
The ITK Software Guide
The Insight Toolkit (ITK) is an open-source, cross-platform system for medical image
processing. It provides medical imaging researchers with an extensive suite of leading-
edge algorithms for registering, segmenting, analyzing, and quantifying medical data. It
is used in thousands of research and commercial applications, from major labs to
individual innovators.

This ITK Software Guide is the handbook for developing software with ITK. It is
divided into two companion books.

The first book covers building and installation, general architecture and design, as well
as the process of contributing in the ITK community.

The second book covers detailed design and functionality for reading and writing
images, filtering, registration, segmentation, and performing statistical analysis.

NOTICE: This PDF is a concatenation of both Book 1 and Book 2 of the ITK Software
Guide into a single document. Additional documentation can be found at docs.itk.org.

The ITK Software Guide
Book 1: Introduction and Development Guidelines ……….Pages 2 - 417
Book 2: Design and Functionality …………………………Pages 418 - 989

https://itk.org/
https://docs.itk.org/

The ITK Software Guide

Book 1: Introduction and Development

Guidelines

Fourth Edition

Updated for ITK version 5.4.0

Hans J. Johnson, Matthew M. McCormick, Luis Ibáñez,

and the Insight Software Consortium

May 21, 2024

https://itk.org

https://discourse.itk.org/

https://itk.org
https://discourse.itk.org/

The purpose of computing is Insight, not numbers.

Richard Hamming

ABSTRACT

The National Library of Medicine Insight Segmentation and Registration Toolkit, shortened as the

Insight Toolkit (ITK), is an open-source software toolkit for performing registration and segmenta-

tion. Segmentation is the process of identifying and classifying data found in a digitally sampled

representation. Typically the sampled representation is an image acquired from such medical instru-

mentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences

between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan

in order to combine the information contained in both.

ITK is a cross-platform software. It uses a build environment known as CMake to manage platform-

specific project generation and compilation process in a platform-independent way. ITK is imple-

mented in C++. ITK’s implementation style employs generic programming, which involves the

use of templates to generate, at compile-time, code that can be applied generically to any class or

data-type that supports the operations used by the template. The use of C++ templating means that

the code is highly efficient and many issues are discovered at compile-time, rather than at run-time

during program execution. It also means that many of ITK’s algorithms can be applied to arbitrary

spatial dimensions and pixel types.

An automated wrapping system integrated with ITK generates an interface between C++ and a high-

level programming language Python. This enables rapid prototyping and faster exploration of ideas

by shortening the edit-compile-execute cycle. In addition to automated wrapping, the SimpleITK

project provides a streamlined interface to ITK that is available for C++, Python, Java, CSharp, R,

Tcl and Ruby.

Developers from around the world can use, debug, maintain, and extend the software because ITK

is an open-source project. ITK uses a model of software development known as Extreme Program-

ming. Extreme Programming collapses the usual software development methodology into a simulta-

neous iterative process of design-implement-test-release. The key features of Extreme Programming

are communication and testing. Communication among the members of the ITK community is what

helps manage the rapid evolution of the software. Testing is what keeps the software stable. An

extensive testing process supported by the system known as CDash measures the quality of ITK

https://itk.org
https://cmake.org
https://www.python.org
https://www.itk.org/Wiki/SimpleITK
https://open.cdash.org/index.php?project=Insight

code on a daily basis. The ITK Testing Dashboard is updated continuously, reflecting the quality of

the code at any moment.

The most recent version of this document is available online at

https://itk.org/ItkSoftwareGuide.pdf. This book is a guide for developing software

with ITK; it is the first of two companion books. This book covers building and installation, general

architecture and design, as well as the process of contributing in the ITK community. The second

book covers detailed design and functionality for reading and writing images, filtering, registration,

segmentation, and performing statistical analysis.

https://itk.org/ItkSoftwareGuide.pdf

CONTRIBUTORS

The Insight Toolkit (ITK) has been created by the efforts of many talented individuals and presti-

gious organizations. It is also due in great part to the vision of the program established by Dr. Terry

Yoo and Dr. Michael Ackerman at the National Library of Medicine.

This book lists a few of these contributors in the following paragraphs. Not all developers of ITK are

credited here, so please visit the Web pages at https://itk.org/ITK/project/parti.html for the names of

additional contributors, as well as checking the GIT source logs for code contributions.

The following is a brief description of the contributors to this software guide and their contributions.

Luis Ibáñez is principal author of this text. He assisted in the design and layout of the text, im-

plemented the bulk of the LATEX and CMake build process, and was responsible for the bulk of the

content. He also developed most of the example code found in the Insight/Examples directory.

Will Schroeder helped design and establish the organization of this text and the Insight/Examples

directory. He is principal content editor, and has authored several chapters.

Lydia Ng authored the description for the registration framework and its components, the section

on the multiresolution framework, and the section on deformable registration methods. She also

edited the section on the resampling image filter and the sections on various level set segmentation

algorithms.

Joshua Cates authored the iterators chapter and the text and examples describing watershed seg-

mentation. He also co-authored the level-set segmentation material.

Jisung Kim authored the chapter on the statistics framework.

Julien Jomier contributed the chapter on spatial objects and examples on model-based registration

using spatial objects.

Karthik Krishnan reconfigured the process for automatically generating images from all the exam-

ples. Added a large number of new examples and updated the Filtering and Segmentation chapters

https://itk.org
https://itk.org/ITK/project/parti.html

vi

for the second edition.

Stephen Aylward contributed material describing spatial objects and their application.

Tessa Sundaram contributed the section on deformable registration using the finite element method.

Mark Foskey contributed the examples on the itk::AutomaticTopologyMeshSource class.

Mathieu Malaterre contributed the entire section on the description and use of DICOM readers and

writers based on the GDCM library. He also contributed an example on the use of the VTKImageIO

class.

Gavin Baker contributed the section on how to write composite filters. Also known as minipipeline

filters.

Since the software guide is generated in part from the ITK source code itself, many ITK developers

have been involved in updating and extending the ITK documentation. These include David Doria,

Bradley Lowekamp, Mark Foskey, Gaëtan Lehmann, Andreas Schuh, Tom Vercauteren, Cory

Quammen, Daniel Blezek, Paul Hughett, Matthew McCormick, Josh Cates, Arnaud Gelas,

Jim Miller, Brad King, Gabe Hart, Hans Johnson.

Hans Johnson, Kent Williams, Constantine Zakkaroff, Xiaoxiao Liu, Ali Ghayoor, and

Matthew McCormick updated the documentation for the initial ITK Version 4 release.

Luis Ibáñez and Sébastien Barré designed the original Book 1 cover. Xiaoxiao Liu, Bill

Lorensen, Luis Ibáñez, and Matthew McCormick created the 3D printed anatomical objects that

were photographed by Sébastien Barré for the Book 2 cover. Steve Jordan designed the layout of

the covers.

https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html

CONTENTS

I Introduction 1

1 Welcome 3

1.1 Organization . 4

1.2 How to Learn ITK . 4

1.3 Software Organization . 5

1.4 The Insight Community and Support . 7

1.5 A Brief History of ITK . 8

2 Configuring and Building ITK 9

2.1 Obtaining the Software . 10

2.1.1 Downloading Packaged Releases . 10

2.1.2 Downloading From Git . 10

2.1.3 Data . 11

2.2 Using CMake for Configuring and Building ITK . 11

2.2.1 Preparing CMake . 12

2.2.2 Configuring ITK . 14

2.2.3 Advanced Module Configuration . 14

2.2.4 Static and Shared Libraries . 17

2.2.5 Compiling ITK . 18

2.2.6 Installing ITK on Your System . 18

viii CONTENTS

2.3 Cross compiling ITK . 19

2.4 Getting Started With ITK . 19

2.5 Using ITK as an External Library . 20

2.5.1 Hello World! . 21

II Architecture 23

3 System Overview 25

3.1 System Organization . 25

3.2 Essential System Concepts . 26

3.2.1 Generic Programming . 26

3.2.2 Include Files and Class Definitions . 27

3.2.3 Object Factories . 27

3.2.4 Smart Pointers and Memory Management . 28

3.2.5 Error Handling and Exceptions . 29

3.2.6 Event Handling . 30

3.2.7 Multi-Threading . 31

3.3 Numerics . 33

3.4 Data Representation . 34

3.5 Data Processing Pipeline . 35

3.6 Spatial Objects . 36

3.7 Wrapping . 37

3.7.1 Python Setup . 39

Install Stable Python Packages . 39

Install Latest Python Packages . 39

Build Python Packages from Source . 40

4 Data Representation 41

4.1 Image . 41

4.1.1 Creating an Image . 41

4.1.2 Reading an Image from a File . 43

4.1.3 Accessing Pixel Data . 44

CONTENTS ix

4.1.4 Defining Origin and Spacing . 45

4.1.5 RGB Images . 51

4.1.6 Vector Images . 53

4.1.7 Importing Image Data from a Buffer . 54

4.2 PointSet . 57

4.2.1 Creating a PointSet . 57

4.2.2 Getting Access to Points . 59

4.2.3 Getting Access to Data in Points . 62

4.2.4 RGB as Pixel Type . 64

4.2.5 Vectors as Pixel Type . 66

4.2.6 Normals as Pixel Type . 68

4.3 Mesh . 70

4.3.1 Creating a Mesh . 70

4.3.2 Inserting Cells . 72

4.3.3 Managing Data in Cells . 76

4.3.4 Customizing the Mesh . 78

4.3.5 Topology and the K-Complex . 81

4.3.6 Representing a PolyLine . 88

4.3.7 Simplifying Mesh Creation . 91

4.3.8 Iterating Through Cells . 94

4.3.9 Visiting Cells . 96

4.3.10 More on Visiting Cells . 98

4.4 Path . 102

4.4.1 Creating a PolyLineParametricPath . 102

5 Spatial Objects 105

5.1 Introduction . 105

5.2 Hierarchy . 106

5.3 Transformations . 108

5.4 Types of Spatial Objects . 113

5.4.1 ArrowSpatialObject . 113

5.4.2 BlobSpatialObject . 114

x CONTENTS

5.4.3 EllipseSpatialObject . 115

5.4.4 GaussianSpatialObject . 117

5.4.5 GroupSpatialObject . 118

5.4.6 ImageSpatialObject . 121

5.4.7 ImageMaskSpatialObject . 123

5.4.8 LandmarkSpatialObject . 124

5.4.9 LineSpatialObject . 126

5.4.10 MeshSpatialObject . 127

5.4.11 SurfaceSpatialObject . 130

5.4.12 TubeSpatialObject . 132

5.4.13 DTITubeSpatialObject . 134

5.5 Read/Write SpatialObjects . 137

5.6 Statistics Computation via SpatialObjects . 138

6 Iterators 141

6.1 Introduction . 141

6.2 Programming Interface . 142

6.2.1 Creating Iterators . 142

6.2.2 Moving Iterators . 142

6.2.3 Accessing Data . 144

6.2.4 Iteration Loops . 145

6.3 Image Iterators . 146

6.3.1 ImageRegionIterator . 146

6.3.2 ImageRegionIteratorWithIndex . 148

6.3.3 ImageLinearIteratorWithIndex . 151

6.3.4 ImageSliceIteratorWithIndex . 154

6.3.5 ImageRandomConstIteratorWithIndex . 158

6.4 Neighborhood Iterators . 159

6.4.1 NeighborhoodIterator . 164

Basic neighborhood techniques: edge detection . 164

Convolution filtering: Sobel operator . 167

Optimizing iteration speed . 169

CONTENTS xi

Separable convolution: Gaussian filtering . 170

Slicing the neighborhood . 172

Random access iteration . 173

6.4.2 ShapedNeighborhoodIterator . 175

Shaped neighborhoods: morphological operations . 176

7 Image Adaptors 181

7.1 Image Casting . 181

7.2 Adapting RGB Images . 183

7.3 Adapting Vector Images . 186

7.4 Adaptors for Simple Computation . 188

7.5 Adaptors and Writers . 190

III Development Guidelines 193

8 How To Write A Filter 195

8.1 Terminology . 195

8.2 Overview of Filter Creation . 196

8.3 Streaming Large Data . 197

8.3.1 Overview of Pipeline Execution . 197

8.3.2 Details of Pipeline Execution . 199

UpdateOutputInformation() . 199

PropagateRequestedRegion() . 200

UpdateOutputData() . 201

8.4 Threaded Filter Execution . 201

8.5 Filter Conventions . 202

8.5.1 Optional . 203

8.5.2 Useful Macros . 203

8.6 How To Write A Composite Filter . 204

8.6.1 Implementing a Composite Filter . 204

8.6.2 A Simple Example . 205

xii CONTENTS

9 How To Create A Module 209

9.1 Name and dependencies . 209

9.1.1 CMakeLists.txt . 210

9.1.2 itk-module.cmake . 211

9.2 Headers . 212

9.3 Libraries . 213

9.4 Tests . 213

9.5 Wrapping . 216

9.5.1 CMakeLists.txt . 217

9.5.2 Class wrap files . 217

Wrapping Variables . 219

Wrapping Enumerations . 220

Wrapping Macros . 220

Wrapping Tests . 226

9.5.3 Debugging Strategies . 226

Swig Python Architecture . 226

Python Runtime Tracing . 227

C++ Runtime Tracing . 227

9.6 Third-Party Dependencies . 231

9.6.1 itk-module-init.cmake . 231

9.6.2 CMakeList.txt . 231

9.7 Contributing with a Remote Module . 233

9.7.1 Policy for Adding and Removing Remote Modules 233

9.7.2 Procedure for Adding a Remote Module . 234

10 Software Process 235

10.1 Git Source Code Repository . 235

10.2 CDash Regression Testing System . 236

10.2.1 Developing tests . 238

10.3 Working The Process . 238

10.4 The Effectiveness of the Process . 239

CONTENTS xiii

Appendices 241

A Licenses 243

A.1 Insight Toolkit License . 243

A.2 Third Party Licenses . 248

A.2.1 DICOM Parser . 248

A.2.2 Double Conversion . 249

A.2.3 Expat . 249

A.2.4 GDCM . 250

A.2.5 GIFTI . 251

A.2.6 HDF5 . 251

A.2.7 JPEG . 254

A.2.8 KWSys . 255

A.2.9 MetaIO . 256

A.2.10 Netlib’s SLATEC . 258

A.2.11 NIFTI . 258

A.2.12 NrrdIO . 259

A.2.13 OpenJPEG . 262

A.2.14 PNG . 263

A.2.15 TIFF . 263

A.2.16 VNL . 263

A.2.17 ZLIB . 264

B ITK Git Workflow 267

B.1 Git Setup . 267

B.1.1 Windows . 267

Git for Windows . 267

Cygwin . 268

B.1.2 macOS . 268

Xcode 4 . 268

OS X Installer . 268

MacPorts . 268

xiv CONTENTS

B.1.3 Linux . 269

B.2 Workflow . 269

B.2.1 A Primer . 269

B.2.2 A Topic . 270

Motivation . 270

Design . 270

Notation . 271

Published Branches . 271

Development . 272

Discussion . 282

Troubleshooting . 285

Conflicts . 294

B.2.3 Publish . 302

Push Access . 302

Patches . 304

B.2.4 Hooks . 306

Setup . 306

Local . 307

Server . 309

B.2.5 TipsAndTricks . 309

Editor support . 309

Shell Customization . 310

C Coding Style Guide 311

C.1 Purpose . 311

C.2 Overview . 311

C.3 System Overview & Philosophy . 313

C.3.1 Clang Style . 313

C.3.2 Kitware Style . 314

C.3.3 Implementation Language . 314

C.3.4 Constants . 314

C.3.5 Generic Programming and the STL . 315

CONTENTS xv

C.3.6 Portability . 315

C.3.7 Multi-Layer Architecture . 315

C.3.8 CMake Build Environment . 316

C.3.9 Doxygen Documentation System . 316

C.3.10 vnl Math Library . 316

C.3.11 Reference Counting . 316

C.4 Copyright . 317

C.5 Citations . 317

C.6 Naming Conventions . 319

C.6.1 ITK . 319

C.6.2 Naming Namespaces . 320

C.6.3 Naming Classes . 320

C.6.4 Naming Files . 322

Naming Tests . 323

C.6.5 Examples . 324

C.6.6 Naming Methods and Functions . 324

C.6.7 Naming Class Data Members . 325

C.6.8 Naming Enumerations . 325

C.6.9 Naming Local Variables . 327

Temporary Variable Naming . 327

Variable Initialization . 328

Control Statement Variable Naming . 329

Variable Scope . 329

C.6.10 Naming Template Parameters . 330

C.6.11 Naming Typedefs . 331

C.6.12 Naming Constants . 332

C.6.13 Using Operators to Pointers . 332

C.6.14 Using Operators to Arrays . 332

C.6.15 Using Underscores . 333

C.6.16 Include Guards . 333

C.6.17 Preprocessor Directives . 333

xvi CONTENTS

C.6.18 Header Includes . 334

C.6.19 Const Correctness . 334

C.6.20 Integer Type Specifiers . 335

C.7 Namespaces . 335

C.8 Aliasing Template Parameter Typenames . 336

C.9 Pipelines . 336

C.10 The auto Keyword . 337

C.11 Initialization and Assignment . 338

C.12 Accessing Members . 339

C.13 Code Layout and Indentation . 340

C.13.1 General Layout . 340

C.13.2 Class Layout . 341

C.13.3 Method Definition . 345

C.13.4 Use of Braces . 345

Braces in Control Sequences . 345

Braces in Arrays . 346

C.13.5 Indentation and Tabs . 347

C.13.6 White Spaces . 348

C.13.7 Grouping . 350

Conditional Expressions . 350

Assignments . 350

Return Statements . 351

C.13.8 Alignment . 352

C.13.9 Line Splitting Policy . 355

C.13.10 Empty Lines . 356

C.13.11 New Line Character . 362

C.13.12 End Of File Character . 362

C.14 Increment/decrement Operators . 362

C.15 Trailing Return Types . 363

C.16 Empty Arguments in Methods . 363

C.17 Ternary Operator . 364

CONTENTS xvii

C.18 Using Standard Macros . 365

C.19 Exception Handling . 368

C.19.1 Errors in Pipelines . 370

C.20 Messages . 371

C.20.1 Messages in Macros . 371

C.20.2 Messages in Tests . 371

C.21 Concept Checking . 373

C.22 Printing Variables . 373

C.23 Checking for Null . 374

C.24 Writing Tests . 374

C.24.1 Code Layout in Tests . 374

C.24.2 Regressions in Tests . 375

C.24.3 Arguments in Tests . 377

C.24.4 Testing Enumeration Streaming . 378

C.24.5 Test Return Value . 378

C.25 Writing Examples . 379

C.26 Doxygen Documentation System . 379

C.26.1 General Principles . 380

C.26.2 Documenting Classes . 380

C.26.3 Documenting Methods . 381

C.26.4 Documenting Data Members . 382

C.26.5 Documenting Macros . 382

C.26.6 Documenting Tests . 383

C.27 CMake Style . 384

C.28 Documentation Style . 384

LIST OF FIGURES

2.1 CMake user interface . 13

2.2 ITK Group Configuration . 15

2.3 Default ITK Configuration . 16

4.1 ITK Image Geometrical Concepts . 46

4.2 PointSet with Vectors as PixelType . 66

6.1 ITK image iteration . 143

6.2 Copying an image subregion using ImageRegionIterator . 149

6.3 Using the ImageRegionIteratorWithIndex . 150

6.4 Maximum intensity projection using ImageSliceIteratorWithIndex 157

6.5 Neighborhood iterator . 160

6.6 Some possible neighborhood iterator shapes . 161

6.7 Sobel edge detection results . 167

6.8 Gaussian blurring by convolution filtering . 172

6.9 Finding local minima . 175

6.10 Binary image morphology . 179

7.1 ImageAdaptor concept . 182

7.2 Image Adaptor to RGB Image . 186

7.3 Image Adaptor to Vector Image . 189

xx List of Figures

7.4 Image Adaptor for performing computations . 191

8.1 Relationship between DataObjects and ProcessObjects . 196

8.2 The Data Pipeline . 198

8.3 Sequence of the Data Pipeline updating mechanism . 199

8.4 Composite Filter Concept . 204

8.5 Composite Filter Example . 205

10.1 CDash Quality Dashboard . 237

LIST OF TABLES

6.1 ImageRandomConstIteratorWithIndex usage . 159

9.1 Wrapping Configuration Variables . 218

9.2 Wrapping CMake Mangling Variables for PODs . 221

9.3 Wrapping CMake Mangling Variables for other ITK pixel types. 222

9.4 Wrapping CMake Mangling Variables for Basic ITK types. 223

B.1 Git DAG notation . 271

Part I

Introduction

CHAPTER

ONE

WELCOME

Welcome to the Insight Segmentation and Registration Toolkit (ITK) Software Guide. This book has

been updated for ITK 5.4.0 and later versions of the Insight Toolkit software.

ITK is an open-source, object-oriented software system for image processing, segmentation, and

registration. Although it is large and complex, ITK is designed to be easy to use once you learn

about its basic object-oriented and implementation methodology. The purpose of this Software

Guide is to help you learn just this, plus to familiarize you with the important algorithms and data

representations found throughout the toolkit.

ITK is a large system. As a result, it is not possible to completely document all ITK objects and

their methods in this text. Instead, this guide will introduce you to important system concepts and

lead you up the learning curve as fast and efficiently as possible. Once you master the basics, take

advantage of the many resources available 1, including example materials, which provide cookbook

recipes that concisely demonstrate how to achieve a given task, the Doxygen pages, which document

the specific algorithm parameters, and the knowledge of the many ITK community members (see

Section 1.4 on page 7).

The Insight Toolkit is an open-source software system. This means that the community surround-

ing ITK has a great impact on the evolution of the software. The community can make significant

contributions to ITK by providing code reviews, bug patches, feature patches, new classes, docu-

mentation, and discussions. Please feel free to contribute your ideas through the ITK community

discussion.

The Insight Toolkit is built on the principle that patents are undesirable in an open-source software.

Thus, the community strives to keep the Insight Toolkit free from any patented code, algorithm or

method.

