix coefficients as combinations of
// $cos(\theta)$ and $sin(\theta)$. This leads to use values close to the
// expected rotation measured in radians. For example, a rotation of $1.0$
// degree is about $0.017$ radians.
//
// However, we need not worry about the above considerations.
// Thanks to the \emph{ScalesEstimator}, the initial step size can also be
// estimated automatically, either at each iteration or only at the first
// iteration. In this example we choose to estimate learning rate
// once at the begining of the registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineOptimizer->SetDoEstimateLearningRateOnce( true );
affineOptimizer->SetDoEstimateLearningRateAtEachIteration( false );
// Software Guide : EndCodeSnippet
// Set the other parameters of optimizer
//
affineOptimizer->SetLowerLimit( 0 );
affineOptimizer->SetUpperLimit( 2 );
affineOptimizer->SetEpsilon( 0.2 );
affineOptimizer->SetNumberOfIterations( 200 );
affineOptimizer->SetMinimumConvergenceValue( 1e-6 );
affineOptimizer->SetConvergenceWindowSize( 5 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer2 = CommandIterationUpdate::New();
affineOptimizer->AddObserver( itk::IterationEvent(), observer2 );
// Software Guide : BeginLatex
//
// At the second stage, we run two levels of registration, where the second
// level is run in full resolution in which we do the final adjustments
// of the output parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels2 = 2;
ARegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel2;
shrinkFactorsPerLevel2.SetSize( numberOfLevels2 );
shrinkFactorsPerLevel2[0] = 2;
shrinkFactorsPerLevel2[1] = 1;
ARegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel2;
smoothingSigmasPerLevel2.SetSize( numberOfLevels2 );
smoothingSigmasPerLevel2[0] = 1;
smoothingSigmasPerLevel2[1] = 0;
affineRegistration->SetNumberOfLevels ( numberOfLevels2 );
affineRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel2 );
affineRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel2 );
// Software Guide : EndCodeSnippet
// Create the Registration interface observer and register it with the registration
// object.
//
typedef RegistrationInterfaceCommand<ARegistrationType> AffineCommandType;
AffineCommandType::Pointer command2 = AffineCommandType::New();
affineRegistration->AddObserver( itk::MultiResolutionIterationEvent(), command2 );
// Software Guide : BeginLatex
//
// Finally we trigger the registration process by calling \code{Update()} and
// add the output transform of the last stage to the
// composite transform. This composite transform will be considered as
// the final transform of this multistage registration process and will be
// used by the resampler to resample the moving image in to the virtual domain
// space (fixed image space if there is no fixed initial transform).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
affineRegistration->Update();
std::cout << "Optimizer stop condition: "
<< affineRegistration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(
affineRegistration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
std::cout << "\nInitial parameters of the registration process: " << std::endl
<< movingInitTx->GetParameters() << std::endl;
std::cout << "\nTranslation parameters after registration: " << std::endl
<< transOptimizer->GetCurrentPosition() << std::endl
<< " Last LearningRate: " << transOptimizer->GetCurrentStepLength() << std::endl;
std::cout << "\nAffine parameters after registration: " << std::endl
<< affineOptimizer->GetCurrentPosition() << std::endl
<< " Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example using the following multi-modality images:
//
// \begin{itemize}
// \item BrainT1SliceBorder20.png
// \item BrainProtonDensitySliceR10X13Y17.png
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and then translating by $(-13,-17)$. Both images
// have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingMultiStageImageRegistration1}.
//
// The registration converges after $5$ iterations in the translation stage.
// Also, in the second stage, the registration converges after $46$ iterations
// in the first level, and $6$ iterations in the second level.
// The final results when printed as an array of parameters are:
//
// \begin{verbatim}
// Initial parameters of the registration process:
// [3, 5]
//
// Translation parameters after first registration stage:
// [9.0346, 10.8303]
//
// Affine parameters after second registration stage:
// [0.9864, -0.1733, 0.1738, 0.9863, 0.9693, 0.1482]
// \end{verbatim}
//
// As it can be seen, the translation parameters after the first stage
// compensate most of the offset between the fixed and moving images.
