ITK  5.2.0
Insight Toolkit
Examples/Statistics/EuclideanDistanceMetric.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{itk::Statistics::EuclideanDistanceMetric}
//
// The Euclidean distance function
// (\subdoxygen{Statistics}{EuclideanDistanceMetric} requires as template
// parameter the type of the measurement vector. We can use this function for
// any subclass of the \doxygen{FixedArray}. As a subclass of the
// \subdoxygen{Statistics}{DistanceMetric}, it has two basic methods, the
// \code{SetOrigin(measurement vector)} and the \code{Evaluate(measurement
// vector)}. The \code{Evaluate()} method returns the distance between its
// argument (a measurement vector) and the measurement vector set by the
// \code{SetOrigin()} method.
//
// In addition to the two methods, EuclideanDistanceMetric has two more
// methods that return the distance of two measurements ---
// \code{Evaluate(measurement vector, measurement vector)} and the
// coordinate distance between two measurements (not vectors) ---
// \code{Evaluate(measurement, measurement)}. The argument type of the
// latter method is the type of the component of the measurement vector.
//
// We include the header files for the class and the \doxygen{Vector}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkArray.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We define the type of the measurement vector that will be input of
// the Euclidean distance function. As a result, the measurement type
// is \code{float}.
//
// Software Guide : EndLatex
int
main(int, char *[])
{
// Software Guide : BeginCodeSnippet
using MeasurementVectorType = itk::Array<float>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The instantiation of the function is done through the usual
// \code{New()} method and a smart pointer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DistanceMetricType =
DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create three measurement vectors, the \code{originPoint},
// the \code{queryPointA}, and the \code{queryPointB}. The type of the
// \code{originPoint} is fixed in the
// \subdoxygen{Statistics}{DistanceMetric} base class as
// \code{itk::Vector< double, length of the measurement vector of the
// each distance metric instance>}.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The Distance metric does not know about the length of the measurement
// vectors. We must set it explicitly using the
// \code{SetMeasurementVectorSize()} method.
//
// Software Guide : EndLatex
distanceMetric->SetMeasurementVectorSize(2);
// Software Guide : BeginCodeSnippet
DistanceMetricType::OriginType originPoint(2);
MeasurementVectorType queryPointA(2);
MeasurementVectorType queryPointB(2);
originPoint[0] = 0;
originPoint[1] = 0;
queryPointA[0] = 2;
queryPointA[1] = 2;
queryPointB[0] = 3;
queryPointB[1] = 3;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the following code snippet, we show the uses of the three different
// \code{Evaluate()} methods.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
distanceMetric->SetOrigin(originPoint);
std::cout
<< "Euclidean distance between the origin and the query point A = "
<< distanceMetric->Evaluate(queryPointA) << std::endl;
std::cout << "Euclidean distance between the two query points (A and B) = "
<< distanceMetric->Evaluate(queryPointA, queryPointB)
<< std::endl;
std::cout << "Coordinate distance between "
<< "the first components of the two query points = "
<< distanceMetric->Evaluate(queryPointA[0], queryPointB[0])
<< std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
itk::Statistics::EuclideanDistanceMetric
Euclidean distance function.
Definition: itkEuclideanDistanceMetric.h:35
itkArray.h
itkVector.h
itk::Array< float >
itkEuclideanDistanceMetric.h