1https://www.itk.org/ITK/help/documentation.html

https://www.itk.org/ITK/help/documentation.html

4 Chapter 1. Welcome

1.1 Organization

This software guide is divided into three parts. Part I is a general introduction to ITK, with a

description of how to install the Insight Toolkit on your computer. This includes how to build the

library from its source code. Part II introduces basic system concepts such as an overview of the

system architecture, and how to build applications in the C++ and Python programming languages.

Part II also describes the design of data structures and application of analysis methods within the

system. Part III is for the ITK contributor and explains how to create your own classes, extend the

system, and be an active participant in the project.

1.2 How to Learn ITK

The key to learning how to use ITK is to become familiar with its palette of objects and the ways to

combine them. There are three categories of documentation to help with the learning process: high

level guidance material (the Software Guide), “cookbook” demonstrations on how to achieve con-

crete objectives (the examples), and detailed descriptions of the application programming interface

(the Doxygen2 documentation). These resources are combined in the three recommended stages for

learning ITK.

In the first stage, thoroughly read this introduction, which provides an overview of some of the key

concepts of the system. It also provides guidance on how to build and install the software. After

running your first “hello world” program, you are well on your way to advanced computational

image analysis!

The next stage is to execute a few examples and gain familiarity with the available documenta-

tion. By running the examples, one can gain confidence in achieving results and is introduced the

mechanics of the software system. There are two example resources,

1. the Examples directory of the ITK source code repository 3.

2. the Sphinx documented ITK Sphinx Examples 4

To gain familiarity with the available documentation, browse the sections available in Part II and Part

III of this guide. Also, browse the Doxygen application programming interface (API) documentation

for the classes applied in the examples.

Finally, mastery of ITK involves integration of information from multiple sources. the second com-

panion book is a reference to algorithms available, and Part III introduces how to extend them to your

needs and participate in the community. Individual examples are a detailed starting point to achieve

certain tasks. In practice, the Doxygen documentation becomes a frequent reference as an index of

2https://itk.org/Doxygen/index.html
3See Section Obtaining the Software on page 10)
4https://itk.org/ITKExamples

https://itk.org/Doxygen/index.html
https://itk.org/ITKExamples

1.3. Software Organization 5

the classes available, their descriptions, and the syntax and descriptions of their methods. When ex-

amples and Doxygen documentation are insufficient, the software unit tests thoroughly demonstrate

how the code is utilized. Last, but not least, the source code itself is an extremely valuable resource.

The code is the most detailed, up-to-date, and definitive description of the software. A great deal of

attention and effort is directed to the code’s readability, and its value cannot be understated.

The following sections describe how to obtain the software, summarize the software functionality in

each directory, and how to locate data.

1.3 Software Organization

To begin your ITK odyssey, you will first need to know something about ITK’s software organization

and directory structure. It is helpful to know enough to navigate through the code base to find

examples, code, and documentation.

ITK resources are organized into multiple Git repositories. The ITK library source code are in the

ITK5 Git repository. The Sphinx Examples are in the ITKSphinxExamples6 repository. The sources

for this guide are in the ITKSoftwareGuide7 repository.

The ITK repository contains the following subdirectories:

• ITK/Documentation — migration guides and Doxygen infrastructure.

• ITK/Examples — a suite of simple, well-documented examples used by this guide, illustrat-

ing important ITK concepts.

• ITK/Modules — the heart of the software; the location of the majority of the source code.

• ITK/Testing — a collection of the test files, including raw binary, and MD5 and SHA512

hash files, which are used to link with the ITK data servers to download test data. This test

data is used by tests in ITK/Modules to produce the ITK Quality Dashboard using CDash.

(see Section 10.2 on page 236.)

• ITK/Utilities — the scripts that support source code development. For example, CTest and

Doxygen support.

• ITK/Wrapping — the wrapping code to build interfaces between the C++ library and various

interpreted languages (currently Python is supported).

The source code directory structure—found in ITK/Modules—is the most important to understand.

5https://github.com/InsightSoftwareConsortium/ITK.git
6https://github.com/InsightSoftwareConsortium/ITKSphinxExamples.git
7https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide.git

https://github.com/InsightSoftwareConsortium/ITK.git
https://github.com/InsightSoftwareConsortium/ITKSphinxExamples.git
https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide.git

6 Chapter 1. Welcome

• ITK/Modules/Bridge — classes used to connect with the other analysis libraries or visual-

ization libraries, such as OpenCV8 and VTK9.

• ITK/Modules/Compatibility — collects together classes for backwards compatibility with

ITK Version 3, and classes that are deprecated – i.e. scheduled for removal from future ver-

sions of ITK.

• ITK/Modules/Core — core classes, macro definitions, type aliases, and other software con-

structs central to ITK. The classes in Core are the only ones always compiled as part of ITK.

• ITK/Modules/External — a directory to place in development or non-publicized modules.

• ITK/Modules/Filtering — image processing filters.

• ITK/Modules/IO — classes that support the reading and writing of images, transforms, and

geometry.

• ITK/Modules/Numerics — a collection of numeric modules, including FEM, Optimization,

Statistics, Neural Networks, etc.

• ITK/Modules/Registration — classes for registration of images or other data structures to

each other.

• ITK/Modules/Remote — a group of modules distributed outside of the main ITK source

repository (most of them are hosted on github.com) whose source code can be downloaded

via CMake when configuring ITK.

• ITK/Modules/Segmentation — classes for segmentation of images or other data structures.

• ITK/Modules/ThirdParty — various third-party libraries that are used to implement image

file I/O and mathematical algorithms. (Note: ITK’s mathematical library is based on the

VXL/VNL software package10).

• ITK/Modules/Video — classes for input, output and processing of static and real-time data

with temporal components.

The Doxygen documentation is an essential resource when working with ITK, but it is not contained

in a separate repository. Each ITK class is implemented with a .h and .cxx/.hxx file (.hxx file for

templated classes). All methods found in the .h header files are documented and provide a quick

way to find documentation for a particular method. Doxygen uses this header documentation to

produce its HTML output.

The extensive Doxygen web pages describe in detail every class and method in the system. It also

contains inheritance and collaboration diagrams, listing of event invocations, and data members.

8https://opencv.org
9https://www.vtk.org

10https://vxl.github.io

github.com
https://opencv.org
https://www.vtk.org
https://vxl.github.io

1.4. The Insight Community and Support 7

heavily hyper-linked to other classes and to the source code. The nightly generated Doxygen doc-

umentation is online at https://itk.org/Doxygen/html/ . Archived versions for each feature

release are also available online; for example, the documentation for the 4.4.0 release are available

at https://itk.org/Doxygen44/html/.

1.4 The Insight Community and Support

Joining the community discussion is strongly recommended. This is one of the primary resources

for guidance and help regarding the use of the toolkit. You can subscribe to the community list

online at

https://discourse.itk.org/

ITK transitioned to Discourse on September 2017. Discourse is a next generation, open source

discussion platform that functions as a mailing list, discussion forum, and long-form chat room.

Discourse is a simple, modern, and fun platform that facilitates civilized discussions.

ITK maintainers developed a Getting Started Guide to help people joining the discussion, subscrib-

ing to updates, or setting their preferences.

The previous mailing list resources can be reached at https://itk.org/ITK/help/mailing.html.

ITK was created from its inception as a collaborative, community effort. Research, teaching, and

commercial uses of the toolkit are expected. If you would like to participate in the community, there

are a number of possibilities. For details on participation, see Part III of this book.

• Interaction with other community members is encouraged on the ITK discussion by both ask-

ing as answering questions. When issues are discovered, patches submitted to the code review

system are welcome. Performing code reviews, even by novice members, is encouraged. Im-

provements and extensions to the documentation are also welcome.

• Research partnerships with members of the Insight Software Consortium are encouraged.

Both NIH and NLM will likely provide limited funding over the next few years and will

encourage the use of ITK in proposed work.

• For those developing commercial applications with ITK, support and consulting are available

from Kitware 11. Kitware also offers short ITK courses either at a site of your choice or

periodically at Kitware offices.

• Educators may wish to use ITK in courses. Materials are being developed for this purpose,

e.g., a one-day, conference course and semester-long graduate courses. Check the Wiki12 for

a listing.

11https://www.kitware.com
12https://itk.org/Wiki/ITK/Documentation

https://itk.org/Doxygen/html/
https://itk.org/Doxygen44/html/
https://discourse.itk.org/
https://www.discourse.org/
https://www.discourse.org/
https://discourse.itk.org/t/getting-started-with-discourse/22
https://www.kitware.com
https://itk.org/Wiki/ITK/Documentation

8 Chapter 1. Welcome

1.5 A Brief History of ITK

In 1999 the US National Library of Medicine of the National Institutes of Health awarded six

three-year contracts to develop an open-source registration and segmentation toolkit, that eventu-

ally came to be known as the Insight Toolkit (ITK) and formed the basis of the Insight Software

Consortium. ITK’s NIH/NLM Project Manager was Dr. Terry Yoo, who coordinated the six prime

contractors composing the Insight consortium. These consortium members included three commer-

cial partners—GE Corporate R&D, Kitware, Inc., and MathSoft—and three academic partners—

University of North Carolina (UNC), University of Tennessee (UT) (Ross Whitaker subsequently

moved to University of Utah), and University of Pennsylvania (UPenn). The Principle Investiga-

tors for these partners were, respectively, Bill Lorensen at GE CRD, Will Schroeder at Kitware,

Vikram Chalana at Insightful, Stephen Aylward with Luis Ibáñez at UNC (Luis is now at Google),

Ross Whitaker with Josh Cates at UT, and Dimitri Metaxas at UPenn (now at Rutgers). In addition,

several subcontractors rounded out the consortium including Peter Raitu at Brigham & Women’s

Hospital, Celina Imielinska and Pat Molholt at Columbia University, Jim Gee at UPenn’s Grasp

Lab, and George Stetten at the University of Pittsburgh.

In 2002 the first official public release of ITK was made available. In addition, the National Library

of Medicine awarded thirteen contracts to several organizations to extend ITK’s capabilities. The

NLM has funded maintenance of the toolkit over the years, and a major funding effort was started

in July 2010 that culminated with the release of ITK 4.0.0 in December 2011. The ITK community

completed a major modernization of the toolkit’s interface, architectural improvements for improved

performance, and Python packages for rapid prototyping with ITK 5.0.0, released in May 2019.

CHAPTER

TWO

CONFIGURING AND BUILDING ITK

This chapter describes the process for configuring and compiling ITK on your system. Keep in

mind that ITK is a toolkit, and as such, once it is installed on your computer it does not provide an

application to run. What ITK does provide is a large set of libraries which can be used to create

your own applications. Besides the toolkit proper, ITK also includes an extensive set of examples

and tests that introduce ITK concepts and show how to use ITK in your own projects.

Some of the examples distributed with ITK depend on third party libraries, some of which may need

to be installed separately. For the initial build of ITK, you may want to ignore these extra libraries

and just compile the toolkit itself.

ITK has been developed and tested across different combinations of operating systems, compilers,

and hardware platforms including Microsoft Windows, Linux on various architectures, UNIX, ma-

cOS, and Mingw-w64. Dedicated community members and Kitware are committed to providing

long-term support of the most prevalent development environments (e.g. Clang and Visual Studio)

for building ITK.

Compiler variants will be supported for the duration that the associated operating system vendors

commit to in their long-term stable platforms. For example the gcc compilers supported will mirror

the compiler support in the RedHat lifecycle, the Apple Clang compilers will mirror the support life-

cycle of the compiler by Apple, and the Visual Studio series support will follow lifecycle deprecation

of the compiler versions.

For example, the following development and compiler environments are supported in ITK for the

date at which the document was generated:

• GCC 7 and newer

• Visual Studio 2017 version 15.7 and newer

• Xcode 10.0 (Apple LLVM Clang version 10.0.0) and newer

If you are currently using an outdated compiler this may be an excellent excuse for upgrading this

old piece of software! Support for different platforms is evident on the ITK quality dashboard (see

10 Chapter 2. Configuring and Building ITK

Section 10.2 on page 236).

2.1 Obtaining the Software

There are two different ways to access the ITK source code:

Periodic releases Official releases are available on the ITK web site1. They are released twice a

year, and announced on the ITK web pages and discussion. However, they may not provide

the latest and greatest features of the toolkit.

Continuous repository checkout Direct access to the Git source code repository2 provides imme-

diate availability to the latest toolkit additions. But, on any given day the source code may not

be stable as compared to the official releases.

This software guide assumes that you are using the current released version of ITK, available on the

ITK web site. If you are a new user, we recommend the released version of the software. It is more

consistent than the code available from the Git repository (see Section 2.1.2). When working from

the repository, please be aware of the ITK quality testing dashboard. The Insight Toolkit is heavily

tested using the open-source CDash regression testing system3. Before updating the repository,

make sure that the dashboard is green, indicating stable code. (Learn more about the ITK dashboard

and quality assurance process in Section 10.2 on page 236.)

2.1.1 Downloading Packaged Releases

ITK can be downloaded without cost from the following web site:

https://www.itk.org/ITK/resources/software.html

On the web page, choose the tarball that better fits your system. The options are .zip and .tar.gz

files. The first type is better suited for Microsoft-Windows, while the second one is the preferred

format for UNIX systems.

Once you unzip or untar the file a directory called InsightToolkit-5.4.0 will be created in your

disk and you will be ready to start the configuration process described in Section 2.2.1 on page 12.

2.1.2 Downloading From Git

Git is a free and open source distributed version control system. For more information about Git

please see Section 10.1 on page 235. (Note: please make sure that you access the software via Git

1https://itk.org/ITK/resources/software.html
2https://itk.org/ITK.git
3https://open.cdash.org/index.php?project=Insight

https://www.itk.org/ITK/resources/software.html
https://itk.org/ITK/resources/software.html
https://itk.org/ITK.git
https://open.cdash.org/index.php?project=Insight

2.2. Using CMake for Configuring and Building ITK 11

only when the ITK quality dashboard indicates that the code is stable.)

Access ITK via Git using the following commands (under a Git Bash shell):

git clone git://itk.org/ITK.git

This will trigger the download of the software into a directory named ITK. Any time you want to

update your version, it will be enough to change into this directory, ITK, and type:

git pull

Once you obtain the software you are ready to configure and compile it (see Section 2.2.1 on page

12). First, however, we recommend reading the following sections that describe the organization of

the software and joining the discussion.

2.1.3 Data

The Insight Toolkit was designed to support the Visible Human Project and its as-

sociated data. This data is available from the National Library of Medicine at

https://www.nlm.nih.gov/research/visible/visible_human.html.

Another source of data can be obtained from the ITK Web site at either of the following:

https://www.itk.org/ITK/resources/links.html

ftp://public.kitware.com/pub/itk/Data/ .

2.2 Using CMake for Configuring and Building ITK

The challenge of supporting ITK across platforms has been solved through the use of CMake4, a

cross-platform, open-source build system. CMake controls the software compilation process with

simple platform and compiler-independent configuration files. CMake is quite sophisticated—it

supports complex environments requiring system introspection, compiler feature testing, and code

generation.

CMake generates native Makefiles or workspaces to be used with the corresponding development

environment of your choice. For example, on UNIX and MinGW systems, CMake generates Make-

files; under Microsoft Windows CMake generates Visual Studio workspaces; CMake is also capable

of generating appropriate build files for other development environments, e.g., Eclipse. The infor-

mation used by CMake is provided in CMakeLists.txt files that are present in every directory of

the ITK source tree. Along with the specification of project structure and code dependencies these

4www.cmake.org

https://www.nlm.nih.gov/research/visible/visible_human.html
https://www.itk.org/ITK/resources/links.html
ftp://public.kitware.com/pub/itk/Data/
www.cmake.org

12 Chapter 2. Configuring and Building ITK

files specify the information that need to be provided to CMake by the user during project config-

uration stage. Typical configuration options specified by the user include paths to utilities installed

on your system and selection of software features to be included.

An ITK build requires only CMake and a C++ compiler. ITK ships with all the third party library

dependencies required, and these dependencies are used during compilation unless the use of a

system version is requested during CMake configuration.

2.2.1 Preparing CMake

CMake can be downloaded at no cost from

https://cmake.org/download/

You can download binary versions for most of the popular platforms including Microsoft Windows,

macOS, Linux, PowerPC and IRIX. Alternatively you can download the source code and build

CMake on your system. Follow the instructions provided on the CMake web page for downloading

and installing the software. The minimum version of CMake has been evolving along with the ver-

sion of ITK. For example, the current version of ITK (5.4.0) requires the minimum CMake version

to be 3.9.5.

CMake provides a terminal-based interface (Figure 2.1) on platforms support the curses library.

For most platforms CMake also provides a GUI based on the Qt library. Figure 2.1 shows the

terminal-based CMake interface for Linux and CMake GUI for Microsoft Windows.

Running CMake to configure and prepare for compilation a new project initially requires two pieces

of information: where the source code directory is located, and where the compiled code is to be

produced. These are referred to as the source directory and the binary directory respectively. We

recommend setting the binary directory to be different than the source directory in order to produce

an out-of-source build.

If you choose to use the terminal-based version of CMake (ccmake) the binary directory needs to

be created first and then CMake is invoked from the binary directory with the path to the source

directory. For example:

mkdir ITK-build

cd ITK-build

ccmake ../ITK

In the GUI version of CMake (cmake-gui) the source and binary directories are specified in the

appropriate input fields (Figure 2.1) and the application will request a confirmation to create a new

binary directory if it does not exist.

CMake runs in an interactive mode which allows iterative selection of options followed by con-

figuration according to the updated options. This iterative process proceeds until no more options

https://cmake.org/download/

2.2. Using CMake for Configuring and Building ITK 13

Figure 2.1: CMake user interfaces: at the top is the interface based on the curses library supported by

UNIX/Linux systems, below is the Microsoft Windows version of the CMake GUI based on the Qt library (CMake

GUI is also available on UNIX/Linux systems).

remain to be specified. At this point, a generation step produces the appropriate build files for your

configuration.

This interactive configuration process can be better understood by imagining the traversal of a path

in a decision tree. Every selected option introduces the possibility that new, dependent options may

become relevant. These new options are presented by CMake at the top of the options list in its

interface. Only when no new options appear after a configuration iteration can you be sure that

14 Chapter 2. Configuring and Building ITK

the necessary decisions have all been made. At this point build files are generated for the current

configuration.

2.2.2 Configuring ITK

Start terminal-based CMake interface ccmake on Linux and UNIX, or the graphical user interface

cmake-gui on Microsoft Windows. Remember to run ccmake from the binary directory on Linux

and UNIX. On Windows, specify the source and binary directories in the GUI, then set and modify

the configuration and build option in the interface as necessary.

The examples distributed with the toolkit provide a helpful resource for learning how to use ITK

components but are not essential for compiling the toolkit itself. The testing section of the source

tree includes a large number of small programs that exercise the capabilities of ITK classes. Enabling

the compilation of the examples and unit tests will considerably increase the build time. In order to

speed up the build process, you can disable the compilation of the unit tests and examples. This is

done by setting the variables BUILD TESTING and BUILD EXAMPLES to OFF.

Most CMake variables in ITK have sensible default values. Each time a CMake variable is changed,

it is necessary to re-run the configuration step. In the terminal-based version of the interface the

configuration step is triggered by hitting the “c” key. In the GUI version this is done by clicking on

the “Configure” button.

When no new options appear highlighted in CMake, you can proceed to generate Makefiles, a Visual

Studio workspace, or other appropriate build files depending on your preferred development environ-

ment. This is done in the GUI interface by clicking on the “Generate” button. In the terminal-based

version this is done by hitting the “g” key. After the generation process the terminal-based version

of CMake will quit silently. The GUI window of CMake can be left open for further refinement of

configuration options as described in the next section. With this scenario it is important to generate

new build files to reflect the latest configuration changes. In addition, the new build files need to be

reloaded if the project is open in the integrated development environment such as Visual Studio or

Eclipse.

2.2.3 Advanced Module Configuration

Following the default configuration introduced in 2.2.2, the majority of the toolkit will be built. The

modern modular structure of the toolkit makes it possible to customize the ITK library by choosing

which modules to include in the build. ITK was officially modularized in version 4.0.0 released in

December of 2011. Developers have been testing and improving the modular structure since then.

The toolkit currently contains more than 100 regular/internal modules and many remote modules,

while new ITK modules are being developed.

ITK BUILD DEFAULT MODULES is the CMake option to build all default modules in the toolkit,

by default this option is ON as shown in Figure 2.1. The default modules include most internal

ITK modules except the ones that depend on external third party libraries (such as ITKVtkGlue,

2.2. Using CMake for Configuring and Building ITK 15

ITKVideoBridgeOpenCV, ITKVideoBridgeVXL, etc.) and several modules containing legacy code

(ITKReview, ITKDeprecated and ITKV3Compatibility).

Apart from the default mode of selecting the modules for building the ITK library there are two

other approaches module selection: the group mode, and the advanced module mode. When ITK -

BUILD DEFAULT MODULES is set to OFF, the selection of modules to be included in the ITK library

can be customized by changing the variables enabling group and advanced module selection.

ITKGroup {group name} variables for group module selection are visible when ITK BUILD -

DEFAULT MODULES is OFF. The ITK source code tree is organized in such way that a group of mod-

ules characterised by close relationships or similar functionalities stay in one subdirectory. Currently

there are 11 groups (excluding the External and Remote groups). The CMake ITKGroup {group

name} options are created for the convenient enabling or disabling of multiple modules at once. The

ITKGroup Core group is selected by default as shown in Figure 2.2. When a group is selected, all

modules in the group and their depending modules are enabled. When a group variable is set to OFF,

all modules in the group, except the ones that are required by other enabled modules, are disabled.

Figure 2.2: CMake GUI shows the ITK Group options.

If you are not sure about which groups to turn on, but you do have a list of specific modules to

be included in your ITK library, you can certainly skip the Group options and use the Module -

{module name} options only. Whatever modules you select, their dependent modules are automat-

ically enabled. In the advanced mode of the CMake GUI, you can manually toggle the build of the

non-default modules via the Module {module name} variables. In Figure 2.3 all default modules’

Module {module name} variables are shown disabled for toggling since they are enabled via the

ITK BUILD DEFAULT MODULES set to ON variable.