// When the images are close to each other, the affine registration is
// run for the rotation and the final match.
// By reordering the Affine array of parameters as coefficients of matrix
// $\bf{M}$ and vector $\bf{T}$ they can now be seen as
//
// \begin{equation}
// M =
// \left[
// \begin{array}{cc}
// 0.9864 & -0.1733 \\ 0.1738 & 0.9863 \\ \end{array}
// \right]
// \mbox{ and }
// T =
// \left[
// \begin{array}{c}
// 0.9693 \\ 0.1482 \\ \end{array}
// \right]
// \end{equation}
//
// In this form, it is easier to interpret the effect of the
// transform. The matrix $\bf{M}$ is responsible for scaling, rotation and
// shearing while $\bf{T}$ is responsible for translations.
//
// The second component of the matrix values is usually associated with
// $\sin{\theta}$. We obtain the rotation through SVD of the affine
// matrix. The value is $9.975$ degrees, which is approximately the
// intentional misalignment of $10.0$ degrees.
//
// Also, let's compute the total translation values resulting from initial transform,
// translation transform, and the Affine transform together.
//
// In $X$ direction:
// \begin{equation}
// 3 + 9.0346 + 0.9693 = 13.0036
// \end{equation}
// In $Y$ direction:
// \begin{equation}
// 5 + 10.8303 + 0.1482 = 15.9785
// \end{equation}
//
// It can be seen that the translation values closely match the true
// misalignment introduced in the moving image.
//
// It is important to note that once the images are registered at a
// sub-pixel level, any further improvement of the registration relies
// heavily on the quality of the interpolator. It may then be reasonable to
// use a coarse and fast interpolator in the lower resolution levels and
// switch to a high-quality but slow interpolator in the final resolution
// level. However, in this example we used a linear interpolator for all
// stages and different registration levels since it is so fast.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17}
// \itkcaption[AffineTransform registration]{Fixed and moving images
// provided as input to the registration method using the AffineTransform.}
// \label{fig:FixedMovingMultiStageImageRegistration1}
// \end{figure}
//
// Software Guide : EndLatex
MovingImageType,
FixedImageType > ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( compositeTransform );
resample->SetInput( movingImageReader->GetOutput() );
PixelType backgroundGrayLevel = 100;
if( argc > 4 )
{
backgroundGrayLevel = atoi( argv[4] );
}
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( backgroundGrayLevel );
typedef unsigned char OutputPixelType;
FixedImageType,
OutputImageType > CastFilterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1CheckerboardBefore}
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1CheckerboardAfter}
// \itkcaption[Multistage registration input images]{Mapped moving image
// (left) and composition of fixed and moving images before (center) and
// after (right) registration.}
// \label{fig:MultiStageImageRegistration1Outputs}
// \end{figure}
//
// The result of resampling the moving image is presented in the left image
// of Figure \ref{fig:MultiStageImageRegistration1Outputs}. The center and
// right images of the figure depict a checkerboard composite of the fixed
// and moving images before and after registration.
//
// Software Guide : EndLatex
//
// Generate checkerboards before and after registration
//
typedef itk::CheckerBoardImageFilter< FixedImageType > CheckerBoardFilterType;
CheckerBoardFilterType::Pointer checker = CheckerBoardFilterType::New();
checker->SetInput1( fixedImage );
checker->SetInput2( resample->GetOutput() );
caster->SetInput( checker->GetOutput() );
writer->SetInput( caster->GetOutput() );
resample->SetDefaultPixelValue( 0 );
// Write out checkerboard outputs
// Before registration
TransformType::Pointer identityTransform;
try
{
identityTransform = TransformType::New();
}
catch( itk::ExceptionObject & err )
{
err.Print(std::cerr);
return EXIT_FAILURE;
}
identityTransform->SetIdentity();
resample->SetTransform( identityTransform );
if( argc > 5 )
{
writer->SetFileName( argv[5] );
writer->Update();
}
// After registration
resample->SetTransform( compositeTransform );
if( argc > 6 )
{
writer->SetFileName( argv[6] );
writer->Update();
}
return EXIT_SUCCESS;
}