ITK  4.9.0
Insight Segmentation and Registration Toolkit
Examples/Filtering/FFTImageFilterFourierDomainFiltering.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// One of the most common image processing operations performed in the Fourier
// Domain is the masking of the spectrum in order to eliminate a range of
// spatial frequencies from the input image. This operation is typically
// performed by taking the input image, computing its Fourier transform using
// a FFT filter, masking the resulting image in the Fourier domain with a
// mask, and finally taking the result of the masking and computing its
// inverse Fourier transform.
//
// This typical process is illustrated in the example below.
//
// \index{itk::Forward\-FFT\-Image\-Filter}
// \index{itk::Vnl\-Forward\-FFT\-Image\-Filter}
// \index{itk::FFTW\-Forward\-FFT\-Image\-Filter}
// \index{itk::Mask\-Image\-Filter}
//
// Software Guide : EndLatex
#include "itkImage.h"
// Software Guide : BeginLatex
//
// We start by including the headers of the FFT filters and the Mask image
// filter. Note that we use two different types of FFT filters here. The first
// one expects as input an image of real pixel type (real in the sense of
// complex numbers) and produces as output a complex image. The second FFT
// filter expects as in put a complex image and produces a real image as
// output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int main( int argc, char * argv [] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << argv[0] << " inputScalarImage inputMaskImage";
std::cerr << " outputFilteredImage" << std::endl;
}
// Software Guide : BeginLatex
//
// The first decision to make is related to the pixel type and dimension of the
// images on which we want to compute the Fourier transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
const unsigned int Dimension = 2;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we select the pixel type to use for the mask image and instantiate the
// image type of the mask.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char MaskPixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Both the input image and the mask image can be read from files or could be
// obtained as the output of a preprocessing pipeline. We omit here the details
// of reading the image since the process is quite standard.
//
// Software Guide : EndLatex
typedef itk::ImageFileReader< InputImageType > InputReaderType;
typedef itk::ImageFileReader< MaskImageType > MaskReaderType;
InputReaderType::Pointer inputReader = InputReaderType::New();
MaskReaderType::Pointer maskReader = MaskReaderType::New();
inputReader->SetFileName( argv[1] );
maskReader->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// Now the \doxygen{VnlForwardFFTImageFilter} can be instantiated.
// Like most ITK filters, the FFT filter is instantiated using the full image type.
// By not setting the output image type, we decide to use the default one provided
// by the filter. Using this type we construct one instance of the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FFTFilterType::Pointer fftFilter = FFTFilterType::New();
fftFilter->SetInput( inputReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since our purpose is to perform filtering in the frequency domain by
// altering the weights of the image spectrum, we need a filter that will
// mask the Fourier transform of the input image with a binary image. Note that the
// type of the spectral image is taken here from the traits of the FFT filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef FFTFilterType::OutputImageType SpectralImageType;
typedef itk::MaskImageFilter< SpectralImageType,
MaskImageType,
SpectralImageType > MaskFilterType;
MaskFilterType::Pointer maskFilter = MaskFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We connect the inputs to the mask filter by taking the outputs from the
// first FFT filter and from the reader of the Mask image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
maskFilter->SetInput1( fftFilter->GetOutput() );
maskFilter->SetInput2( maskReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For the purpose of verifying the aspect of the spectrum after being filtered
// with the mask, we can write out the output of the Mask filter to a file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< SpectralImageType > SpectralWriterType;
SpectralWriterType::Pointer spectralWriter = SpectralWriterType::New();
spectralWriter->SetFileName("filteredSpectrum.mhd");
spectralWriter->SetInput( maskFilter->GetOutput() );
spectralWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the mask filter will contain the \emph{filtered} spectrum
// of the input image. We must then apply an inverse Fourier transform on it in
// order to obtain the filtered version of the input image. For that purpose we
// create another instance of the FFT filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SpectralImageType > IFFTFilterType;
IFFTFilterType::Pointer fftInverseFilter = IFFTFilterType::New();
fftInverseFilter->SetInput( maskFilter->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The execution of the pipeline can be triggered by invoking the
// \code{Update()} method in this last filter. Since this invocation can
// eventually throw an exception, the call must be placed inside a try/catch
// block.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
fftInverseFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The result of the filtering can now be saved into an image file, or be
// passed to a subsequent processing pipeline. Here we simply write it out to
// an image file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( fftInverseFilter->GetOutput() );
// Software Guide : EndCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Error writing the real image: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Note that this example is just a minimal illustration of the multiple types
// of processing that are possible in the Fourier domain.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}