However, not all modules will be visible in the CMake GUI at all times due to the various levels

of controls in the previous two modes. If some modules are already enabled by other modes, these

modules are set as internal variables and are hidden in the CMake GUI. For example, Module -

16 Chapter 2. Configuring and Building ITK

Figure 2.3: CMake GUI for configuring ITK: the advanced mode shows options for non-default ITK Modules.

ITKFoo variable is hidden when the module ITKFoo is enabled in either of the following scenarios:

1. module ITKBar is enabled and depends on ITKFoo,

2. ITKFoo belongs to the group ITKGroup FooAndBar and the group is enabled

3. ITK BUILD DEFAULT MODULES is ON and ITKFoo is a default module.

To find out why a particular module is enabled, check the CMake configuration messages where the

information about enabling or disabling the modules is displayed (Figure 2.3); these messages are

sorted in alphabetical order by module names.

Those who prefer to build ITK using the command line are referred to the online cmake command-

line tool documentation5. Only some typical use cases are shown here for reference.

• Example 1: Build all default modules.

cmake [-DITK_BUILD_DEFAULT_MODULES:BOOL=ON]

../ITK-build

As ITK BUILD DEFAULT MODULES is ON by default, the above can also be accomplished by

cmake ../ITK-build

5https://cmake.org/cmake/help/latest/manual/cmake.1.html

https://cmake.org/cmake/help/latest/manual/cmake.1.html

2.2. Using CMake for Configuring and Building ITK 17

• Example 2: Enable specific group(s) of modules.

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=OFF

-DBUILD_EXAMPLES:BOOL=OFF

-DITKGroup_{Group1}:BOOL=ON

[-DITKGroup_{Group2}:BOOL=ON]

../ITK-build

where ITKGroup GroupN could be, for example, ITKGroup Filtering or ITKGroup -

Registration for the Filtering and Registration groups, respectively.

• Example 3: Enable specific modules.

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=OFF

-DBUILD_EXAMPLES:BOOL=OFF

-DModule_{Module1}:BOOL=ON

[-DModule_{Module2}:BOOL=ON]

../ITK-build

where Module Module1 could be, for example, Module ITKFEM for the non-default, built-in

FEM module, or Module Cuberille for the Cuberille remote module.

• Example 4: Enable examples.

cmake -DITK_BUILD_DEFAULT_MODULES:BOOL=ON

-DBUILD_EXAMPLES:BOOL=ON

../ITK-build

Note that BUILD EXAMPLES is OFF by default, and BUILD EXAMPLES=ON requires ITK -

BUILD DEFAULT MODULES=ON.

2.2.4 Static and Shared Libraries

ITK libraries can be built as static libraries, i.e. files whose functions and variables are included in

a binary during the link phase of the build cycle. Alternatively, ITK libraries can be built as shared

libraries, where libraries are dynamically linked to a binary. In this case, functions and variables are

shared at runtime according to their symbols.

By enabling the standard CMake configuration variable, BUILD SHARED LIBS, ITK modules with

the ENABLE SHARED option (see Section 9.1) will be built as shared libraries.

Static libraries are preferred when creating a stand-alone executable. An application can be dis-

tributed as a single file when statically linked. Additional effort is not required to package library

dependencies, configure the system to find library dependencies at runtime, or define symbol export

specifications. However, care should be taken to only link static libraries once into the binaries used

by an application. Failure to due so can result in duplicated global variables and, consequently,

undefined or undesirable behavior.

18 Chapter 2. Configuring and Building ITK

Shared libraries should be used when ITK is linked to more than one binary in an application. This

reduces binary size and ensures that singleton variables are unique across the application.

An advanced CMake configuration variable, ITK TEMPLATE VISIBILITY DEFAULT defines the

symbol visibility attribute on template classes to default on systems that require it to perform

dynamic cast’s on pointers passed across binaries. The default value can be disabled only when it

is known that template classes are not implicitly instantiated and passed across binaries.

2.2.5 Compiling ITK

To initiate the build process after generating the build files on Linux or UNIX, simply type make

in the terminal if the current directory is set to the ITK binary directory. If using Visual Studio,

first load the workspace named ITK.sln from the binary directory specified in the CMake GUI and

then start the build by selecting “Build Solution” from the “Build” menu or right-clicking on the

ALL BUILD target in the Solution Explorer pane and selecting the “Build” context menu item.

The build process can take anywhere from 15 minutes to a couple of hours, depending on the build

configuration and the performance of your system. If testing is enabled as part of the normal build

process, about 2400 test programs will be compiled. In this case, you will then need to run ctest to

verify that all the components of ITK have been correctly built on your system.

2.2.6 Installing ITK on Your System

When the build process is complete an ITK binary distribution package can be generated for instal-

lation on your system or on a system with compatible specifications (such as hardware platform and

operating system) as well as suitable development environment components (such as C++ compiler

and CMake). The default prefix for installation destination directory needs to be specified during

CMake configuration process prior to compiling ITK. The installation destination prefix can to be

set through the CMake cache variable CMAKE INSTALL PREFIX.

Typically distribution packages are generated to provide a “clean” form of the software which is

isolated from the details of the build process (separate from the source and build trees). Due to

the intended use of ITK as a toolkit for software development the step of generating ITK binary

packages for installing ITK on other systems has limited application and thus it can be treated as

optional. However, the step for generating binary distribution packages has a much wide application

for distributing software developed with ITK. Further details on configuring and generating binary

packages with CMake can be found in the CMake tutorial6.

6https://cmake.org/cmake-tutorial/

https://cmake.org/cmake-tutorial/

2.3. Cross compiling ITK 19

2.3 Cross compiling ITK

This section describes the procedure to follow to cross compile ITK for another system. Cross

compiling involves a build system, the system where the executables are built, and the target system,

the system where the executables are intended to run.

Currently, the best way to cross-compile ITK is to use dockcross.

For example, the commands to build for Linux-ARMv7 are:

git clone https://github.com/InsightSoftwareConsortium/ITK

docker run --rm dockcross/linux-armv7 > ./dockcross-linux-armv7

chmod +x ./dockcross-linux-armv7

mkdir ITK-build

./dockcross-linux-armv7 cmake -BITK-build -HITK -GNinja

./dockcross-linux-armv7 ninja -CITK-build

2.4 Getting Started With ITK

The simplest way to create a new project with ITK is to create two new directories somewhere in

your disk, one to hold the source code and one to hold the binaries and other files that are created

in the build process. For this example, create a HelloWorldITK directory to hold the source and a

HelloWorldITK-build directory to hold the binaries. The first file to place in the source directory

is a CMakeLists.txt file that will be used by CMake to generate a Makefile (if you are using Linux

or UNIX) or a Visual Studio workspace (if you are using Microsoft Windows). The second source

file to be created is an actual C++ program that will exercise some of the large number of classes

available in ITK. The details of these files are described in the following section.

Once both files are in your directory you can run CMake in order to configure your project. Un-

der UNIX/Linux, you can cd to your newly created binary directory and launch the terminal-based

version of CMake by entering “ccmake ../HelloWorldITK” in the terminal. Note the “../Hel-

loWorldITK” in the command line to indicate that the CMakeLists.txt file is up one directory and

in HelloWorldITK. In CMake GUI which can be used under Microsoft Windows and UNIX/Linux,

the source and binary directories will have to be specified prior to the configuration and build file

generation process.

Both the terminal-based and GUI versions of CMake will require you to specify the directory where

ITK was built in the CMake variable ITK DIR. The ITK binary directory will contain a file named

ITKConfig.cmake generated during ITK configuration process with CMake. From this file, CMake

will recover all information required to configure your new ITK project.

After generating the build files, on UNIX/Linux systems the project can be compiled by typing

make in the terminal provided the current directory is set to the project’s binary directory. In

Visual Studio on Microsoft Windows the project can be built by loading the workspace named

https://github.com/dockcross/dockcross

20 Chapter 2. Configuring and Building ITK

HelloWorldITK.sln from the binary directory specified in the CMake GUI and selecting “Build

Solution” from the “Build” menu or by right-clicking on the ALL BUILD target in the Solution Ex-

plorer pane and selecting the “Build” context menu item.

The resulting executable, which will be called HelloWorld, can be executed on the command line.

If on Microsoft Windows, please note that double-clicking on the icon of the executable will quickly

launch a command line window, run the executable and close the window right away, not giving you

time to see the output. It is therefore preferable to run the executable from the DOS command line

by starting the cmd.exe shell first.

2.5 Using ITK as an External Library

For a project that uses ITK as an external library, it is recommended to specify the individual ITK

modules in the COMPONENTS argument in the find package CMake command:

find_package(ITK REQUIRED COMPONENTS Module1 Module2)

include(\${ITK_USE_FILE})

e.g.

find_package(ITK REQUIRED

COMPONENTS

MorphologicalContourInterpolation

ITKSmoothing

ITKIOImageBase

ITKIONRRD

)

include(\${ITK_USE_FILE})

If you would like to use the CMake ExternalProject Module7 to download ITK source code when

building your ITK application (a.k.a. Superbuild ITK), here is a basic CMake snippet for setting up

a Superbuild in an ITK application project using CMake:

ExternalProject_Add(ITK

GIT_REPOSITORY \${git_protocol}://github.com/InsightSoftwareConsortium/ITK.git"

GIT_TAG "<tag id>" # specify the commit id or the tag id

SOURCE_DIR <ITK source tree path>

BINARY_DIR <ITK build tree path>

CMAKE_GENERATOR ${gen}

CMAKE_ARGS

${ep_common_args}

-DBUILD_SHARED_LIBS:BOOL=OFF

-DBUILD_EXAMPLES:BOOL=OFF

-DBUILD_TESTING:BOOL=OFF

7https://cmake.org/cmake/help/latest/module/ExternalProject.html

https://cmake.org/cmake/help/latest/module/ExternalProject.html

2.5. Using ITK as an External Library 21

-DITK_BUILD_DEFAULT_MODULES:BOOL=ON

[-DModule_LevelSetv4Visualization:BOOL=ON]

INSTALL_COMMAND ""

DEPENDS

[VTK] [DCMTK] # if some of the modules requested require extra third party libraries

)

More exemplary configurations for superbuild ITK projects can be found in: Slicer8, BrainsTools9,

ITK Wiki Examples10, ITK Sphinx Examples11, and ITK Software Guide12.

2.5.1 Hello World!

This section provides and explains the contents of the two files which need to be created for your

new project. These two files can be found in the ITK/Examples/Installation directory.

The CMakeLists.txt file contains the following lines:

project(HelloWorld)

find_package(ITK REQUIRED)

include(${ITK_USE_FILE})

add_executable(HelloWorld HelloWorld.cxx)

target_link_libraries(HelloWorld ${ITK_LIBRARIES})

The first line defines the name of your project as it appears in Visual Studio or Eclipse; this line will

have no effect with UNIX/Linux Makefiles. The second line loads a CMake file with a predefined

strategy for finding ITK. If the strategy for finding ITK fails, CMake will report an error which

can be corrected by providing the location of the directory where ITK was compiled or installed on

your system. In this case the path to the ITK’s binary/installation directory needs to be specified

as the value of the ITK DIR CMake variable. The line include(${USE ITK FILE}) loads the

UseITK.cmake file which contains the configuration information about the specified ITK build. The

line starting with add executable call defines as its first argument the name of the executable

that will be produced as result of this project. The remaining argument(s) of add executable are

the names of the source files to be compiled. Finally, the target link libraries call specifies

which ITK libraries will be linked against this project. Further details on creating and configuring

8https://github.com/Slicer/Slicer
9https://github.com/BRAINSia/BRAINSTools

10https://github.com/InsightSoftwareConsortium/ITKWikiExamples
11https://github.com/InsightSoftwareConsortium/ITKSphinxExamples
12https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide

https://github.com/Slicer/Slicer
https://github.com/BRAINSia/BRAINSTools
https://github.com/InsightSoftwareConsortium/ITKWikiExamples
https://github.com/InsightSoftwareConsortium/ITKSphinxExamples
https://github.com/InsightSoftwareConsortium/ITKSoftwareGuide

22 Chapter 2. Configuring and Building ITK

CMake projects can be found in the CMake tutorial13 and CMake online documentation14.

The source code for this section can be found in the file

HelloWorld.cxx.

The following code is an implementation of a small ITK program. It tests including header files and

linking with ITK libraries.

#include "itkImage.h"

#include <iostream>

int

main()

{

using ImageType = itk::Image<unsigned short, 3>;

auto image = ImageType::New();

std::cout << "ITK Hello World !" << std::endl;

return EXIT_SUCCESS;

}

This code instantiates a 3D image15 whose pixels are represented with type unsigned short. The

image is then constructed and assigned to a itk::SmartPointer. Although later in the text we

will discuss SmartPointers in detail, for now think of it as a handle on an instance of an object (see

section 3.2.4 for more information). The itk::Image class will be described in Section 4.1.

By this point you have successfully configured and compiled ITK, and created your first simple

program! If you have experienced any difficulties while following the instructions provided in this

section, please join the community discussion (see Section 1.4 on page 7) and post questions there.

13https://cmake.org/cmake-tutorial/
14https://cmake.org/documentation/
15Also known as a volume.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://cmake.org/cmake-tutorial/
https://cmake.org/documentation/

Part II

Architecture

CHAPTER

THREE

SYSTEM OVERVIEW

The purpose of this chapter is to provide you with an overview of the Insight Toolkit system. We

recommend that you read this chapter to gain an appreciation for the breadth and area of application

of ITK.

3.1 System Organization

The Insight Toolkit consists of several subsystems. A brief description of these subsystems follows.

Later sections in this chapter—and in some cases additional chapters—cover these concepts in more

detail.

Essential System Concepts. Like any software system, ITK is built around some core design con-

cepts. Some of the more important concepts include generic programming, smart pointers for

memory management, object factories for adaptable object instantiation, event management

using the command/observer design paradigm, and multi-threading support.

Numerics. ITK uses VXL’s VNL numerics libraries. These are easy-to-use C++ wrappers around

the Netlib Fortran numerical analysis routines 1.

Data Representation and Access. Two principal classes are used to represent data: the

itk::Image and itk::Mesh classes. In addition, various types of iterators and contain-

ers are used to hold and traverse the data. Other important but less popular classes are also

used to represent data such as itk::Histogram and itk::SpatialObject .

Data Processing Pipeline. The data representation classes (known as data objects) are operated on

by filters that in turn may be organized into data flow pipelines. These pipelines maintain

state and therefore execute only when necessary. They also support multi-threading, and are

streaming capable (i.e., can operate on pieces of data to minimize the memory footprint).

1https://www.netlib.org

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1Histogram.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.netlib.org

26 Chapter 3. System Overview

IO Framework. Associated with the data processing pipeline are sources, filters that initiate the

pipeline, and mappers, filters that terminate the pipeline. The standard examples of sources

and mappers are readers and writers respectively. Readers input data (typically from a file),

and writers output data from the pipeline.

Spatial Objects. Geometric shapes are represented in ITK using the spatial object hierarchy. These

classes are intended to support modeling of anatomical structures. Using a common basic

interface, the spatial objects are capable of representing regions of space in a variety of dif-

ferent ways. For example: mesh structures, image masks, and implicit equations may be used

as the underlying representation scheme. Spatial objects are a natural data structure for com-

municating the results of segmentation methods and for introducing anatomical priors in both

segmentation and registration methods.

Registration Framework. A flexible framework for registration supports four different types of

registration: image registration, multiresolution registration, PDE-based registration, and

FEM (finite element method) registration.

FEM Framework. ITK includes a subsystem for solving general FEM problems, in particular non-

rigid registration. The FEM package includes mesh definition (nodes and elements), loads,

and boundary conditions.

Level Set Framework. The level set framework is a set of classes for creating filters to solve partial

differential equations on images using an iterative, finite difference update scheme. The level

set framework consists of finite difference solvers including a sparse level set solver, a generic

level set segmentation filter, and several specific subclasses including threshold, Canny, and

Laplacian based methods.

Wrapping. ITK uses a unique, powerful system for producing interfaces (i.e., “wrappers”) to inter-

preted languages such as Python. The CastXML2 tool is used to produce an XML description

of arbitrarily complex C++ code. An interface generator script is then used to transform the

XML description into wrappers using the SWIG3 package.

3.2 Essential System Concepts

This section describes some of the core concepts and implementation features found in ITK.

3.2.1 Generic Programming

Generic programming is a method of organizing libraries consisting of generic—or reusable—

software components [8]. The idea is to make software that is capable of “plugging together” in

2https://github.com/CastXML/CastXML
3https://www.swig.org/

https://github.com/CastXML/CastXML
https://www.swig.org/

3.2. Essential System Concepts 27

an efficient, adaptable manner. The essential ideas of generic programming are containers to hold

data, iterators to access the data, and generic algorithms that use containers and iterators to create

efficient, fundamental algorithms such as sorting. Generic programming is implemented in C++

with the template programming mechanism and the use of the STL Standard Template Library [1].

C++ templating is a programming technique allowing users to write software in terms of one or

more unknown types T. To create executable code, the user of the software must specify all types T

(known as template instantiation) and successfully process the code with the compiler. The T may

be a native type such as float or int, or T may be a user-defined type (e.g., a class). At compile-

time, the compiler makes sure that the templated types are compatible with the instantiated code and

that the types are supported by the necessary methods and operators.

ITK uses the techniques of generic programming in its implementation. The advantage of this

approach is that an almost unlimited variety of data types are supported simply by defining the

appropriate template types. For example, in ITK it is possible to create images consisting of almost

any type of pixel. In addition, the type resolution is performed at compile time, so the compiler

can optimize the code to deliver maximal performance. The disadvantage of generic programming

is that the analysis performed at compile time increases the time to build an application. Also, the

increased complexity may produce difficult to decipher error messages due to even the simplest

syntax errors. For those unfamiliar with templated code and generic programming, we recommend

the two books cited above.

3.2.2 Include Files and Class Definitions

In ITK, classes are defined by a maximum of two files: a header file (.h) and an implementation file

(.cxx) if defining a non-templated class, and a .hxx file if defining a templated class. The header

files contain class declarations and formatted comments that are used by the Doxygen documentation

system to automatically produce HTML manual pages.

In addition to class headers, there are a few other important header files.

itkMacro.h is found in the Modules/Core/Common/include directory and defines standard

system-wide macros (such as Set/Get, constants, and other parameters).

itkNumericTraits.h is found in the Modules/Core/Common/include directory and defines

numeric characteristics for native types such as its maximum and minimum possible values.

3.2.3 Object Factories

Most classes in ITK are instantiated through an object factory mechanism. That is, rather than using

the standard C++ class constructor and destructor, instances of an ITK class are created with the

static class New() method. In fact, the constructor and destructor are protected: so it is generally

not possible to construct an ITK instance on the stack. (Note: this behavior pertains to classes

that are derived from itk::LightObject. In some cases the need for speed or reduced memory

https://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

28 Chapter 3. System Overview

footprint dictates that a class is not derived from LightObject. In this case instances may be created

on the stack. An example of such a class is the itk::EventObject.)

The object factory enables users to control run-time instantiation of classes by registering one or

more factories with itk::ObjectFactoryBase . These registered factories support the method

CreateInstance(classname) which takes as input the name of a class to create. The factory can

choose to create the class based on a number of factors including the computer system configuration

and environment variables. For example, a particular application may wish to deploy its own class

implemented using specialized image processing hardware (i.e., to realize a performance gain). By

using the object factory mechanism, it is possible to replace the creation of a particular ITK filter at

run-time with such a custom class. (Of course, the class must provide the exact same API as the one

it is replacing.). For this, the user compiles his class (using the same compiler, build options, etc.)

and inserts the object code into a shared library or DLL. The library is then placed in a directory

referred to by the ITK AUTOLOAD PATH environment variable. On instantiation, the object factory

will locate the library, determine that it can create a class of a particular name with the factory, and

use the factory to create the instance. (Note: if the CreateInstance() method cannot find a factory

that can create the named class, then the instantiation of the class falls back to the usual constructor.)

In practice, object factories are used mainly (and generally transparently) by the ITK input/output

(IO) classes. For most users the greatest impact is on the use of the New() method to create a class.

Generally the New() method is declared and implemented via the macro itkNewMacro() found in

Modules/Core/Common/include/itkMacro.h.

3.2.4 Smart Pointers and Memory Management

By their nature, object-oriented systems represent and operate on data through a variety of object

types, or classes. When a particular class is instantiated, memory allocation occurs so that the in-

stance can store data attribute values and method pointers (i.e., the vtable). This object may then

be referenced by other classes or data structures during normal operation of the program. Typically,

during program execution, all references to the instance may disappear at which point the instance

must be deleted to recover memory resources. Knowing when to delete an instance, however, is

difficult. Deleting the instance too soon results in program crashes; deleting it too late causes mem-

ory leaks (or excessive memory consumption). This process of allocating and releasing memory is

known as memory management.

In ITK, memory management is implemented through reference counting. This compares to another

popular approach—garbage collection—used by many systems, including Java. In reference count-

ing, a count of the number of references to each instance is kept. When the reference goes to zero,

the object destroys itself. In garbage collection, a background process sweeps the system identifying

instances no longer referenced in the system and deletes them. The problem with garbage collection

is that the actual point in time at which memory is deleted is variable. This is unacceptable when

an object size may be gigantic (think of a large 3D volume gigabytes in size). Reference counting

deletes memory immediately (once all references to an object disappear).

Reference counting is implemented through a Register()/Delete() member function interface.

https://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ObjectFactoryBase.html

3.2. Essential System Concepts 29

All instances of an ITK object have a Register() method invoked on them by any other object

that references them. The Register() method increments the instances’ reference count. When the

reference to the instance disappears, a Delete() method is invoked on the instance that decrements

the reference count—this is equivalent to an UnRegister() method. When the reference count

returns to zero, the instance is destroyed.

This protocol is greatly simplified by using a helper class called a itk::SmartPointer. The smart

pointer acts like a regular pointer (e.g. supports operators -> and *) but automagically performs a

Register() when referring to an instance, and an UnRegister() when it no longer points to the

instance. Unlike most other instances in ITK, SmartPointers can be allocated on the program stack,

and are automatically deleted when the scope that the SmartPointer was created in is closed. As a

result, you should rarely if ever call Register() or Delete() in ITK. For example:

MyRegistrationFunction()

{ /* <----- Start of scope */

// here an interpolator is created and associated to the

// "interp" SmartPointer.

auto interp = InterpolatorType::New();

} /* <------ End of scope */

In this example, reference counted objects are created (with the New() method) with a reference

count of one. Assignment to the SmartPointer interp does not change the reference count. At the

end of scope, interp is destroyed, the reference count of the actual interpolator object (referred to

by interp) is decremented, and if it reaches zero, then the interpolator is also destroyed.

