ITK  4.9.0
Insight Segmentation and Registration Toolkit
Examples/Segmentation/HoughTransform2DCirclesImageFilter.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{HoughTransform2DCirclesImageFilter} to find circles in a
// 2-dimensional image.
//
// First, we include the header files of the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
#include <list>
#include "vnl/vnl_math.h"
int main( int argc, char *argv[] )
{
if( argc < 6 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0] << std::endl;
std::cerr << " inputImage " << std::endl;
std::cerr << " outputImage" << std::endl;
std::cerr << " numberOfCircles " << std::endl;
std::cerr << " radius Min " << std::endl;
std::cerr << " radius Max " << std::endl;
std::cerr << " sweep Angle (default = 0)" << std::endl;
std::cerr << " SigmaGradient (default = 1) " << std::endl;
std::cerr << " variance of the accumulator blurring (default = 5) " << std::endl;
std::cerr << " radius of the disk to remove from the accumulator (default = 10) "<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Next, we declare the pixel type and image dimension and specify the
// image type to be used as input. We also specify the image type of the
// accumulator used in the Hough transform filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
typedef float AccumulatorPixelType;
const unsigned int Dimension = 2;
ImageType::IndexType localIndex;
typedef itk::Image< AccumulatorPixelType, Dimension > AccumulatorImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We setup a reader to load the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
ImageType::Pointer localImage = reader->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create the HoughTransform2DCirclesImageFilter based on the pixel
// type of the input image (the resulting image from the
// ThresholdImageFilter).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "Computing Hough Map" << std::endl;
AccumulatorPixelType> HoughTransformFilterType;
HoughTransformFilterType::Pointer houghFilter
= HoughTransformFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the input of the filter to be the output of the
// ImageFileReader. We set also the number of circles we are looking for.
// Basically, the filter computes the Hough map, blurs it using a certain
// variance and finds maxima in the Hough map. After a maximum is found,
// the local neighborhood, a circle, is removed from the Hough map.
// SetDiscRadiusRatio() defines the radius of this disc proportional to
// the radius of the disc found. The Hough map is computed by looking at
// the points above a certain threshold in the input image. Then, for each
// point, a Gaussian derivative function is computed to find the direction
// of the normal at that point. The standard deviation of the derivative
// function can be adjusted by SetSigmaGradient(). The accumulator is
// filled by drawing a line along the normal and the length of this line
// is defined by the minimum radius (SetMinimumRadius()) and the maximum
// radius (SetMaximumRadius()). Moreover, a sweep angle can be defined by
// SetSweepAngle() (default 0.0) to increase the accuracy of detection.
//
// The output of the filter is the accumulator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
houghFilter->SetInput( reader->GetOutput() );
houghFilter->SetNumberOfCircles( atoi(argv[3]) );
houghFilter->SetMinimumRadius( atof(argv[4]) );
houghFilter->SetMaximumRadius( atof(argv[5]) );
if( argc > 6 )
{
houghFilter->SetSweepAngle( atof(argv[6]) );
}
if( argc > 7 )
{
houghFilter->SetSigmaGradient( atoi(argv[7]) );
}
if( argc > 8 )
{
houghFilter->SetVariance( atof(argv[8]) );
}
if( argc > 9 )
{
houghFilter->SetDiscRadiusRatio( atof(argv[9]) );
}
houghFilter->Update();
AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can also get the circles as \doxygen{EllipseSpatialObject}. The
// \code{GetCircles()} function return a list of those.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
HoughTransformFilterType::CirclesListType circles;
circles = houghFilter->GetCircles( atoi(argv[3]) );
std::cout << "Found " << circles.size() << " circle(s)." << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can then allocate an image to draw the resulting circles as binary
// objects.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
OutputImageType::Pointer localOutputImage = OutputImageType::New();
OutputImageType::RegionType region;
region.SetSize(localImage->GetLargestPossibleRegion().GetSize());
region.SetIndex(localImage->GetLargestPossibleRegion().GetIndex());
localOutputImage->SetRegions( region );
localOutputImage->SetOrigin(localImage->GetOrigin());
localOutputImage->SetSpacing(localImage->GetSpacing());
localOutputImage->Allocate(true); // initializes buffer to zero
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We iterate through the list of circles and we draw them.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HoughTransformFilterType::CirclesListType CirclesListType;
CirclesListType::const_iterator itCircles = circles.begin();
while( itCircles != circles.end() )
{
std::cout << "Center: ";
std::cout << (*itCircles)->GetObjectToParentTransform()->GetOffset()
<< std::endl;
std::cout << "Radius: " << (*itCircles)->GetRadius()[0] << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We draw white pixels in the output image to represent each circle.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for(double angle = 0;angle <= 2*vnl_math::pi; angle += vnl_math::pi/60.0 )
{
localIndex[0] =
(long int)((*itCircles)->GetObjectToParentTransform()->GetOffset()[0]
+ (*itCircles)->GetRadius()[0]*std::cos(angle));
localIndex[1] =
(long int)((*itCircles)->GetObjectToParentTransform()->GetOffset()[1]
+ (*itCircles)->GetRadius()[0]*std::sin(angle));
OutputImageType::RegionType outputRegion =
localOutputImage->GetLargestPossibleRegion();
if( outputRegion.IsInside( localIndex ) )
{
localOutputImage->SetPixel( localIndex, 255 );
}
}
itCircles++;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We setup a writer to write out the binary image created.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput(localOutputImage );
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}