Note that in ITK SmartPointers are always used to refer to instances of classes derived from

itk::LightObject. Method invocations and function calls often return “real” pointers to instances,

but they are immediately assigned to a SmartPointer. Raw pointers are used for non-LightObject

classes when the need for speed and/or memory demands a smaller, faster class. Raw pointers are

preferred for multi-threaded sections of code.

3.2.5 Error Handling and Exceptions

In general, ITK uses exception handling to manage errors during program execution. Exception

handling is a standard part of the C++ language and generally takes the form as illustrated below:

try

{

//...try executing some code here...

}

catch (const itk::ExceptionObject & exp)

{

//...if an exception is thrown catch it here

}

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

30 Chapter 3. System Overview

A particular class may throw an exception as demonstrated below (this code snippet is taken from

itk::ByteSwapper:

switch (sizeof(T))

{

// non-error cases go here followed by error case

default:

ByteSwapperError e(__FILE__, __LINE__);

e.SetLocation("SwapBE");

e.SetDescription("Cannot swap number of bytes requested");

throw e;

}

Note that itk::ByteSwapperError is a subclass of itk::ExceptionObject. In fact, all ITK ex-

ceptions derive from ExceptionObject. In this example a special constructor and C++ preprocessor

variables FILE and LINE are used to instantiate the exception object and provide addi-

tional information to the user. You can choose to catch a particular exception and hence a specific

ITK error, or you can trap any ITK exception by catching ExceptionObject.

3.2.6 Event Handling

Event handling in ITK is implemented using the Subject/Observer design pattern [3] (sometimes re-

ferred to as the Command/Observer design pattern). In this approach, objects indicate that they are

watching for a particular event—invoked by a particular instance—by registering with the instance

that they are watching. For example, filters in ITK periodically invoke the itk::ProgressEvent.

Objects that have registered their interest in this event are notified when the event occurs. The notifi-

cation occurs via an invocation of a command (i.e., function callback, method invocation, etc.) that

is specified during the registration process. (Note that events in ITK are subclasses of EventObject;

look in itkEventObject.h to determine which events are available.)

To recap using an example: various objects in ITK will invoke specific events as they execute (from
ProcessObject):

this->InvokeEvent(ProgressEvent());

To watch for such an event, registration is required that associates a command (e.g., callback func-
tion) with the event: Object::AddObserver() method:

unsigned long progressTag =

filter->AddObserver(ProgressEvent(), itk::Command *);

When the event occurs, all registered observers are notified via invocation of the associ-

ated Command::Execute() method. Note that several subclasses of Command are available

supporting const and non-const member functions as well as C-style functions. (Look in

https://www.itk.org/Doxygen/html/classitk_1_1ByteSwapper.html
https://www.itk.org/Doxygen/html/classitk_1_1ByteSwapperError.html
https://www.itk.org/Doxygen/html/classitk_1_1ExceptionObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ProgressEvent.html

3.2. Essential System Concepts 31

Modules/Core/Common/include/itkCommand.h to find pre-defined subclasses of Command. If

nothing suitable is found, derivation is another possibility.)

3.2.7 Multi-Threading

Multi-threading is handled in ITK through a high-level design abstraction. This approach pro-

vides portable multi-threading and hides the complexity of differing thread implementations on the

many systems supported by ITK. For example, the class itk::PlatformMultiThreader pro-

vides support for multi-threaded execution by directly using platform-specific primitives such as

pthread create. itk::TBBMultiThreader uses Intel’s Thread Building Blocks cross-platform

library, which can do dynamic workload balancing across multiple processes. This means that

outputRegionForThread might have different sizes which change over time, depending on overall

processor load. All multi-threader implementations derive from itk::MultiThreaderBase.

Multi-threading is typically employed by an algorithm during its execution phase. For example, in

the class itk::ImageSource (a superclass for most image processing filters) the GenerateData()

method uses the following methods:

this->GetMultiThreader()

->template ParallelizeImageRegion<OutputImageDimension>(

this->GetOutput()->GetRequestedRegion(),

[this](const OutputImageRegionType & outputRegionForThread) {

this->DynamicThreadedGenerateData(outputRegionForThread);

},

this);

In this example each thread invokes DynamicThreadedGenerateData method of the derived fil-

ter. The ParallelizeImageRegion method takes care to divide the image into different re-

gions that do not overlap for write operations. ImageSource’s GenerateData() passes this

pointer to ParallelizeImageRegion, which allows ParallelizeImageRegion to update the fil-

ter’s progress after each region has been processed.

If a filter has some serial part in the middle, in addition to initialization done in

BeforeThreadedGenerateData() and finalization done in AfterThreadedGenerateData(), it

can parallelize more than one method in its own version of GenerateData(), such as done by

itk::CannyEdgeDetectionImageFilter:

::GenerateData()

{

this->UpdateProgress(0.0f);

Superclass::AllocateOutputs();

// Small serial section

this->UpdateProgress(0.01f);

ProgressTransformer progress1(0.01f, 0.45f, this);

// Calculate 2nd order directional derivative

this->GetMultiThreader()

https://www.itk.org/Doxygen/html/classitk_1_1PlatformMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1TBBMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html

32 Chapter 3. System Overview

->template ParallelizeImageRegion<TOutputImage::ImageDimension>(

this->GetOutput()->GetRequestedRegion(),

[this](const OutputImageRegionType & outputRegionForThread) {

this->ThreadedCompute2ndDerivative(outputRegionForThread);

},

progress1.GetProcessObject());

ProgressTransformer progress2(0.45f, 0.9f, this);

// Calculate the gradient of the second derivative

this->GetMultiThreader()

->template ParallelizeImageRegion<TOutputImage::ImageDimension>(

this->GetOutput()->GetRequestedRegion(),

[this](const OutputImageRegionType & outputRegionForThread) {

this->ThreadedCompute2ndDerivativePos(outputRegionForThread);

},

progress2.GetProcessObject());

// More processing

this->UpdateProgress(1.0f);

}

When invoking ParallelizeImageRegion multiple times from GenerateData(), either nullptr

or a itk::ProgressTransformer object should be passed instead of this, otherwise progress will

go from 0% to 100% more than once. And this will at least confuse any other class watching the

filter’s progress events, even if it does not cause a crash. So the filter’s author should estimate how

long each part of GenerateData() takes, and construct and pass ProgressTransformer objects as

in the example above.

With ITK version 5.0, the Multi-Threading mechanism has been refactored. What was previously

itk::MultiThreader, is now a hierarchy of classes. itk::PlatformMultiThreader is a slightly

cleaned-up version of the old class - MultipleMethodExecute and SpawnThread methods have

been deprecated. But much of its content has been moved to itk::MultiThreaderBase . And

classes should use the multi-threaders via MultiThreaderBase interface, to allow the end user the

flexibility to select the multi-threader at run time. This also allows the filter to benefit from future

improvements in threading such as addition of a new multi-threader implementation.

The backwards compatible ThreadedGenerateData(Region, ThreadId) method signature has

been kept, for use in filters that must know their thread number. To use this signa-

ture, a filter must invoke this->DynamicMultiThreadingOff(); before Update(); is called

by the filter’s user or downstream filter in the pipeline. The best place for invoking

this->DynamicMultiThreadingOff(); is the filter’s constructor.

In image filters and other descendants of ProcessObject, method SetNumberOfWorkUnits con-

trols the level of parallelism. Load balancing is possible when NumberOfWorkUnits is greater than

the number of threads. In most places where developer would like to restrict number of threads,

work units should be changed instead. itk::MultiThreaderBase’s MaximumNumberOfThreads

should not generally be changed, except when testing performance and scalability, profiling and

sometimes debugging code.

https://www.itk.org/Doxygen/html/classitk_1_1ProgressTransformer.html
https://www.itk.org/Doxygen/html/classitk_1_1PlatformMultiThreader.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html

3.3. Numerics 33

The general philosophy in ITK regarding thread safety is that accessing different instances of a class

(and its methods) is a thread-safe operation. Invoking methods on the same instance in different

threads is to be avoided.

3.3 Numerics

ITK uses the VNL numerics library to provide resources for numerical programming combining the

ease of use of packages like Mathematica and Matlab with the speed of C and the elegance of C++.

It provides a C++ interface to the high-quality Fortran routines made available in the public domain

by numerical analysis researchers. ITK extends the functionality of VNL by including interface

classes between VNL and ITK proper.

The VNL numerics library includes classes for:

Matrices and vectors. Standard matrix and vector support and operations on these types.

Specialized matrix and vector classes. Several special matrix and vector classes with special nu-

merical properties are available. Class vnl diagonal matrix provides a fast and convenient

diagonal matrix, while fixed size matrices and vectors allow “fast-as-C” computations (see

vnl matrix fixed<T,n,m> and example subclasses vnl double 3x3 and vnl double -

3).

Matrix decompositions. Classes vnl svd<T>, vnl symmetric eigensystem<T>, and vnl -

generalized eigensystem.

Real polynomials. Class vnl real polynomial stores the coefficients of a real polynomial, and

provides methods of evaluation of the polynomial at any x, while class vnl rpoly roots

provides a root finder.

Optimization. Classes vnl levenberg marquardt, vnl amoeba, vnl conjugate gradient,

vnl lbfgs allow optimization of user-supplied functions either with or without user-supplied

derivatives.

Standardized functions and constants. Class vnl math defines constants (pi, e, eps...) and sim-

ple functions (sqr, abs, rnd...). Class numeric limits is from the ISO standard doc-

ument, and provides a way to access basic limits of a type. For example numeric -

limits<short>::max() returns the maximum value of a short.

Most VNL routines are implemented as wrappers around the high-quality Fortran routines that have

been developed by the numerical analysis community over the last forty years and placed in the pub-

lic domain. The central repository for these programs is the “netlib” server.4 The National Institute

4https://www.netlib.org/

https://www.netlib.org/

34 Chapter 3. System Overview

of Standards and Technology (NIST) provides an excellent search interface to this repository in its

Guide to Available Mathematical Software (GAMS),5 both as a decision tree and a text search.

ITK also provides additional numerics functionality. A suite of optimizers, that use VNL under

the hood and integrate with the registration framework are available. A large collection of statistics

functions—not available from VNL—are also provided in the Insight/Numerics/Statistics

directory. In addition, a complete finite element (FEM) package is available, primarily to support

the deformable registration in ITK.

3.4 Data Representation

There are two principle types of data represented in ITK: images and meshes. This functional-

ity is implemented in the classes itk::Image and itk::Mesh, both of which are subclasses of

itk::DataObject. In ITK, data objects are classes that are meant to be passed around the system

and may participate in data flow pipelines (see Section 3.5 on page 35 for more information).

itk::Image represents an n-dimensional, regular sampling of data. The sampling direction is par-

allel to direction matrix axes, and the origin of the sampling, inter-pixel spacing, and the number

of samples in each direction (i.e., image dimension) can be specified. The sample, or pixel, type in

ITK is arbitrary—a template parameter TPixel specifies the type upon template instantiation. (The

dimensionality of the image must also be specified when the image class is instantiated.) The key is

that the pixel type must support certain operations (for example, addition or difference) if the code is

to compile in all cases (for example, to be processed by a particular filter that uses these operations).

In practice, most applications will use a C++ primitive type (e.g., int, float) or a pre-defined pixel

type and will rarely create a new type of pixel class.

One of the important ITK concepts regarding images is that rectangular, continuous pieces of the

image are known as regions. Regions are used to specify which part of an image to process, for

example in multi-threading, or which part to hold in memory. In ITK there are three common types

of regions:

1. LargestPossibleRegion—the image in its entirety.

2. BufferedRegion—the portion of the image retained in memory.

3. RequestedRegion—the portion of the region requested by a filter or other class when oper-

ating on the image.

The itk::Mesh class represents an n-dimensional, unstructured grid. The topology of the mesh is

represented by a set of cells defined by a type and connectivity list; the connectivity list in turn refers

to points. The geometry of the mesh is defined by the n-dimensional points in combination with

associated cell interpolation functions. Mesh is designed as an adaptive representational structure

that changes depending on the operations performed on it. At a minimum, points and cells are

5https://gams.nist.gov

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://gams.nist.gov

3.5. Data Processing Pipeline 35

required in order to represent a mesh; but it is possible to add additional topological information.

For example, links from the points to the cells that use each point can be added; this provides implicit

neighborhood information assuming the implied topology is the desired one. It is also possible to

specify boundary cells explicitly, to indicate different connectivity from the implied neighborhood

relationships, or to store information on the boundaries of cells.

The mesh is defined in terms of three template parameters: 1) a pixel type associated with the

points, cells, and cell boundaries; 2) the dimension of the points (which in turn limits the maximum

dimension of the cells); and 3) a “mesh traits” template parameter that specifies the types of the

containers and identifiers used to access the points, cells, and/or boundaries. By using the mesh

traits carefully, it is possible to create meshes better suited for editing, or those better suited for

“read-only” operations, allowing a trade-off between representation flexibility, memory, and speed.

Mesh is a subclass of itk::PointSet. The PointSet class can be used to represent point clouds or

randomly distributed landmarks, etc. The PointSet class has no associated topology.

3.5 Data Processing Pipeline

While data objects (e.g., images and meshes) are used to represent data, process objects are classes

that operate on data objects and may produce new data objects. Process objects are classed as

sources, filter objects, or mappers. Sources (such as readers) produce data, filter objects take in data

and process it to produce new data, and mappers accept data for output either to a file or some other

system. Sometimes the term filter is used broadly to refer to all three types.

The data processing pipeline ties together data objects (e.g., images and meshes) and process objects.

The pipeline supports an automatic updating mechanism that causes a filter to execute if and only

if its input or its internal state changes. Further, the data pipeline supports streaming, the ability

to automatically break data into smaller pieces, process the pieces one by one, and reassemble the

processed data into a final result.

Typically data objects and process objects are connected together using the SetInput() and

GetOutput() methods as follows:

using FloatImage2DType = itk::Image<float, 2>;

itk::RandomImageSource<FloatImage2DType>::Pointer random;

random = itk::RandomImageSource<FloatImage2DType>::New();

random->SetMin(0.0);

random->SetMax(1.0);

itk::ShrinkImageFilter<FloatImage2DType, FloatImage2DType>::Pointer shrink;

shrink = itk::ShrinkImageFilter<FloatImage2DType, FloatImage2DType>::New();

shrink->SetInput(random->GetOutput());

shrink->SetShrinkFactors(2);

itk::ImageFileWriter<FloatImage2DType>::Pointer writer;

writer = itk::ImageFileWriter<FloatImage2DType>::New();

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

36 Chapter 3. System Overview

writer->SetInput(shrink->GetOutput());

writer->SetFileName("test.raw");

writer->Update();

In this example the source object itk::RandomImageSource is connected to

the itk::ShrinkImageFilter , and the shrink filter is connected to the mapper

itk::ImageFileWriter . When the Update() method is invoked on the writer, the data

processing pipeline causes each of these filters to execute in order, culminating in writing the final

data to a file on disk.

3.6 Spatial Objects

The ITK spatial object framework supports the philosophy that the task of image segmentation and

registration is actually the task of object processing. The image is but one medium for representing

objects of interest, and much processing and data analysis can and should occur at the object level

and not based on the medium used to represent the object.

ITK spatial objects provide a common interface for accessing the physical location and geometric

properties of and the relationship between objects in a scene that is independent of the form used

to represent those objects. That is, the internal representation maintained by a spatial object may

be a list of points internal to an object, the surface mesh of the object, a continuous or parametric

representation of the object’s internal points or surfaces, and so forth.

The capabilities provided by the spatial objects framework supports their use in object segmentation,

registration, surface/volume rendering, and other display and analysis functions. The spatial object

framework extends the concept of a “scene graph” that is common to computer rendering packages

so as to support these new functions. With the spatial objects framework you can:

1. Specify a spatial object’s parent and children objects. In this way, a liver may contain vessels

and those vessels can be organized in a tree structure.

2. Query if a physical point is inside an object or (optionally) any of its children.

3. Request the value and derivatives, at a physical point, of an associated intensity function, as

specified by an object or (optionally) its children.

4. Specify the coordinate transformation that maps a parent object’s coordinate system into a

child object’s coordinate system.

5. Compute the bounding box of a spatial object and (optionally) its children.

6. Query the resolution at which the object was originally computed. For example, you can

query the resolution (i.e., voxel spacing) of the image used to generate a particular instance of

a itk::BlobSpatialObject.

https://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html

3.7. Wrapping 37

Currently implemented types of spatial objects include: Blob, Ellipse, Group, Image, Line, Surface,

and Tube. The itk::Scene object is used to hold a list of spatial objects that may in turn have

children. Each spatial object can be assigned a color property. Each spatial object type has its own

capabilities. For example, the itk::TubeSpatialObject indicates the point where it is connected

with its parent tube.

There are a limited number of spatial objects in ITK, but their number is growing and their potential

is huge. Using the nominal spatial object capabilities, methods such as marching cubes or mutual

information registration can be applied to objects regardless of their internal representation. By

having a common API, the same method can be used to register a parametric representation of a

heart with an individual’s CT data or to register two segmentations of a liver.

3.7 Wrapping

While the core of ITK is implemented in C++, Python bindings can be automatically generated and

ITK programs can be created using Python. The wrapping process in ITK is capable of handling

generic programming (i.e., extensive use of C++ templates). Systems like VTK, which use their

own wrapping facility, are non-templated and customized to the coding methodology found in the

system, like object ownership conventions. Even systems like SWIG that are designed for general

wrapper generation have difficulty with ITK code because general C++ is difficult to parse. As a

result, the ITK wrapper generator uses a combination of tools to produce language bindings.

1. CastXML is a Clang-based tool that produces an XML description of an input C++ program.

2. The igenerator.py script in the ITK source tree processes XML information produced by

CastXML and generates standard input files (*.i files) to the next tool (SWIG), indicating

what is to be wrapped and how to wrap it.

3. SWIG produces the appropriate Python bindings.

To learn more about the wrapping process, please see the section on module wrapping, Section 9.5.

The wrapping process is orchestrated by a number of CMake macros found in the Wrapping direc-

tory. The result of the wrapping process is a set of shared libraries (.so in Linux or .dlls on Windows)

that can be used by interpreted languages.

There is almost a direct translation from C++, with the differences being the particular syntactical

requirements of each language. For example, to dilate an image using a custom structuring element

using the Python wrapping:

inputImage = sys.argv[1]

outputImage = sys.argv[2]

radiusValue = int(sys.argv[3])

PixelType = itk.UC

https://www.itk.org/Doxygen/html/classitk_1_1Scene.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

38 Chapter 3. System Overview

Dimension = 2

ImageType = itk.Image[PixelType, Dimension]

reader = itk.ImageFileReader[ImageType].New()

reader.SetFileName(inputImage)

StructuringElementType = itk.FlatStructuringElement[Dimension]

structuringElement = StructuringElementType.Ball(radiusValue)

dilateFilter = itk.BinaryDilateImageFilter[

ImageType, ImageType, StructuringElementType

].New()

dilateFilter.SetInput(reader.GetOutput())

dilateFilter.SetKernel(structuringElement)

The same code in C++ would appear as follows:

const char * inputImage = argv[1];

const char * outputImage = argv[2];

const unsigned int radiusValue = atoi(argv[3]);

using PixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(inputImage);

using StructuringElementType = itk::FlatStructuringElement<Dimension>;

StructuringElementType::RadiusType radius;

radius.Fill(radiusValue);

StructuringElementType structuringElement =

StructuringElementType::Ball(radius);

using BinaryDilateImageFilterType = itk::

BinaryDilateImageFilter<ImageType, ImageType, StructuringElementType>;

BinaryDilateImageFilterType::Pointer dilateFilter =

BinaryDilateImageFilterType::New();

dilateFilter->SetInput(reader->GetOutput());

dilateFilter->SetKernel(structuringElement);

This example demonstrates an important difference between C++ and a wrapped language such

as Python. Templated classes must be instantiated prior to wrapping. That is, the template

parameters must be specified as part of the wrapping process. In the example above, the

ImageFileReader[ImageType] indicates that this class, implementing an image source, has been

instantiated using an input and output image type of two-dimensional unsigned char values (i.e., UC).

To see the types available for a given filter, use the .GetTypes() method.

3.7. Wrapping 39

print(itk.ImageFileReader.GetTypes())

Typically just a few common types are selected for the wrapping process to avoid an explosion

of types and hence, library size. To add a new type, re-run the wrapping process to produce new

libraries. Some high-level options for these types, such as common pixels types and image di-

mensions, are specified during CMake configuration. The types of specific classes that should be

instantiated, based on these basic options, are defined by the *.wrap files in the wrapping directory

of a module.

Conversion of common, basic wrapped ITK classes to native Python types is supported. For exam-

ple, conversion between the itk::Index and Python list or tuple is possible:

Dimesion = 3

index = itk.Index[Dimension]()

index_as_tuple = tuple(index)

index_as_list = list(index)

region = itk.ImageRegion[Dimension]()

region.SetIndex((0, 2, 0))

The advantage of interpreted languages is that they do not require the lengthy compile/link cycle of

a compiled language like C++. Moreover, they typically come with a suite of packages that provide

useful functionalities. For example, the Python ecosystem provides a variety of powerful tools for

creating sophisticated user interfaces. In the future it is likely that more applications and tests will

be implemented in the various interpreted languages supported by ITK. Other languages like Java,

Ruby, Tcl could also be wrapped in the future.

3.7.1 Python Setup

Install Stable Python Packages

Binary python packages are available in PyPI and can be installed in Python distributions down-

loaded from Python.org, from system package managers like apt or homebrew, or from distributions

like Anaconda.

To install the ITK Python package, run:

python -m pip install --upgrade pip

python -m pip install itk

Install Latest Python Packages

Binary python packages are built nightly from the Git master branch, and they can be installed by

running:

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

40 Chapter 3. System Overview

python -m pip install --upgrade pip

python -m pip install itk \

-f https://github.com/InsightSoftwareConsortium/ITKPythonPackage/releases/tag/latest

Build Python Packages from Source

In order to access the Python interface of ITK, make sure to compile with the CMake ITK WRAP -

PYTHON option. In addition, choose which pixel types and dimensions to build into the wrapped in-

terface. Supported pixel types are represented in the CMake configuration as variables named ITK -

WRAP <pixel type>. Supported image dimensions are enumerated in the semicolon-delimited list

ITK WRAP DIMS, the default value of which is 2;3 indicating support for 2- and 3-dimensional

images. The Release CMake build configuration is recommended.

After configuration, check to make sure that the values of the following variables are set correctly:

• PYTHON INCLUDE DIR

• PYTHON LIBRARY

• PYTHON EXECUTABLE

particularly if there are multiple Python installations on the system.

Python wrappers can be accessed from the build tree without installing the library. An environment

to access the itk Python module can be configured using the Python virtualenv tool, which provides

an isolated working copy of Python without interfering with Python installed at the system level.

Once the virtualenv package is installed on your system, create the virtual environment within the

directory ITK was built in. Copy the WrapITK.pth file to the lib/python2.7/site-packages on

Unix and Lib/site-packages on Windows, of the virtualenv. For example,

virtualenv --system-site-packages wrapitk-venv

cd wrapitk-venv/lib/python2.7/site-packages

cp /path/to/ITK-Wrapped/Wrapping/Generators/Python/WrapITK.pth .

cd ../../../../wrapitk-venv/bin

./python /usr/bin/ipython

import itk

On Windows, it is also necessary to add the ITK build directory containing the .dll files to your

PATH environmental variable if ITK is built with the CMake option BUILD SHARED LIBS enabled.

For example, the directory containing .dll files for an ITK build at C:\ITK-build when built with

Visual Studio in the Release configuration is C:\ITK-build\bin\Release.

CHAPTER

FOUR

DATA REPRESENTATION

This chapter introduces the basic classes responsible for representing data in ITK. The most common

classes are itk::Image, itk::Mesh and itk::PointSet.

4.1 Image

The itk::Image class follows the spirit of Generic Programming, where types are separated from

the algorithmic behavior of the class. ITK supports images with any pixel type and any spatial

dimension.

4.1.1 Creating an Image

The source code for this section can be found in the file

Image1.cxx.

This example illustrates how to manually construct an itk::Image class. The following is the

minimal code needed to instantiate, declare and create the Image class.

First, the header file of the Image class must be included.

#include "itkImage.h"

Then we must decide with what type to represent the pixels and what the dimension of the image

will be. With these two parameters we can instantiate the Image class. Here we create a 3D image

with unsigned short pixel data.

using ImageType = itk::Image<unsigned short, 3>;

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

42 Chapter 4. Data Representation

The image can then be created by invoking the New() operator from the corresponding image type

and assigning the result to a itk::SmartPointer.

auto image = ImageType::New();

In ITK, images exist in combination with one or more regions. A region is a subset of the image and

indicates a portion of the image that may be processed by other classes in the system. One of the

most common regions is the LargestPossibleRegion, which defines the image in its entirety. Other

important regions found in ITK are the BufferedRegion, which is the portion of the image actually

maintained in memory, and the RequestedRegion, which is the region requested by a filter or other

class when operating on the image.

In ITK, manually creating an image requires that the image is instantiated as previously shown, and

that regions describing the image are then associated with it.

A region is defined by two classes: the itk::Index and itk::Size classes. The origin of the

region within the image is defined by the Index. The extent, or size, of the region is defined by the

Size. When an image is created manually, the user is responsible for defining the image size and

the index at which the image grid starts. These two parameters make it possible to process selected

regions.

The Index is represented by an n-dimensional array where each component is an integer

indicating—in topological image coordinates—the initial pixel of the image.

ImageType::IndexType start;

start[0] = 0; // first index on X

start[1] = 0; // first index on Y

start[2] = 0; // first index on Z

The region size is represented by an array of the same dimension as the image (using the itk::Size

class). The components of the array are unsigned integers indicating the extent in pixels of the image

along every dimension.

ImageType::SizeType size;

size[0] = 200; // size along X

size[1] = 200; // size along Y

size[2] = 200; // size along Z

Having defined the starting index and the image size, these two parameters are used to create an

itk::ImageRegion object which basically encapsulates both concepts. The region is initialized

with the starting index and size of the image.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

4.1. Image 43

ImageType::RegionType region;

region.SetSize(size);

region.SetIndex(start);

Finally, the region is passed to the Image object in order to define its extent and origin. The

SetRegions method sets the LargestPossibleRegion, BufferedRegion, and RequestedRegion simul-

taneously. Note that none of the operations performed to this point have allocated memory for the

image pixel data. It is necessary to invoke the Allocate() method to do this. Allocate does not

require any arguments since all the information needed for memory allocation has already been

provided by the region.

image->SetRegions(region);

image->Allocate();

In practice it is rare to allocate and initialize an image directly. Images are typically read from a

source, such a file or data acquisition hardware. The following example illustrates how an image

can be read from a file.

4.1.2 Reading an Image from a File

The source code for this section can be found in the file

Image2.cxx.

The first thing required to read an image from a file is to include the header file of the

itk::ImageFileReader class.

#include "itkImageFileReader.h"

Then, the image type should be defined by specifying the type used to represent pixels and the

dimensions of the image.

using PixelType = unsigned char;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

Using the image type, it is now possible to instantiate the image reader class. The image type is used

as a template parameter to define how the data will be represented once it is loaded into memory.

This type does not have to correspond exactly to the type stored in the file. However, a conversion

based on C-style type casting is used, so the type chosen to represent the data on disk must be

sufficient to characterize it accurately. Readers do not apply any transformation to the pixel data

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

44 Chapter 4. Data Representation

other than casting from the pixel type of the file to the pixel type of the ImageFileReader. The

following illustrates a typical instantiation of the ImageFileReader type.

using ReaderType = itk::ImageFileReader<ImageType>;

The reader type can now be used to create one reader object. A itk::SmartPointer (defined by

the ::Pointer notation) is used to receive the reference to the newly created reader. The New()

method is invoked to create an instance of the image reader.

auto reader = ReaderType::New();

The minimal information required by the reader is the filename of the image to be loaded in memory.

This is provided through the SetFileName() method. The file format here is inferred from the file-

name extension. The user may also explicitly specify the data format using the itk::ImageIOBase

class (a list of possibilities can be found in the inheritance diagram of this class.).

const char * filename = argv[1];

reader->SetFileName(filename);

Reader objects are referred to as pipeline source objects; they respond to pipeline update requests

and initiate the data flow in the pipeline. The pipeline update mechanism ensures that the reader

only executes when a data request is made to the reader and the reader has not read any data. In the

current example we explicitly invoke the Update() method because the output of the reader is not

connected to other filters. In normal application the reader’s output is connected to the input of an

image filter and the update invocation on the filter triggers an update of the reader. The following

line illustrates how an explicit update is invoked on the reader.

reader->Update();

Access to the newly read image can be gained by calling the GetOutput() method on the reader.

This method can also be called before the update request is sent to the reader. The reference to the

image will be valid even though the image will be empty until the reader actually executes.

ImageType::Pointer image = reader->GetOutput();

Any attempt to access image data before the reader executes will yield an image with no pixel data.

It is likely that a program crash will result since the image will not have been properly initialized.

4.1.3 Accessing Pixel Data

The source code for this section can be found in the file

Image3.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIOBase.html

4.1. Image 45

This example illustrates the use of the SetPixel() and GetPixel() methods. These two methods

provide direct access to the pixel data contained in the image. Note that these two methods are

relatively slow and should not be used in situations where high-performance access is required.

Image iterators are the appropriate mechanism to efficiently access image pixel data. (See Chapter 6

on page 141 for information about image iterators.)

The individual position of a pixel inside the image is identified by a unique index. An index is

an array of integers that defines the position of the pixel along each dimension of the image. The

IndexType is automatically defined by the image and can be accessed using the scope operator

itk::Index. The length of the array will match the dimensions of the associated image.

The following code illustrates the declaration of an index variable and the assignment of values to

each of its components. Please note that no SmartPointer is used to access the Index. This is

because Index is a lightweight object that is not intended to be shared between objects. It is more

efficient to produce multiple copies of these small objects than to share them using the SmartPointer

mechanism.

The following lines declare an instance of the index type and initialize its content in order to associate

it with a pixel position in the image.

const ImageType::IndexType pixelIndex = {

{ 27, 29, 37 }

}; // Position of {X,Y,Z}

Having defined a pixel position with an index, it is then possible to access the content of the pixel in

the image. The GetPixel() method allows us to get the value of the pixels.

ImageType::PixelType pixelValue = image->GetPixel(pixelIndex);

The SetPixel() method allows us to set the value of the pixel.

image->SetPixel(pixelIndex, pixelValue + 1);

Please note that GetPixel() returns the pixel value using copy and not reference semantics. Hence,

the method cannot be used to modify image data values.

Remember that both SetPixel() and GetPixel() are inefficient and should only be used for de-

bugging or for supporting interactions like querying pixel values by clicking with the mouse.

4.1.4 Defining Origin and Spacing

The source code for this section can be found in the file

Image4.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

46 Chapter 4. Data Representation

0 10050 150 200

0

50

100

150

200

250

300

30.0

20.0

Size=7x6

Spacing=(20.0, 30.0)

Physical extent=(140.0, 180.0)

Origin=(60.0,70.0)

Image Origin

Pixel Centered Region
Pixel Coverage

Pixel Corner Centered Region
Linear Interpolation Region

Pixel Coordinates

Spacing[0]

S
pa

ci
ng

[1
]

Figure 4.1: Geometrical concepts associated with the ITK image.

Even though ITK can be used to perform general image processing tasks, the primary purpose of

the toolkit is the processing of medical image data. In that respect, additional information about the

images is considered mandatory. In particular the information associated with the physical spacing

between pixels and the position of the image in space with respect to some world coordinate system

are extremely important.

Image origin, voxel directions (i.e. orientation), and spacing are fundamental to many applications.

Registration, for example, is performed in physical coordinates. Improperly defined spacing, direc-

tion, and origins will result in inconsistent results in such processes. Medical images with no spatial

information should not be used for medical diagnosis, image analysis, feature extraction, assisted ra-

diation therapy or image guided surgery. In other words, medical images lacking spatial information

are not only useless but also hazardous.

Figure 4.1 illustrates the main geometrical concepts associated with the itk::Image. In this figure,

circles are used to represent the center of pixels. The value of the pixel is assumed to exist as a

Dirac delta function located at the pixel center. Pixel spacing is measured between the pixel centers

and can be different along each dimension. The image origin is associated with the coordinates of

the first pixel in the image. For this simplified example, the voxel lattice is perfectly aligned with

physical space orientation, and the image direction is therefore an identity mapping. If the voxel

lattice samples were rotated with respect to physical space, then the image direction would contain

a rotation matrix.

A pixel is considered to be the rectangular region surrounding the pixel center holding the data value.

Image spacing is represented in a FixedArray whose size matches the dimension of the image. In

https://www.itk.org
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

4.1. Image 47

order to manually set the spacing of the image, an array of the corresponding type must be created.

The elements of the array should then be initialized with the spacing between the centers of adjacent

pixels. The following code illustrates the methods available in the itk::Image class for dealing

with spacing and origin.

ImageType::SpacingType spacing;

// Units (e.g., mm, inches, etc.) are defined by the application.

spacing[0] = 0.33; // spacing along X

spacing[1] = 0.33; // spacing along Y

spacing[2] = 1.20; // spacing along Z

The array can be assigned to the image using the SetSpacing() method.

image->SetSpacing(spacing);

The spacing information can be retrieved from an image by using the GetSpacing() method. This

method returns a reference to a FixedArray. The returned object can then be used to read the

contents of the array. Note the use of the const keyword to indicate that the array will not be

modified.

const ImageType::SpacingType & sp = image->GetSpacing();

std::cout << "Spacing = ";

std::cout << sp[0] << ", " << sp[1] << ", " << sp[2] << std::endl;

The image origin is managed in a similar way to the spacing. A Point of the appropriate dimension

must first be allocated. The coordinates of the origin can then be assigned to every component. These

coordinates correspond to the position of the first pixel of the image with respect to an arbitrary

reference system in physical space. It is the user’s responsibility to make sure that multiple images

used in the same application are using a consistent reference system. This is extremely important in

image registration applications.

The following code illustrates the creation and assignment of a variable suitable for initializing the

image origin.

// coordinates of the center of the first pixel in N-D

ImageType::PointType newOrigin;

newOrigin.Fill(0.0);

image->SetOrigin(newOrigin);

The origin can also be retrieved from an image by using the GetOrigin() method. This will return

a reference to a Point. The reference can be used to read the contents of the array. Note again the

use of the const keyword to indicate that the array contents will not be modified.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

48 Chapter 4. Data Representation

const ImageType::PointType & origin = image->GetOrigin();

std::cout << "Origin = ";

std::cout << origin[0] << ", " << origin[1] << ", " << origin[2]

<< std::endl;

The image direction matrix represents the orientation relationships between the image samples and

physical space coordinate systems. The image direction matrix is an orthonormal matrix that de-

scribes the possible permutation of image index values and the rotational aspects that are needed

to properly reconcile image index organization with physical space axis. The image directions is

a NxN matrix where N is the dimension of the image. An identity image direction indicates that

increasing values of the 1st, 2nd, 3rd index element corresponds to increasing values of the 1st, 2nd

and 3rd physical space axis respectively, and that the voxel samples are perfectly aligned with the

physical space axis.

The following code illustrates the creation and assignment of a variable suitable for initializing the

image direction with an identity.

// coordinates of the center of the first pixel in N-D

ImageType::DirectionType direction;

direction.SetIdentity();

image->SetDirection(direction);

The direction can also be retrieved from an image by using the GetDirection() method. This will

return a reference to a Matrix. The reference can be used to read the contents of the array. Note

again the use of the const keyword to indicate that the matrix contents can not be modified.

const ImageType::DirectionType & direct = image->GetDirection();

std::cout << "Direction = " << std::endl;

std::cout << direct << std::endl;

Once the spacing, origin, and direction of the image samples have been initialized, the image will

correctly map pixel indices to and from physical space coordinates. The following code illustrates

how a point in physical space can be mapped into an image index for the purpose of reading the

content of the closest pixel.

First, a itk::Point type must be declared. The point type is templated over the type used to

represent coordinates and over the dimension of the space. In this particular case, the dimension of

the point must match the dimension of the image.

using PointType = itk::Point<double, ImageType::ImageDimension>;

The itk::Point class, like an itk::Index, is a relatively small and simple object. This means

that no itk::SmartPointer is used here and the objects are simply declared as instances, like any

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.1. Image 49

other C++ class. Once the point is declared, its components can be accessed using traditional array

notation. In particular, the [] operator is available. For efficiency reasons, no bounds checking is

performed on the index used to access a particular point component. It is the user’s responsibility to

make sure that the index is in the range {0,Dimension− 1}.

PointType point;

point[0] = 1.45; // x coordinate

point[1] = 7.21; // y coordinate

point[2] = 9.28; // z coordinate

The image will map the point to an index using the values of the current spacing and origin. An index

object must be provided to receive the results of the mapping. The index object can be instantiated

by using the IndexType defined in the image type.

ImageType::IndexType pixelIndex;

The TransformPhysicalPointToIndex() method of the image class will compute the pixel index

closest to the point provided. The method checks for this index to be contained inside the current

buffered pixel data. The method returns a boolean indicating whether the resulting index falls inside

the buffered region or not. The output index should not be used when the returned value of the

method is false.

The following lines illustrate the point to index mapping and the subsequent use of the pixel index

for accessing pixel data from the image.

const bool isInside =

image->TransformPhysicalPointToIndex(point, pixelIndex);

if (isInside)

{

ImageType::PixelType pixelValue = image->GetPixel(pixelIndex);

pixelValue += 5;

image->SetPixel(pixelIndex, pixelValue);

}

Remember that GetPixel() and SetPixel() are very inefficient methods for accessing pixel data.

Image iterators should be used when massive access to pixel data is required.

The following example illustrates the mathematical relationships between image index locations and

its corresponding physical point representation for a given Image.

Let us imagine that a graphical user interface exists where the end user manually selects the voxel

index location of the left eye in a volume with a mouse interface. We need to convert that in-

dex location to a physical location so that laser guided surgery can be accurately performed. The

TransformIndexToPhysicalPoint method can be used for this.

50 Chapter 4. Data Representation

const ImageType::IndexType LeftEyeIndex = GetIndexFromMouseClick();

ImageType::PointType LeftEyePoint;

image->TransformIndexToPhysicalPoint(LeftEyeIndex, LeftEyePoint);

For a given index~I in 3D, the physical location ~P is calculated as following:





P1

P2

P3



=





O1

O2

O3



+





D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

D3,1 D3,2 D3,3



∗





S1 0 0

0 S2 0

0 0 S3



∗





I1

I2

I3



 (4.1)

Where:
~I: image space index.
~P: resulting physical space position of the image index~I.
~O: physical space origin of the first image index.

D: direction cosines matrix (orthonormal). It represents the orientation relationship between the

image and the physical space coordinate system.
~S: physical spacing between pixels of the same axis.

The operation can be thought as a particular case of the linear transform:

~P = ~O+A ·~I (4.2)

where A :

A =





D1,1 ·S1 D1,2 ·S2 D1,3 ·S3

D2,1 ·S1 D2,2 ·S2 D2,3 ·S3

D3,1 ·S1 D3,2 ·S2 D3,3 ·S3



 (4.3)

In matlab syntax the conversions are:

% Non-identity Spacing and Direction

spacing=diag([0.9375, 0.9375, 1.5]);

direction=[0.998189, 0.0569345, -0.0194113;

0.0194429, -7.38061e-08, 0.999811;

0.0569237, -0.998378, -0.00110704];

point = origin + direction * spacing * LeftEyeIndex

A corresponding mathematical expansion of the C/C++ code is:

using MatrixType = itk::Matrix<double, Dimension, Dimension>;

MatrixType SpacingMatrix;

SpacingMatrix.Fill(0.0F);

const ImageType::SpacingType & ImageSpacing = image->GetSpacing();

SpacingMatrix(0, 0) = ImageSpacing[0];

4.1. Image 51

SpacingMatrix(1, 1) = ImageSpacing[1];

SpacingMatrix(2, 2) = ImageSpacing[2];

const ImageType::DirectionType & ImageDirectionCosines =

image->GetDirection();

const ImageType::PointType & ImageOrigin = image->GetOrigin();

using VectorType = itk::Vector<double, Dimension>;

VectorType LeftEyeIndexVector;

LeftEyeIndexVector[0] = LeftEyeIndex[0];

LeftEyeIndexVector[1] = LeftEyeIndex[1];

LeftEyeIndexVector[2] = LeftEyeIndex[2];

ImageType::PointType LeftEyePointByHand =

ImageOrigin + ImageDirectionCosines * SpacingMatrix * LeftEyeIndexVector;

4.1.5 RGB Images

The term RGB (Red, Green, Blue) stands for a color representation commonly used in digital imag-

ing. RGB is a representation of the human physiological capability to analyze visual light using

three spectral-selective sensors [7, 9]. The human retina possess different types of light sensitive

cells. Three of them, known as cones, are sensitive to color [5] and their regions of sensitivity

loosely match regions of the spectrum that will be perceived as red, green and blue respectively. The

rods on the other hand provide no color discrimination and favor high resolution and high sensitiv-

ity.1 A fifth type of receptors, the ganglion cells, also known as circadian2 receptors are sensitive

to the lighting conditions that differentiate day from night. These receptors evolved as a mechanism

for synchronizing the physiology with the time of the day. Cellular controls for circadian rythms are

present in every cell of an organism and are known to be exquisitively precise [6].

The RGB space has been constructed as a representation of a physiological response to light by the

three types of cones in the human eye. RGB is not a Vector space. For example, negative numbers

are not appropriate in a color space because they will be the equivalent of “negative stimulation” on

the human eye. In the context of colorimetry, negative color values are used as an artificial construct

for color comparison in the sense that

ColorA =ColorB−ColorC (4.4)

is just a way of saying that we can produce ColorB by combining ColorA and ColorC. However, we

must be aware that (at least in emitted light) it is not possible to subtract light. So when we mention

Equation 4.4 we actually mean

ColorB =ColorA+ColorC (4.5)

1The human eye is capable of perceiving a single isolated photon.
2The term Circadian refers to the cycle of day and night, that is, events that are repeated with 24 hours intervals.

52 Chapter 4. Data Representation

On the other hand, when dealing with printed color and with paint, as opposed to emitted light like

in computer screens, the physical behavior of color allows for subtraction. This is because strictly

speaking the objects that we see as red are those that absorb all light frequencies except those in the

red section of the spectrum [9].

The concept of addition and subtraction of colors has to be carefully interpreted. In fact, RGB has a

different definition regarding whether we are talking about the channels associated to the three color

sensors of the human eye, or to the three phosphors found in most computer monitors or to the color

inks that are used for printing reproduction. Color spaces are usually non linear and do not even

from a group. For example, not all visible colors can be represented in RGB space [9].

ITK introduces the itk::RGBPixel type as a support for representing the values of an RGB color

space. As such, the RGBPixel class embodies a different concept from the one of an itk::Vector

in space. For this reason, the RGBPixel lacks many of the operators that may be naively expected

from it. In particular, there are no defined operations for subtraction or addition.

When you intend to find the “Mean” of two RGBType pixels, you are assuming that the color in

the visual “middle” of the two input pixels can be calculated through a linear operation on their

numerical representation. This is unfortunately not the case in color spaces due to the fact that they

are based on a human physiological response [7].

If you decide to interpret RGB images as simply three independent channels then you should rather

use the itk::Vector type as pixel type. In this way, you will have access to the set of operations

that are defined in Vector spaces. The current implementation of the RGBPixel in ITK presumes

that RGB color images are intended to be used in applications where a formal interpretation of color

is desired, therefore only the operations that are valid in a color space are available in the RGBPixel

class.

The following example illustrates how RGB images can be represented in ITK.

The source code for this section can be found in the file

RGBImage.cxx.

Thanks to the flexibility offered by the Generic Programming style on which ITK is based, it is

possible to instantiate images of arbitrary pixel type. The following example illustrates how a color

image with RGB pixels can be defined.

A class intended to support the RGB pixel type is available in ITK. You could also define your own

pixel class and use it to instantiate a custom image type. In order to use the itk::RGBPixel class,

it is necessary to include its header file.

#include "itkRGBPixel.h"

The RGB pixel class is templated over a type used to represent each one of the red, green and blue

pixel components. A typical instantiation of the templated class is as follows.

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

4.1. Image 53

using PixelType = itk::RGBPixel<unsigned char>;

The type is then used as the pixel template parameter of the image.

using ImageType = itk::Image<PixelType, 3>;

The image type can be used to instantiate other filter, for example, an itk::ImageFileReader

object that will read the image from a file.

using ReaderType = itk::ImageFileReader<ImageType>;

Access to the color components of the pixels can now be performed using the methods provided by

the RGBPixel class.

PixelType onePixel = image->GetPixel(pixelIndex);

PixelType::ValueType red = onePixel.GetRed();

PixelType::ValueType green = onePixel.GetGreen();

PixelType::ValueType blue = onePixel.GetBlue();

The subindex notation can also be used since the itk::RGBPixel inherits the [] operator from the

itk::FixedArray class.

red = onePixel[0]; // extract Red component

green = onePixel[1]; // extract Green component

blue = onePixel[2]; // extract Blue component

std::cout << "Pixel values:" << std::endl;

std::cout << "Red = "

<< itk::NumericTraits<PixelType::ValueType>::PrintType(red)

<< std::endl;

std::cout << "Green = "

<< itk::NumericTraits<PixelType::ValueType>::PrintType(green)

<< std::endl;

std::cout << "Blue = "

<< itk::NumericTraits<PixelType::ValueType>::PrintType(blue)

<< std::endl;

4.1.6 Vector Images

The source code for this section can be found in the file

VectorImage.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

54 Chapter 4. Data Representation

Many image processing tasks require images of non-scalar pixel type. A typical example is an image

of vectors. This is the image type required to represent the gradient of a scalar image. The following

code illustrates how to instantiate and use an image whose pixels are of vector type.

For convenience we use the itk::Vector class to define the pixel type. The Vector class is intended

to represent a geometrical vector in space. It is not intended to be used as an array container like the

std::vector in STL. If you are interested in containers, the itk::VectorContainer class may

provide the functionality you want.

The first step is to include the header file of the Vector class.

#include "itkVector.h"

The Vector class is templated over the type used to represent the coordinate in space and over the

dimension of the space. In this example, we want the vector dimension to match the image dimen-

sion, but this is by no means a requirement. We could have defined a four-dimensional image with

three-dimensional vectors as pixels.

using PixelType = itk::Vector<float, 3>;

using ImageType = itk::Image<PixelType, 3>;

The Vector class inherits the operator [] from the itk::FixedArray class. This makes it possible

to access the Vector’s components using index notation.

ImageType::PixelType pixelValue;

pixelValue[0] = 1.345; // x component

pixelValue[1] = 6.841; // y component

pixelValue[2] = 3.295; // x component

We can now store this vector in one of the image pixels by defining an index and invoking the

SetPixel() method.

image->SetPixel(pixelIndex, pixelValue);

4.1.7 Importing Image Data from a Buffer

The source code for this section can be found in the file

Image5.cxx.

This example illustrates how to import data into the itk::Image class. This is particularly useful

for interfacing with other software systems. Many systems use a contiguous block of memory as a

buffer for image pixel data. The current example assumes this is the case and feeds the buffer into

an itk::ImportImageFilter, thereby producing an image as output.

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.sgi.com/tech/stl/Vector.html
https://www.sgi.com/tech/stl/
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

4.1. Image 55

Here we create a synthetic image with a centered sphere in a locally allocated buffer and pass this

block of memory to the ImportImageFilter. This example is set up so that on execution, the user

must provide the name of an output file as a command-line argument.

First, the header file of the itk::ImportImageFilter class must be included.

#include "itkImage.h"

#include "itkImportImageFilter.h"

Next, we select the data type used to represent the image pixels. We assume that the external block

of memory uses the same data type to represent the pixels.

using PixelType = unsigned char;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

The type of the ImportImageFilter is instantiated in the following line.

using ImportFilterType = itk::ImportImageFilter<PixelType, Dimension>;

A filter object created using the New() method is then assigned to a SmartPointer.

auto importFilter = ImportFilterType::New();

This filter requires the user to specify the size of the image to be produced as output. The

SetRegion() method is used to this end. The image size should exactly match the number of

pixels available in the locally allocated buffer.

ImportFilterType::SizeType size;

size[0] = 200; // size along X

size[1] = 200; // size along Y

size[2] = 200; // size along Z

ImportFilterType::IndexType start;

start.Fill(0);

ImportFilterType::RegionType region;

region.SetIndex(start);

region.SetSize(size);

importFilter->SetRegion(region);

The origin of the output image is specified with the SetOrigin() method.

https://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

56 Chapter 4. Data Representation

const itk::SpacePrecisionType origin[Dimension] = { 0.0, 0.0, 0.0 };

importFilter->SetOrigin(origin);

The spacing of the image is passed with the SetSpacing() method.

// spacing isotropic volumes to 1.0

const itk::SpacePrecisionType spacing[Dimension] = { 1.0, 1.0, 1.0 };

importFilter->SetSpacing(spacing);

Next we allocate the memory block containing the pixel data to be passed to the

ImportImageFilter. Note that we use exactly the same size that was specified with the

SetRegion() method. In a practical application, you may get this buffer from some other library

using a different data structure to represent the images.

const unsigned int numberOfPixels = size[0] * size[1] * size[2];

auto * localBuffer = new PixelType[numberOfPixels];

Here we fill up the buffer with a binary sphere. We use simple for() loops here, similar to

those found in the C or FORTRAN programming languages. Note that ITK does not use for()

loops in its internal code to access pixels. All pixel access tasks are instead performed using an

itk::ImageIterator that supports the management of n-dimensional images.

constexpr double radius2 = radius * radius;

PixelType * it = localBuffer;

for (unsigned int z = 0; z < size[2]; ++z)

{

const double dz =

static_cast<double>(z) - static_cast<double>(size[2]) / 2.0;

for (unsigned int y = 0; y < size[1]; ++y)

{

const double dy =

static_cast<double>(y) - static_cast<double>(size[1]) / 2.0;

for (unsigned int x = 0; x < size[0]; ++x)

{

const double dx =

static_cast<double>(x) - static_cast<double>(size[0]) / 2.0;

const double d2 = dx * dx + dy * dy + dz * dz;

*it++ = (d2 < radius2) ? 255 : 0;

}

}

}

The buffer is passed to the ImportImageFilter with the SetImportPointer() method. Note that

the last argument of this method specifies who will be responsible for deleting the memory block

once it is no longer in use. A false value indicates that the ImportImageFilter will not try to

https://www.itk.org/Doxygen/html/classitk_1_1ImageIterator.html

4.2. PointSet 57

delete the buffer when its destructor is called. A true value, on the other hand, will allow the filter

to delete the memory block upon destruction of the import filter.

For the ImportImageFilter to appropriately delete the memory block, the memory must be allo-

cated with the C++ new() operator. Memory allocated with other memory allocation mechanisms,

such as C malloc or calloc, will not be deleted properly by the ImportImageFilter. In other

words, it is the application programmer’s responsibility to ensure that ImportImageFilter is only

given permission to delete the C++ new operator-allocated memory.

const bool importImageFilterWillOwnTheBuffer = true;

importFilter->SetImportPointer(

localBuffer, numberOfPixels, importImageFilterWillOwnTheBuffer);

Finally, we can connect the output of this filter to a pipeline. For simplicity we just use a writer here,

but it could be any other filter.

using WriterType = itk::ImageFileWriter<ImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[1]);

writer->SetInput(importFilter->GetOutput());

Note that we do not call delete on the buffer since we pass true as the last argument of

SetImportPointer(). Now the buffer is owned by the ImportImageFilter.

4.2 PointSet

4.2.1 Creating a PointSet

The source code for this section can be found in the file

PointSet1.cxx.

The itk::PointSet is a basic class intended to represent geometry in the form of a set of points

in N-dimensional space. It is the base class for the itk::Mesh providing the methods necessary to

manipulate sets of points. Points can have values associated with them. The type of such values is

defined by a template parameter of the itk::PointSet class (i.e., TPixelType). Two basic inter-

action styles of PointSets are available in ITK. These styles are referred to as static and dynamic.

The first style is used when the number of points in the set is known in advance and is not expected

to change as a consequence of the manipulations performed on the set. The dynamic style, on the

other hand, is intended to support insertion and removal of points in an efficient manner. Distin-

guishing between the two styles is meant to facilitate the fine tuning of a PointSet’s behavior while

optimizing performance and memory management.

In order to use the PointSet class, its header file should be included.

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

58 Chapter 4. Data Representation

#include "itkPointSet.h"

Then we must decide what type of value to associate with the points. This is generally called the

PixelType in order to make the terminology consistent with the itk::Image. The PointSet is

also templated over the dimension of the space in which the points are represented. The following

declaration illustrates a typical instantiation of the PointSet class.

using PointSetType = itk::PointSet<unsigned short, 3>;

A PointSet object is created by invoking the New() method on its type. The resulting object must be

assigned to a SmartPointer. The PointSet is then reference-counted and can be shared by multiple

objects. The memory allocated for the PointSet will be released when the number of references to

the object is reduced to zero. This simply means that the user does not need to be concerned with

invoking the Delete() method on this class. In fact, the Delete() method should never be called

directly within any of the reference-counted ITK classes.

auto pointsSet = PointSetType::New();

Following the principles of Generic Programming, the PointSet class has a set of associated de-

fined types to ensure that interacting objects can be declared with compatible types. This set of

type definitions is commonly known as a set of traits. Among the traits of the PointSet class is

PointType, which is used by the point set to represent points in space. The following declaration

takes the point type as defined in the PointSet traits and renames it to be conveniently used in the

global namespace.

using PointType = PointSetType::PointType;

The PointType can now be used to declare point objects to be inserted in the PointSet. Points are

fairly small objects, so it is inconvenient to manage them with reference counting and smart pointers.

They are simply instantiated as typical C++ classes. The Point class inherits the [] operator from

the itk::Array class. This makes it possible to access its components using index notation. For

efficiency’s sake no bounds checking is performed during index access. It is the user’s responsibility

to ensure that the index used is in the range {0,Dimension−1}. Each of the components in the point

is associated with space coordinates. The following code illustrates how to instantiate a point and

initialize its components.

PointType p0;

p0[0] = -1.0; // x coordinate

p0[1] = -1.0; // y coordinate

p0[2] = 0.0; // z coordinate

Points are inserted in the PointSet by using the SetPoint() method. This method requires the user

to provide a unique identifier for the point. The identifier is typically an unsigned integer that will

4.2. PointSet 59

enumerate the points as they are being inserted. The following code shows how three points are

inserted into the PointSet.

pointsSet->SetPoint(0, p0);

pointsSet->SetPoint(1, p1);

pointsSet->SetPoint(2, p2);

It is possible to query the PointSet in order to determine how many points have been inserted into it.

This is done with the GetNumberOfPoints() method as illustrated below.

const unsigned int numberOfPoints = pointsSet->GetNumberOfPoints();

std::cout << numberOfPoints << std::endl;

Points can be read from the PointSet by using the GetPoint() method and the integer identifier. The

point is stored in a pointer provided by the user. If the identifier provided does not match an existing

point, the method will return false and the contents of the point will be invalid. The following code

illustrates point access using defensive programming.

PointType pp;

bool pointExists = pointsSet->GetPoint(1, &pp);

if (pointExists)

{

std::cout << "Point is = " << pp << std::endl;

}

GetPoint() and SetPoint() are not the most efficient methods to access points in the PointSet. It

is preferable to get direct access to the internal point container defined by the traits and use iterators

to walk sequentially over the list of points (as shown in the following example).

4.2.2 Getting Access to Points

The source code for this section can be found in the file

PointSet2.cxx.

The itk::PointSet class uses an internal container to manage the storage of itk::Points. It is

more efficient, in general, to manage points by using the access methods provided directly on the

points container. The following example illustrates how to interact with the point container and how

to use point iterators.

The type is defined by the traits of the PointSet class. The following line conveniently takes the

PointsContainer type from the PointSet traits and declares it in the global namespace.

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html

60 Chapter 4. Data Representation

using PointsContainer = PointSetType::PointsContainer;

The actual type of PointsContainer depends on what style of PointSet is being

used. The dynamic PointSet uses itk::MapContainer while the static PointSet uses

itk::VectorContainer . The vector and map containers are basically ITK wrappers around the

STL classes std::map and std::vector. By default, PointSet uses a static style, and there-

fore the default type of point container is VectorContainer. Both map and vector contain-

ers are templated over the type of element they contain. In this case they are templated over

PointType. Containers are reference counted objects, created with the New() method and assigned

to a itk::SmartPointer. The following line creates a point container compatible with the type of

the PointSet from which the trait has been taken.

auto points = PointsContainer::New();

Points can now be defined using the PointType trait from the PointSet.

using PointType = PointSetType::PointType;

PointType p0;

PointType p1;

p0[0] = -1.0;

p0[1] = 0.0;

p0[2] = 0.0; // Point 0 = {-1,0,0 }

p1[0] = 1.0;

p1[1] = 0.0;

p1[2] = 0.0; // Point 1 = { 1,0,0 }

The created points can be inserted in the PointsContainer using the generic method

InsertElement() which requires an identifier to be provided for each point.

unsigned int pointId = 0;

points->InsertElement(pointId++, p0);

points->InsertElement(pointId++, p1);

Finally, the PointsContainer can be assigned to the PointSet. This will substitute any previ-

ously existing PointsContainer assigned to the PointSet. The assignment is done using the

SetPoints() method.

pointSet->SetPoints(points);

The PointsContainer object can be obtained from the PointSet using the GetPoints() method.

This method returns a pointer to the actual container owned by the PointSet which is then assigned

to a SmartPointer.

https://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
https://www.sgi.com/tech/stl/
https://www.sgi.com/tech/stl/Map.html
https://www.sgi.com/tech/stl/Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.2. PointSet 61

PointsContainer::Pointer points2 = pointSet->GetPoints();

The most efficient way to sequentially visit the points is to use the iterators provided by PointsCon-

tainer. The Iterator type belongs to the traits of the PointsContainer classes. It behaves pretty

much like the STL iterators.3 The Points iterator is not a reference counted class, so it is created

directly from the traits without using SmartPointers.

using PointsIterator = PointsContainer::Iterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The iterator

to the first point is obtained from the container with the Begin() method and assigned to another

iterator.

PointsIterator pointIterator = points->Begin();

The ++ operator on the iterator can be used to advance from one point to the next. The actual value

of the Point to which the iterator is pointing can be obtained with the Value() method. The loop for

walking through all the points can be controlled by comparing the current iterator with the iterator

returned by the End() method of the PointsContainer. The following lines illustrate the typical loop

for walking through the points.

PointsIterator end = points->End();

while (pointIterator != end)

{

PointType p = pointIterator.Value(); // access the point

std::cout << p << std::endl; // print the point

++pointIterator; // advance to next point

}

Note that as in STL, the iterator returned by the End() method is not a valid iterator. This is called

a past-end iterator in order to indicate that it is the value resulting from advancing one step after

visiting the last element in the container.

The number of elements stored in a container can be queried with the Size() method. In the case

of the PointSet, the following two lines of code are equivalent, both of them returning the number

of points in the PointSet.

std::cout << pointSet->GetNumberOfPoints() << std::endl;

std::cout << pointSet->GetPoints()->Size() << std::endl;

3If you dig deep enough into the code, you will discover that these iterators are actually ITK wrappers around STL

iterators.

62 Chapter 4. Data Representation

4.2.3 Getting Access to Data in Points

The source code for this section can be found in the file

PointSet3.cxx.

The itk::PointSet class was designed to interact with the Image class. For this reason it was

found convenient to allow the points in the set to hold values that could be computed from images.

The value associated with the point is referred as PixelType in order to make it consistent with

image terminology. Users can define the type as they please thanks to the flexibility offered by the

Generic Programming approach used in the toolkit. The PixelType is the first template parameter

of the PointSet.

The following code defines a particular type for a pixel type and instantiates a PointSet class with it.

using PixelType = unsigned short;

using PointSetType = itk::PointSet<PixelType, 3>;

Data can be inserted into the PointSet using the SetPointData() method. This method requires the

user to provide an identifier. The data in question will be associated to the point holding the same

identifier. It is the user’s responsibility to verify the appropriate matching between inserted data and

inserted points. The following line illustrates the use of the SetPointData() method.

unsigned int dataId = 0;

PixelType value = 79;

pointSet->SetPointData(dataId++, value);

Data associated with points can be read from the PointSet using the GetPointData() method. This

method requires the user to provide the identifier to the point and a valid pointer to a location where

the pixel data can be safely written. In case the identifier does not match any existing identifier on

the PointSet the method will return false and the pixel value returned will be invalid. It is the user’s

responsibility to check the returned boolean value before attempting to use it.

const bool found = pointSet->GetPointData(dataId, &value);

if (found)

{

std::cout << "Pixel value = " << value << std::endl;

}

The SetPointData() and GetPointData() methods are not the most efficient way to get access

to point data. It is far more efficient to use the Iterators provided by the PointDataContainer.

Data associated with points is internally stored in PointDataContainers. In the same way as

with points, the actual container type used depend on whether the style of the PointSet is static

or dynamic. Static point sets will use an itk::VectorContainer while dynamic point sets will

use an itk::MapContainer. The type of the data container is defined as one of the traits in the

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

4.2. PointSet 63

PointSet. The following declaration illustrates how the type can be taken from the traits and used to

conveniently declare a similar type on the global namespace.

using PointDataContainer = PointSetType::PointDataContainer;

Using the type it is now possible to create an instance of the data container. This is a standard

reference counted object, henceforth it uses the New() method for creation and assigns the newly

created object to a SmartPointer.

auto pointData = PointDataContainer::New();

Pixel data can be inserted in the container with the method InsertElement(). This method requires

an identified to be provided for each point data.

unsigned int pointId = 0;

PixelType value0 = 34;

PixelType value1 = 67;

pointData->InsertElement(pointId++, value0);

pointData->InsertElement(pointId++, value1);

Finally the PointDataContainer can be assigned to the PointSet. This will substitute any previously

existing PointDataContainer on the PointSet. The assignment is done using the SetPointData()

method.

pointSet->SetPointData(pointData);

The PointDataContainer can be obtained from the PointSet using the GetPointData() method.

This method returns a pointer (assigned to a SmartPointer) to the actual container owned by the

PointSet.

PointDataContainer::Pointer pointData2 = pointSet->GetPointData();

The most efficient way to sequentially visit the data associated with points is to use the iterators

provided by PointDataContainer. The Iterator type belongs to the traits of the PointsContainer

classes. The iterator is not a reference counted class, so it is just created directly from the traits

without using SmartPointers.

using PointDataIterator = PointDataContainer::Iterator;

The subsequent use of the iterator follows what you may expect from a STL iterator. The iterator

to the first point is obtained from the container with the Begin() method and assigned to another

iterator.

64 Chapter 4. Data Representation

PointDataIterator pointDataIterator = pointData2->Begin();

The ++ operator on the iterator can be used to advance from one data point to the next. The actual

value of the PixelType to which the iterator is pointing can be obtained with the Value() method.

The loop for walking through all the point data can be controlled by comparing the current iterator

with the iterator returned by the End() method of the PointsContainer. The following lines illustrate

the typical loop for walking through the point data.

PointDataIterator end = pointData2->End();

while (pointDataIterator != end)

{

PixelType p = pointDataIterator.Value(); // access the pixel data

std::cout << p << std::endl; // print the pixel data

++pointDataIterator; // advance to next pixel/point

}

Note that as in STL, the iterator returned by the End() method is not a valid iterator. This is called

a past-end iterator in order to indicate that it is the value resulting from advancing one step after

visiting the last element in the container.

4.2.4 RGB as Pixel Type

The source code for this section can be found in the file

RGBPointSet.cxx.

The following example illustrates how a point set can be parameterized to manage a particular pixel

type. In this case, pixels of RGB type are used. The first step is then to include the header files of

the itk::RGBPixel and itk::PointSet classes.

#include "itkRGBPixel.h"

#include "itkPointSet.h"

Then, the pixel type can be defined by selecting the type to be used to represent each one of the RGB

components.

using PixelType = itk::RGBPixel<float>;

The newly defined pixel type is now used to instantiate the PointSet type and subsequently create a

point set object.

using PointSetType = itk::PointSet<PixelType, 3>;

auto pointSet = PointSetType::New();

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

4.2. PointSet 65

The following code generates a circle and assigns RGB values to the points. The components of the

RGB values in this example are computed to represent the position of the points.

PointSetType::PixelType pixel;

PointSetType::PointType point;

unsigned int pointId = 0;

constexpr double radius = 3.0;

for (unsigned int i = 0; i < 360; ++i)

{

const double angle = i * itk::Math::pi / 180.0;

point[0] = radius * std::sin(angle);

point[1] = radius * std::cos(angle);

point[2] = 1.0;

pixel.SetRed(point[0] * 2.0);

pixel.SetGreen(point[1] * 2.0);

pixel.SetBlue(point[2] * 2.0);

pointSet->SetPoint(pointId, point);

pointSet->SetPointData(pointId, pixel);

pointId++;

}

All the points on the PointSet are visited using the following code.

using PointIterator = PointSetType::PointsContainer::ConstIterator;

PointIterator pointIterator = pointSet->GetPoints()->Begin();

PointIterator pointEnd = pointSet->GetPoints()->End();

while (pointIterator != pointEnd)

{

point = pointIterator.Value();

std::cout << point << std::endl;

++pointIterator;

}

Note that here the ConstIterator was used instead of the Iterator since the pixel values are not

expected to be modified. ITK supports const-correctness at the API level.

All the pixel values on the PointSet are visited using the following code.

using PointDataIterator = PointSetType::PointDataContainer::ConstIterator;

PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();

PointDataIterator pixelEnd = pointSet->GetPointData()->End();

while (pixelIterator != pixelEnd)

{

pixel = pixelIterator.Value();

std::cout << pixel << std::endl;

++pixelIterator;

}

Again, please note the use of the ConstIterator instead of the Iterator.

66 Chapter 4. Data Representation

4.2.5 Vectors as Pixel Type

The source code for this section can be found in the file

PointSetWithVectors.cxx.

This example illustrates how a point set can be parameterized to manage a particular pixel type.

It is quite common to associate vector values with points for producing geometric representations.

The following code shows how vector values can be used as the pixel type on the PointSet class.

The itk::Vector class is used here as the pixel type. This class is appropriate for representing the

relative position between two points. It could then be used to manage displacements, for example.

In order to use the vector class it is necessary to include its header file along with the header of the

point set.

#include "itkVector.h"

#include "itkPointSet.h"

The Vector class is templated over the

Figure 4.2: Vectors as PixelType.

type used to represent the spatial co-

ordinates and over the space dimen-

sion. Since the PixelType is indepen-

dent of the PointType, we are free to se-

lect any dimension for the vectors to

be used as pixel type. However, for

the sake of producing an interesting ex-

ample, we will use vectors that repre-

sent displacements of the points in the

PointSet. Those vectors are then se-

lected to be of the same dimension as the

PointSet.

constexpr unsigned int Dimension = 3;

using PixelType = itk::Vector<float, Dimension>;

Then we use the PixelType (which are actually Vectors) to instantiate the PointSet type and subse-

quently create a PointSet object.

using PointSetType = itk::PointSet<PixelType, Dimension>;

auto pointSet = PointSetType::New();

The following code is generating a sphere and assigning vector values to the points. The components

of the vectors in this example are computed to represent the tangents to the circle as shown in

Figure 4.2.

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

4.2. PointSet 67

PointSetType::PixelType tangent;

PointSetType::PointType point;

unsigned int pointId = 0;

constexpr double radius = 300.0;

for (unsigned int i = 0; i < 360; ++i)

{

const double angle = i * itk::Math::pi / 180.0;

point[0] = radius * std::sin(angle);

point[1] = radius * std::cos(angle);

point[2] = 1.0; // flat on the Z plane

tangent[0] = std::cos(angle);

tangent[1] = -std::sin(angle);

tangent[2] = 0.0; // flat on the Z plane

pointSet->SetPoint(pointId, point);

pointSet->SetPointData(pointId, tangent);

pointId++;

}

We can now visit all the points and use the vector on the pixel values to apply a displacement on the

points. This is along the spirit of what a deformable model could do at each one of its iterations.

using PointDataIterator = PointSetType::PointDataContainer::ConstIterator;

PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();

PointDataIterator pixelEnd = pointSet->GetPointData()->End();

using PointIterator = PointSetType::PointsContainer::Iterator;

PointIterator pointIterator = pointSet->GetPoints()->Begin();

PointIterator pointEnd = pointSet->GetPoints()->End();

while (pixelIterator != pixelEnd && pointIterator != pointEnd)

{

pointIterator.Value() = pointIterator.Value() + pixelIterator.Value();

++pixelIterator;

++pointIterator;

}

Note that the ConstIterator was used here instead of the normal Iterator since the pixel values

are only intended to be read and not modified. ITK supports const-correctness at the API level.

The itk::Vector class has overloaded the + operator with the itk::Point. In other words,

vectors can be added to points in order to produce new points. This property is exploited in the

center of the loop in order to update the points positions with a single statement.

We can finally visit all the points and print out the new values

pointIterator = pointSet->GetPoints()->Begin();

pointEnd = pointSet->GetPoints()->End();

while (pointIterator != pointEnd)

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html

68 Chapter 4. Data Representation

{

std::cout << pointIterator.Value() << std::endl;

++pointIterator;

}

Note that itk::Vector is not the appropriate class for representing normals to surfaces and gradi-

ents of functions. This is due to the way vectors behave under affine transforms. ITK has a specific

class for representing normals and function gradients. This is the itk::CovariantVector class.

4.2.6 Normals as Pixel Type

The source code for this section can be found in the file

PointSetWithCovariantVectors.cxx.

It is common to represent geometric objects by using points on their surfaces and normals associated

with those points. This structure can be easily instantiated with the itk::PointSet class.

The natural class for representing normals to surfaces and gradients of functions is the

itk::CovariantVector . A covariant vector differs from a vector in the way it behaves under

affine transforms, in particular under anisotropic scaling. If a covariant vector represents the gradi-

ent of a function, the transformed covariant vector will still be the valid gradient of the transformed

function, a property which would not hold with a regular vector.

The following example demonstrates how a CovariantVector can be used as the PixelType for the

PointSet class. The example illustrates how a deformable model could move under the influence

of the gradient of a potential function.

In order to use the CovariantVector class it is necessary to include its header file along with the

header of the point set.

#include "itkCovariantVector.h"

#include "itkPointSet.h"

The CovariantVector class is templated over the type used to represent the spatial coordinates and

over the space dimension. Since the PixelType is independent of the PointType, we are free to select

any dimension for the covariant vectors to be used as pixel type. However, we want to illustrate here

the spirit of a deformable model. It is then required for the vectors representing gradients to be of

the same dimension as the points in space.

constexpr unsigned int Dimension = 3;

using PixelType = itk::CovariantVector<float, Dimension>;

Then we use the PixelType (which are actually CovariantVectors) to instantiate the PointSet type

and subsequently create a PointSet object.

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

4.2. PointSet 69

using PointSetType = itk::PointSet<PixelType, Dimension>;

auto pointSet = PointSetType::New();

The following code generates a circle and assigns gradient values to the points. The components of

the CovariantVectors in this example are computed to represent the normals to the circle.

PointSetType::PixelType gradient;

PointSetType::PointType point;

unsigned int pointId = 0;

constexpr double radius = 300.0;

for (unsigned int i = 0; i < 360; ++i)

{

const double angle = i * std::atan(1.0) / 45.0;

point[0] = radius * std::sin(angle);

point[1] = radius * std::cos(angle);

point[2] = 1.0; // flat on the Z plane

gradient[0] = std::sin(angle);

gradient[1] = std::cos(angle);

gradient[2] = 0.0; // flat on the Z plane

pointSet->SetPoint(pointId, point);

pointSet->SetPointData(pointId, gradient);

pointId++;

}

We can now visit all the points and use the vector on the pixel values to apply a deformation on the

points by following the gradient of the function. This is along the spirit of what a deformable model

could do at each one of its iterations. To be more formal we should use the function gradients as

forces and multiply them by local stress tensors in order to obtain local deformations. The resulting

deformations would finally be used to apply displacements on the points. However, to shorten the

example, we will ignore this complexity for the moment.

using PointDataIterator = PointSetType::PointDataContainer::ConstIterator;

PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();

PointDataIterator pixelEnd = pointSet->GetPointData()->End();

using PointIterator = PointSetType::PointsContainer::Iterator;

PointIterator pointIterator = pointSet->GetPoints()->Begin();

PointIterator pointEnd = pointSet->GetPoints()->End();

while (pixelIterator != pixelEnd && pointIterator != pointEnd)

{

point = pointIterator.Value();

gradient = pixelIterator.Value();

for (unsigned int i = 0; i < Dimension; ++i)

{

point[i] += gradient[i];

}

pointIterator.Value() = point;

70 Chapter 4. Data Representation

++pixelIterator;

++pointIterator;

}

The CovariantVector class does not overload the + operator with the itk::Point. In other words,

CovariantVectors can not be added to points in order to get new points. Further, since we are

ignoring physics in the example, we are also forced to do the illegal addition manually between

the components of the gradient and the coordinates of the points.

Note that the absence of some basic operators on the ITK geometry classes is completely intentional

with the aim of preventing the incorrect use of the mathematical concepts they represent.

4.3 Mesh

4.3.1 Creating a Mesh

The source code for this section can be found in the file

Mesh1.cxx.

The itk::Mesh class is intended to represent shapes in space. It derives from the itk::PointSet

class and hence inherits all the functionality related to points and access to the pixel-data associated

with the points. The mesh class is also N-dimensional which allows a great flexibility in its use.

In practice a Mesh class can be seen as a PointSet to which cells (also known as elements) of many

different dimensions and shapes have been added. Cells in the mesh are defined in terms of the

existing points using their point-identifiers.

As with PointSet, a Mesh object may be static or dynamic. The first is used when the number of

points in the set is known in advance and not expected to change as a consequence of the manipula-

tions performed on the set. The dynamic style, on the other hand, is intended to support insertion and

removal of points in an efficient manner. In addition to point management, the distinction facilitates

optimization of performance and memory management of cells.

In order to use the Mesh class, its header file should be included.

#include "itkMesh.h"

Then, the type associated with the points must be selected and used for instantiating the Mesh type.

using PixelType = float;

The Mesh type extensively uses the capabilities provided by Generic Programming. In particular,

the Mesh class is parameterized over PixelType, spatial dimension, and (optionally) a parameter set

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.boost.org/more/generic_programming.html

4.3. Mesh 71

called MeshTraits. PixelType is the type of the value associated with each point (just as is done

with PointSet). The following illustrates a typical instantiation of Mesh.

constexpr unsigned int Dimension = 3;

using MeshType = itk::Mesh<PixelType, Dimension>;

Meshes typically require large amounts of memory. For this reason, they are reference counted

objects, managed using itk::SmartPointers . The following line illustrates how a mesh is created

by invoking the New() method on MeshType and assigning the result to a SmartPointer.

auto mesh = MeshType::New();

Management of points in a Mesh is identical to that in a PointSet. The type of point associated with

the mesh can be obtained through the PointType trait. The following code shows the creation of

points compatible with the mesh type defined above and the assignment of values to its coordinates.

MeshType::PointType p0;

MeshType::PointType p1;

MeshType::PointType p2;

MeshType::PointType p3;

p0[0] = -1.0;

p0[1] = -1.0;

p0[2] = 0.0; // first point (-1, -1, 0)

p1[0] = 1.0;

p1[1] = -1.0;

p1[2] = 0.0; // second point (1, -1, 0)

p2[0] = 1.0;

p2[1] = 1.0;

p2[2] = 0.0; // third point (1, 1, 0)

p3[0] = -1.0;

p3[1] = 1.0;

p3[2] = 0.0; // fourth point (-1, 1, 0)

The points can now be inserted into the Mesh using the SetPoint() method. Note that points are

copied into the mesh structure, meaning that the local instances of the points can now be modified

without affecting the Mesh content.

mesh->SetPoint(0, p0);

mesh->SetPoint(1, p1);

mesh->SetPoint(2, p2);

mesh->SetPoint(3, p3);

The current number of points in a mesh can be queried with the GetNumberOfPoints() method.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointers.html

72 Chapter 4. Data Representation

std::cout << "Points = " << mesh->GetNumberOfPoints() << std::endl;

The points can now be efficiently accessed using the Iterator to the PointsContainer as was done

in the previous section for the PointSet.

using PointsIterator = MeshType::PointsContainer::Iterator;

A point iterator is initialized to the first point with the Begin() method of the PointsContainer.

PointsIterator pointIterator = mesh->GetPoints()->Begin();

The ++ operator is used to advance the iterator from one point to the next. The value associated

with the Point to which the iterator is pointing is obtained with the Value() method. The loop

for walking through all the points is controlled by comparing the current iterator with the iterator

returned by the End() method of the PointsContainer. The following illustrates the typical loop

for walking through the points of a mesh.

PointsIterator end = mesh->GetPoints()->End();

while (pointIterator != end)

{

MeshType::PointType p = pointIterator.Value(); // access the point

std::cout << p << std::endl; // print the point

++pointIterator; // advance to next point

}

4.3.2 Inserting Cells

The source code for this section can be found in the file

Mesh2.cxx.

A itk::Mesh can contain a variety of cell types. Typical cells are the itk::LineCell,

itk::TriangleCell, itk::QuadrilateralCell, itk::TetrahedronCell, and

itk::PolygonCell. Additional flexibility is provided for managing cells at the price of a

bit more of complexity than in the case of point management.

The following code creates a polygonal line in order to illustrate the simplest case of cell manage-

ment in a mesh. The only cell type used here is the LineCell. The header file of this class must be

included.

#include "itkLineCell.h"

For consistency with Mesh, cell types have to be configured with a number of custom types taken

from the mesh traits. The set of traits relevant to cells are packaged by the Mesh class into the

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
https://www.itk.org/Doxygen/html/classitk_1_1TriangleCell.html
https://www.itk.org/Doxygen/html/classitk_1_1QuadrilateralCell.html
https://www.itk.org/Doxygen/html/classitk_1_1TetrahedronCell.html
https://www.itk.org/Doxygen/html/classitk_1_1PolygonCell.html

4.3. Mesh 73

CellType trait. This trait needs to be passed to the actual cell types at the moment of their instanti-

ation. The following line shows how to extract the Cell traits from the Mesh type.

using CellType = MeshType::CellType;

The LineCell type can now be instantiated using the traits taken from the Mesh.

using LineType = itk::LineCell<CellType>;

The main difference in the way cells and points are managed by the Mesh is that points are stored

by copy on the PointsContainer while cells are stored as pointers in the CellsContainer. The

reason for using pointers is that cells use C++ polymorphism on the mesh. This means that the mesh

is only aware of having pointers to a generic cell which is the base class of all the specific cell types.

This architecture makes it possible to combine different cell types in the same mesh. Points, on the

other hand, are of a single type and have a small memory footprint, which makes it efficient to copy

them directly into the container.

Managing cells by pointers adds another level of complexity to the Mesh since it is now necessary to

establish a protocol to make clear who is responsible for allocating and releasing the cells’ memory.

This protocol is implemented in the form of a specific type of pointer called the CellAutoPointer.

This pointer, based on the itk::AutoPointer, differs in many respects from the SmartPointer.

The CellAutoPointer has an internal pointer to the actual object and a boolean flag that indicates

whether the CellAutoPointer is responsible for releasing the cell memory when the time comes

for its own destruction. It is said that a CellAutoPointer owns the cell when it is responsible for

its destruction. At any given time many CellAutoPointers can point to the same cell, but only one

CellAutoPointer can own the cell.

The CellAutoPointer trait is defined in the MeshType and can be extracted as follows.

using CellAutoPointer = CellType::CellAutoPointer;

Note that the CellAutoPointer points to a generic cell type. It is not aware of the actual type of

the cell, which could be (for example) a LineCell, TriangleCell or TetrahedronCell. This fact

will influence the way in which we access cells later on.

At this point we can actually create a mesh and insert some points on it.

auto mesh = MeshType::New();

MeshType::PointType p0;

MeshType::PointType p1;

MeshType::PointType p2;

p0[0] = -1.0;

p0[1] = 0.0;

p0[2] = 0.0;

https://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html

74 Chapter 4. Data Representation

p1[0] = 1.0;

p1[1] = 0.0;

p1[2] = 0.0;

p2[0] = 1.0;

p2[1] = 1.0;

p2[2] = 0.0;

mesh->SetPoint(0, p0);

mesh->SetPoint(1, p1);

mesh->SetPoint(2, p2);

The following code creates two CellAutoPointers and initializes them with newly created cell

objects. The actual cell type created in this case is LineType. Note that cells are created with the

normal new C++ operator. The CellAutoPointer takes ownership of the received pointer by using the

method TakeOwnership(). Even though this may seem verbose, it is necessary in order to make it

explicit that the responsibility of memory release is assumed by the AutoPointer.

CellAutoPointer line0;

CellAutoPointer line1;

line0.TakeOwnership(new LineType);

line1.TakeOwnership(new LineType);

The LineCells should now be associated with points in the mesh. This is done using the identifiers as-

signed to points when they were inserted in the mesh. Every cell type has a specific number of points

that must be associated with it.4 For example, a LineCell requires two points, a TriangleCell

requires three, and a TetrahedronCell requires four. Cells use an internal numbering system for

points. It is simply an index in the range {0,NumberO f Points− 1}. The association of points and

cells is done by the SetPointId() method, which requires the user to provide the internal index of

the point in the cell and the corresponding PointIdentifier in the Mesh. The internal cell index

is the first parameter of SetPointId() while the mesh point-identifier is the second.

line0->SetPointId(0, 0); // line between points 0 and 1

line0->SetPointId(1, 1);

line1->SetPointId(0, 1); // line between points 1 and 2

line1->SetPointId(1, 2);

Cells are inserted in the mesh using the SetCell() method. It requires an identifier and the Au-

toPointer to the cell. The Mesh will take ownership of the cell to which the CellAutoPointer

is pointing. This is done internally by the SetCell() method. In this way, the destruction of the

CellAutoPointer will not induce the destruction of the associated cell.

4Some cell types like polygons have a variable number of points associated with them.

4.3. Mesh 75

mesh->SetCell(0, line0);

mesh->SetCell(1, line1);

After serving as an argument of the SetCell() method, a CellAutoPointer no longer holds own-

ership of the cell. It is important not to use this same CellAutoPointer again as argument to

SetCell() without first securing ownership of another cell.

The number of Cells currently inserted in the mesh can be queried with the GetNumberOfCells()

method.

std::cout << "Cells = " << mesh->GetNumberOfCells() << std::endl;

In a way analogous to points, cells can be accessed using Iterators to the CellsContainer in the

mesh. The trait for the cell iterator can be extracted from the mesh and used to define a local type.

using CellIterator = MeshType::CellsContainer::Iterator;

Then the iterators to the first and past-end cell in the mesh can be obtained respectively with the

Begin() and End() methods of the CellsContainer. The CellsContainer of the mesh is re-

turned by the GetCells() method.

CellIterator cellIterator = mesh->GetCells()->Begin();

CellIterator end = mesh->GetCells()->End();

Finally, a standard loop is used to iterate over all the cells. Note the use of the Value() method used

to get the actual pointer to the cell from the CellIterator. Note also that the value returned is a pointer

to the generic CellType. This pointer must be downcast in order to be used as actual LineCell types.

Safe down-casting is performed with the dynamic cast operator, which will throw an exception if

the conversion cannot be safely performed.

while (cellIterator != end)

{

MeshType::CellType * cellptr = cellIterator.Value();

auto * line = dynamic_cast<LineType *>(cellptr);

if (line == nullptr)

{

continue;

}

std::cout << line->GetNumberOfPoints() << std::endl;

++cellIterator;

}

76 Chapter 4. Data Representation

4.3.3 Managing Data in Cells

The source code for this section can be found in the file

Mesh3.cxx.

Just as custom data can be associated with points in the mesh, it is also possible to associate custom

data with cells. The type of the data associated with the cells can be different from the data type

associated with points. By default, however, these two types are the same. The following example

illustrates how to access data associated with cells. The approach is analogous to the one used to

access point data.

Consider the example of a mesh containing lines on which values are associated with each line. The

mesh and cell header files should be included first.

#include "itkMesh.h"

#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 2>;

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;

using LineType = itk::LineCell<CellType>;

Let’s now create a Mesh and insert some points into it. Note that the dimension of the points matches

the dimension of the Mesh. Here we insert a sequence of points that look like a plot of the log()
function. We add the vnl math::eps value in order to avoid numerical errors when the point id is

zero. The value of vnl math::eps is the difference between 1.0 and the least value greater than

1.0 that is representable in this computer.

auto mesh = MeshType::New();

using PointType = MeshType::PointType;

PointType point;

constexpr unsigned int numberOfPoints = 10;

for (unsigned int id = 0; id < numberOfPoints; ++id)

{

point[0] = static_cast<PointType::ValueType>(id); // x

point[1] = std::log(static_cast<double>(id) + itk::Math::eps); // y

mesh->SetPoint(id, point);

}

https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

4.3. Mesh 77

A set of line cells is created and associated with the existing points by using point identifiers. In this

simple case, the point identifiers can be deduced from cell identifiers since the line cells are ordered

in the same way.

CellType::CellAutoPointer line;

const unsigned int numberOfCells = numberOfPoints - 1;

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

line.TakeOwnership(new LineType);

line->SetPointId(0, cellId); // first point

line->SetPointId(1, cellId + 1); // second point

mesh->SetCell(cellId, line); // insert the cell

}

Data associated with cells is inserted in the itk::Mesh by using the SetCellData() method. It

requires the user to provide an identifier and the value to be inserted. The identifier should match

one of the inserted cells. In this simple example, the square of the cell identifier is used as cell data.

Note the use of static cast to PixelType in the assignment.

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

mesh->SetCellData(cellId, static_cast<PixelType>(cellId * cellId));

}

Cell data can be read from the Mesh with the GetCellData() method. It requires the user to provide

the identifier of the cell for which the data is to be retrieved. The user should provide also a valid

pointer to a location where the data can be copied.

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

auto value = static_cast<PixelType>(0.0);

mesh->GetCellData(cellId, &value);

std::cout << "Cell " << cellId << " = " << value << std::endl;

}

Neither SetCellData() or GetCellData() are efficient ways to access cell data. More efficient

access to cell data can be achieved by using the Iterators built into the CellDataContainer.

using CellDataIterator = MeshType::CellDataContainer::ConstIterator;

Note that the ConstIterator is used here because the data is only going to be read. This approach

is exactly the same already illustrated for getting access to point data. The iterator to the first cell

data item can be obtained with the Begin() method of the CellDataContainer. The past-end

iterator is returned by the End() method. The cell data container itself can be obtained from the

mesh with the method GetCellData().

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

78 Chapter 4. Data Representation

CellDataIterator cellDataIterator = mesh->GetCellData()->Begin();

CellDataIterator end = mesh->GetCellData()->End();

Finally, a standard loop is used to iterate over all the cell data entries. Note the use of the Value()

method to get the value associated with the data entry. PixelType elements are copied into the local

variable cellValue.

while (cellDataIterator != end)

{

PixelType cellValue = cellDataIterator.Value();

std::cout << cellValue << std::endl;

++cellDataIterator;

}

4.3.4 Customizing the Mesh

The source code for this section can be found in the file

MeshTraits.cxx.

This section illustrates the full power of Generic Programming. This is sometimes perceived as too

much of a good thing!

The toolkit has been designed to offer flexibility while keeping the complexity of the code to a mod-

erate level. This is achieved in the Mesh by hiding most of its parameters and defining reasonable

defaults for them.

The generic concept of a mesh integrates many different elements. It is possible in principle to use

independent types for every one of such elements. The mechanism used in generic programming for

specifying the many different types involved in a concept is called traits. They are basically the list

of all types that interact with the current class.

The itk::Mesh is templated over three parameters. So far only two of them have been discussed,

namely the PixelType and the Dimension. The third parameter is a class providing the set of traits

required by the mesh. When the third parameter is omitted a default class is used. This default class

is the itk::DefaultStaticMeshTraits. If you want to customize the types used by the mesh, the

way to proceed is to modify the default traits and provide them as the third parameter of the Mesh

class instantiation.

There are two ways of achieving this. The first is to use the existing

itk::DefaultStaticMeshTraits class. This class is itself templated over six parameters.

Customizing those parameters could provide enough flexibility to define a very specific kind of

mesh. The second way is to write a traits class from scratch, in which case the easiest way to

proceed is to copy the DefaultStaticMeshTraits into another file and edit its content. Only the

first approach is illustrated here. The second is discouraged unless you are familiar with Generic

https://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html
https://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

4.3. Mesh 79

Programming, feel comfortable with C++ templates, and have access to an abundant supply of

(Colombian) coffee.

The first step in customizing the mesh is to include the header file of the Mesh and its static traits.

#include "itkMesh.h"

#include "itkDefaultStaticMeshTraits.h"

Then the MeshTraits class is instantiated by selecting the types of each one of its six template

arguments. They are in order

PixelType. The value type associated with every point.

PointDimension. The dimension of the space in which the mesh is embedded.

MaxTopologicalDimension. The highest dimension of the mesh cells.

CoordRepType. The type used to represent spacial coordinates.

InterpolationWeightType. The type used to represent interpolation weights.

CellPixelType. The value type associated with every cell.

Let’s define types and values for each one of those elements. For example, the following code

uses points in 3D space as nodes of the Mesh. The maximum dimension of the cells will be two,

meaning that this is a 2D manifold better know as a surface. The data type associated with points is

defined to be a four-dimensional vector. This type could represent values of membership for a four-

class segmentation method. The value selected for the cells are 4× 3 matrices, which could have

for example the derivative of the membership values with respect to coordinates in space. Finally,

a double type is selected for representing space coordinates on the mesh points and also for the

weight used for interpolating values.

constexpr unsigned int PointDimension = 3;

constexpr unsigned int MaxTopologicalDimension = 2;

using PixelType = itk::Vector<double, 4>;

using CellDataType = itk::Matrix<double, 4, 3>;

using CoordinateType = double;

using InterpolationWeightType = double;

using MeshTraits = itk::DefaultStaticMeshTraits<PixelType,

PointDimension,

MaxTopologicalDimension,

CoordinateType,

InterpolationWeightType,

CellDataType>;

using MeshType = itk::Mesh<PixelType, PointDimension, MeshTraits>;

80 Chapter 4. Data Representation

The itk::LineCell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;

using LineType = itk::LineCell<CellType>;

Let’s now create an Mesh and insert some points on it. Note that the dimension of the points matches

the dimension of the Mesh. Here we insert a sequence of points that look like a plot of the log()
function.

auto mesh = MeshType::New();

using PointType = MeshType::PointType;

PointType point;

constexpr unsigned int numberOfPoints = 10;

for (unsigned int id = 0; id < numberOfPoints; ++id)

{

point[0] = 1.565; // Initialize points here

point[1] = 3.647; // with arbitrary values

point[2] = 4.129;

mesh->SetPoint(id, point);

}

A set of line cells is created and associated with the existing points by using point identifiers. In this

simple case, the point identifiers can be deduced from cell identifiers since the line cells are ordered

in the same way. Note that in the code above, the values assigned to point components are arbitrary.

In a more realistic example, those values would be computed from another source.

CellType::CellAutoPointer line;

const unsigned int numberOfCells = numberOfPoints - 1;

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

line.TakeOwnership(new LineType);

line->SetPointId(0, cellId); // first point

line->SetPointId(1, cellId + 1); // second point

mesh->SetCell(cellId, line); // insert the cell

}

Data associated with cells is inserted in the Mesh by using the SetCellData() method. It requires

the user to provide an identifier and the value to be inserted. The identifier should match one of the

inserted cells. In this example, we simply store a CellDataType dummy variable named value.

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

CellDataType value;

mesh->SetCellData(cellId, value);

}

https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html

4.3. Mesh 81

Cell data can be read from the Mesh with the GetCellData() method. It requires the user to provide

the identifier of the cell for which the data is to be retrieved. The user should provide also a valid

pointer to a location where the data can be copied.

for (unsigned int cellId = 0; cellId < numberOfCells; ++cellId)

{

CellDataType value;

mesh->GetCellData(cellId, &value);

std::cout << "Cell " << cellId << " = " << value << std::endl;

}

Neither SetCellData() or GetCellData() are efficient ways to access cell data. Efficient access

to cell data can be achieved by using the Iterators built into the CellDataContainer.

using CellDataIterator = MeshType::CellDataContainer::ConstIterator;

Note that the ConstIterator is used here because the data is only going to be read. This approach

is identical to that already illustrated for accessing point data. The iterator to the first cell data item

can be obtained with the Begin() method of the CellDataContainer. The past-end iterator is

returned by the End() method. The cell data container itself can be obtained from the mesh with the

method GetCellData().

CellDataIterator cellDataIterator = mesh->GetCellData()->Begin();

CellDataIterator end = mesh->GetCellData()->End();

Finally a standard loop is used to iterate over all the cell data entries. Note the use of the Value()

method used to get the actual value of the data entry. PixelType elements are returned by copy.

while (cellDataIterator != end)

{

CellDataType cellValue = cellDataIterator.Value();

std::cout << cellValue << std::endl;

++cellDataIterator;

}

4.3.5 Topology and the K-Complex

The source code for this section can be found in the file

MeshKComplex.cxx.

The itk::Mesh class supports the representation of formal topologies. In particular the concept

of K-Complex can be correctly represented in the Mesh. An informal definition of K-Complex may

be as follows: a K-Complex is a topological structure in which for every cell of dimension N, its

boundary faces (which are cells of dimension N − 1) also belong to the structure.

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

82 Chapter 4. Data Representation

This section illustrates how to instantiate a K-Complex structure using the mesh. The example struc-

ture is composed of one tetrahedron, its four triangle faces, its six line edges and its four vertices.

The header files of all the cell types involved should be loaded along with the header file of the mesh

class.

#include "itkMesh.h"

#include "itkLineCell.h"

#include "itkTetrahedronCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension of

the space is three in this case.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 3>;

The cell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;

using VertexType = itk::VertexCell<CellType>;

using LineType = itk::LineCell<CellType>;

using TriangleType = itk::TriangleCell<CellType>;

using TetrahedronType = itk::TetrahedronCell<CellType>;

The mesh is created and the points associated with the vertices are inserted. Note that there is

an important distinction between the points in the mesh and the itk::VertexCell concept. A

VertexCell is a cell of dimension zero. Its main difference as compared to a point is that the cell

can be aware of neighborhood relationships with other cells. Points are not aware of the existence

of cells. In fact, from the pure topological point of view, the coordinates of points in the mesh are

completely irrelevant. They may as well be absent from the mesh structure altogether. VertexCells

on the other hand are necessary to represent the full set of neighborhood relationships on the K-

Complex.

The geometrical coordinates of the nodes of a regular tetrahedron can be obtained by taking every

other node from a regular cube.

auto mesh = MeshType::New();

MeshType::PointType point0;

MeshType::PointType point1;

MeshType::PointType point2;

MeshType::PointType point3;

point0[0] = -1;

point0[1] = -1;

point0[2] = -1;

point1[0] = 1;

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 83

point1[1] = 1;

point1[2] = -1;

point2[0] = 1;

point2[1] = -1;

point2[2] = 1;

point3[0] = -1;

point3[1] = 1;

point3[2] = 1;

mesh->SetPoint(0, point0);

mesh->SetPoint(1, point1);

mesh->SetPoint(2, point2);

mesh->SetPoint(3, point3);

We proceed now to create the cells, associate them with the points and insert them on the mesh.

Starting with the tetrahedron we write the following code.

CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership(new TetrahedronType);

cellpointer->SetPointId(0, 0);

cellpointer->SetPointId(1, 1);

cellpointer->SetPointId(2, 2);

cellpointer->SetPointId(3, 3);

mesh->SetCell(0, cellpointer);

Four triangular faces are created and associated with the mesh now. The first triangle connects points

0,1,2.

cellpointer.TakeOwnership(new TriangleType);

cellpointer->SetPointId(0, 0);

cellpointer->SetPointId(1, 1);

cellpointer->SetPointId(2, 2);

mesh->SetCell(1, cellpointer);

The second triangle connects points 0, 2, 3 .

cellpointer.TakeOwnership(new TriangleType);

cellpointer->SetPointId(0, 0);

cellpointer->SetPointId(1, 2);

cellpointer->SetPointId(2, 3);

mesh->SetCell(2, cellpointer);

The third triangle connects points 0, 3, 1 .

cellpointer.TakeOwnership(new TriangleType);

cellpointer->SetPointId(0, 0);

84 Chapter 4. Data Representation

cellpointer->SetPointId(1, 3);

cellpointer->SetPointId(2, 1);

mesh->SetCell(3, cellpointer);

The fourth triangle connects points 3, 2, 1 .

cellpointer.TakeOwnership(new TriangleType);

cellpointer->SetPointId(0, 3);

cellpointer->SetPointId(1, 2);

cellpointer->SetPointId(2, 1);

mesh->SetCell(4, cellpointer);

Note how the CellAutoPointer is reused every time. Reminder: the itk::AutoPointer loses

ownership of the cell when it is passed as an argument of the SetCell() method. The AutoPointer

is attached to a new cell by using the TakeOwnership() method.

The construction of the K-Complex continues now with the creation of the six lines on the tetrahe-

dron edges.

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 0);

cellpointer->SetPointId(1, 1);

mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 1);

cellpointer->SetPointId(1, 2);

mesh->SetCell(6, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 2);

cellpointer->SetPointId(1, 0);

mesh->SetCell(7, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 1);

cellpointer->SetPointId(1, 3);

mesh->SetCell(8, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 3);

cellpointer->SetPointId(1, 2);

mesh->SetCell(9, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 3);

cellpointer->SetPointId(1, 0);

mesh->SetCell(10, cellpointer);

Finally the zero dimensional cells represented by the itk::VertexCell are created and inserted in

https://www.itk.org/Doxygen/html/classitk_1_1AutoPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 85

the mesh.

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 0);

mesh->SetCell(11, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 1);

mesh->SetCell(12, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 2);

mesh->SetCell(13, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 3);

mesh->SetCell(14, cellpointer);

At this point the Mesh contains four points and fifteen cells enumerated from 0 to 14. The points

can be visited using PointContainer iterators.

using PointIterator = MeshType::PointsContainer::ConstIterator;

PointIterator pointIterator = mesh->GetPoints()->Begin();

PointIterator pointEnd = mesh->GetPoints()->End();

while (pointIterator != pointEnd)

{

std::cout << pointIterator.Value() << std::endl;

++pointIterator;

}

The cells can be visited using CellsContainer iterators.

using CellIterator = MeshType::CellsContainer::ConstIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();

CellIterator cellEnd = mesh->GetCells()->End();

while (cellIterator != cellEnd)

{

CellType * cell = cellIterator.Value();

std::cout << cell->GetNumberOfPoints() << std::endl;

++cellIterator;

}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific cell

classes. This means that at this level we can only have access to the virtual methods defined in the

CellType.

86 Chapter 4. Data Representation

The point identifiers to which the cells have been associated can be visited using iterators de-

fined in the CellType trait. The following code illustrates the use of the PointIdIterators.

The PointIdsBegin() method returns the iterator to the first point-identifier in the cell. The

PointIdsEnd() method returns the iterator to the past-end point-identifier in the cell.

using PointIdIterator = CellType::PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();

PointIdIterator pointIdend = cell->PointIdsEnd();

while (pointIditer != pointIdend)

{

std::cout << *pointIditer << std::endl;

++pointIditer;

}

Note that the point-identifier is obtained from the iterator using the more traditional *iterator

notation instead the Value() notation used by cell-iterators.

Up to here, the topology of the K-Complex is not completely defined since we have only introduced

the cells. ITK allows the user to define explicitly the neighborhood relationships between cells. It

is clear that a clever exploration of the point identifiers could have allowed a user to figure out the

neighborhood relationships. For example, two triangle cells sharing the same two point identifiers

will probably be neighbor cells. Some of the drawbacks on this implicit discovery of neighborhood

relationships is that it takes computing time and that some applications may not accept the same

assumptions. A specific case is surgery simulation. This application typically simulates bistoury

cuts in a mesh representing an organ. A small cut in the surface may be made by specifying that two

triangles are not considered to be neighbors any more.

Neighborhood relationships are represented in the mesh by the notion of BoundaryFeature. Every

cell has an internal list of cell-identifiers pointing to other cells that are considered to be its neigh-

bors. Boundary features are classified by dimension. For example, a line will have two boundary

features of dimension zero corresponding to its two vertices. A tetrahedron will have boundary fea-

tures of dimension zero, one and two, corresponding to its four vertices, six edges and four triangular

faces. It is up to the user to specify the connections between the cells.

Let’s take in our current example the tetrahedron cell that was associated with the cell-identifier 0

and assign to it the four vertices as boundaries of dimension zero. This is done by invoking the

SetBoundaryAssignment() method on the Mesh class.

MeshType::CellIdentifier cellId = 0; // the tetrahedron

int dimension = 0; // vertices

MeshType::CellFeatureIdentifier featureId = 0;

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 11);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 12);

4.3. Mesh 87

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 13);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 14);

The featureId is simply a number associated with the sequence of the boundary cells of the same

dimension in a specific cell. For example, the zero-dimensional features of a tetrahedron are its four

vertices. Then the zero-dimensional feature-Ids for this cell will range from zero to three. The one-

dimensional features of the tetrahedron are its six edges, hence its one-dimensional feature-Ids will

range from zero to five. The two-dimensional features of the tetrahedron are its four triangular faces.

The two-dimensional feature ids will then range from zero to three. The following table summarizes

the use on indices for boundary assignments.

Dimension CellType FeatureId range Cell Ids

0 VertexCell [0:3] {11,12,13,14}
1 LineCell [0:5] {5,6,7,8,9,10}
2 TriangleCell [0:3] {1,2,3,4}

In the code example above, the values of featureId range from zero to three. The cell identifiers of

the triangle cells in this example are the numbers {1,2,3,4}, while the cell identifiers of the vertex

cells are the numbers {11,12,13,14}.

Let’s now assign one-dimensional boundary features of the tetrahedron. Those are the line cells with

identifiers {5,6,7,8,9,10}. Note that the feature identifier is reinitialized to zero since the count is

independent for each dimension.

cellId = 0; // still the tetrahedron

dimension = 1; // one-dimensional features = edges

featureId = 0; // reinitialize the count

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 5);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 6);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 7);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 8);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 9);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 10);

Finally we assign the two-dimensional boundary features of the tetrahedron. These are the four trian-

gular cells with identifiers {1,2,3,4}. The featureId is reset to zero since feature-Ids are independent

on each dimension.

cellId = 0; // still the tetrahedron

dimension = 2; // two-dimensional features = triangles

featureId = 0; // reinitialize the count

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 1);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 2);

88 Chapter 4. Data Representation

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 3);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 4);

At this point we can query the tetrahedron cell for information about its boundary features. For

example, the number of boundary features of each dimension can be obtained with the method

GetNumberOfBoundaryFeatures().

cellId = 0; // still the tetrahedron

MeshType::CellFeatureCount n0; // number of zero-dimensional features

MeshType::CellFeatureCount n1; // number of one-dimensional features

MeshType::CellFeatureCount n2; // number of two-dimensional features

n0 = mesh->GetNumberOfCellBoundaryFeatures(0, cellId);

n1 = mesh->GetNumberOfCellBoundaryFeatures(1, cellId);

n2 = mesh->GetNumberOfCellBoundaryFeatures(2, cellId);

The boundary assignments can be recovered with the method GetBoundaryAssignment(). For

example, the zero-dimensional features of the tetrahedron can be obtained with the following code.

dimension = 0;

for (unsigned int b0 = 0; b0 < n0; ++b0)

{

MeshType::CellIdentifier id;

bool found = mesh->GetBoundaryAssignment(dimension, cellId, b0, &id);

if (found)

std::cout << id << std::endl;

}

The following code illustrates how to set the edge boundaries for one of the triangular faces.

cellId = 2; // one of the triangles

dimension = 1; // boundary edges

featureId = 0; // start the count of features

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 7);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 9);

mesh->SetBoundaryAssignment(dimension, cellId, featureId++, 10);

4.3.6 Representing a PolyLine

The source code for this section can be found in the file

MeshPolyLine.cxx.

This section illustrates how to represent a classical PolyLine structure using the itk::Mesh

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

4.3. Mesh 89

A PolyLine only involves zero and one dimensional cells, which are represented by the

itk::VertexCell and the itk::LineCell.

#include "itkMesh.h"

#include "itkLineCell.h"

Then the PixelType is defined and the mesh type is instantiated with it. Note that the dimension of

the space is two in this case.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 2>;

The cell type can now be instantiated using the traits taken from the Mesh.

using CellType = MeshType::CellType;

using VertexType = itk::VertexCell<CellType>;

using LineType = itk::LineCell<CellType>;

The mesh is created and the points associated with the vertices are inserted. Note that there is an

important distinction between the points in the mesh and the itk::VertexCell concept. A Ver-

texCell is a cell of dimension zero. Its main difference as compared to a point is that the cell can be

aware of neighborhood relationships with other cells. Points are not aware of the existence of cells.

In fact, from the pure topological point of view, the coordinates of points in the mesh are completely

irrelevant. They may as well be absent from the mesh structure altogether. VertexCells on the other

hand are necessary to represent the full set of neighborhood relationships on the Polyline.

In this example we create a polyline connecting the four vertices of a square by using three of the

square sides.

auto mesh = MeshType::New();

MeshType::PointType point0;

MeshType::PointType point1;

MeshType::PointType point2;

MeshType::PointType point3;

point0[0] = -1;

point0[1] = -1;

point1[0] = 1;

point1[1] = -1;

point2[0] = 1;

point2[1] = 1;

point3[0] = -1;

point3[1] = 1;

mesh->SetPoint(0, point0);

mesh->SetPoint(1, point1);

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html
https://www.itk.org/Doxygen/html/classitk_1_1LineCell.html
https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

90 Chapter 4. Data Representation

mesh->SetPoint(2, point2);

mesh->SetPoint(3, point3);

We proceed now to create the cells, associate them with the points and insert them on the mesh.

CellType::CellAutoPointer cellpointer;

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 0);

cellpointer->SetPointId(1, 1);

mesh->SetCell(0, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 1);

cellpointer->SetPointId(1, 2);

mesh->SetCell(1, cellpointer);

cellpointer.TakeOwnership(new LineType);

cellpointer->SetPointId(0, 2);

cellpointer->SetPointId(1, 0);

mesh->SetCell(2, cellpointer);

Finally the zero dimensional cells represented by the itk::VertexCell are created and inserted in

the mesh.

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 0);

mesh->SetCell(3, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 1);

mesh->SetCell(4, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 2);

mesh->SetCell(5, cellpointer);

cellpointer.TakeOwnership(new VertexType);

cellpointer->SetPointId(0, 3);

mesh->SetCell(6, cellpointer);

At this point the Mesh contains four points and three cells. The points can be visited using Point-

Container iterators.

using PointIterator = MeshType::PointsContainer::ConstIterator;

PointIterator pointIterator = mesh->GetPoints()->Begin();

PointIterator pointEnd = mesh->GetPoints()->End();

while (pointIterator != pointEnd)

https://www.itk.org/Doxygen/html/classitk_1_1VertexCell.html

4.3. Mesh 91

{

std::cout << pointIterator.Value() << std::endl;

++pointIterator;

}

The cells can be visited using CellsContainer iterators.

using CellIterator = MeshType::CellsContainer::ConstIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();

CellIterator cellEnd = mesh->GetCells()->End();

while (cellIterator != cellEnd)

{

CellType * cell = cellIterator.Value();

std::cout << cell->GetNumberOfPoints() << std::endl;

++cellIterator;

}

Note that cells are stored as pointer to a generic cell type that is the base class of all the specific cell

classes. This means that at this level we can only have access to the virtual methods defined in the

CellType.

The point identifiers to which the cells have been associated can be visited using iterators

defined in the CellType trait. The following code illustrates the use of the PointIdIterator.

The PointIdsBegin() method returns the iterator to the first point-identifier in the cell. The

PointIdsEnd() method returns the iterator to the past-end point-identifier in the cell.

using PointIdIterator = CellType::PointIdIterator;

PointIdIterator pointIditer = cell->PointIdsBegin();

PointIdIterator pointIdend = cell->PointIdsEnd();

while (pointIditer != pointIdend)

{

std::cout << *pointIditer << std::endl;

++pointIditer;

}

Note that the point-identifier is obtained from the iterator using the more traditional *iterator

notation instead the Value() notation used by cell-iterators.

4.3.7 Simplifying Mesh Creation

The source code for this section can be found in the file

AutomaticMesh.cxx.

92 Chapter 4. Data Representation

The itk::Mesh class is extremely general and flexible, but there is some cost to convenience. If

convenience is exactly what you need, then it is possible to get it, in exchange for some of that

flexibility, by means of the itk::AutomaticTopologyMeshSource class. This class automatically

generates an explicit K-Complex, based on the cells you add. It explicitly includes all boundary

information, so that the resulting mesh can be easily traversed. It merges all shared edges, vertices,

and faces, so no geometric feature appears more than once.

This section shows how you can use the AutomaticTopologyMeshSource to instantiate a mesh rep-

resenting a K-Complex. We will first generate the same tetrahedron from Section 4.3.5, after which

we will add a hollow one to illustrate some additional features of the mesh source.

The header files of all the cell types involved should be loaded along with the header file of the mesh

class.

#include "itkTriangleCell.h"

#include "itkAutomaticTopologyMeshSource.h"

We then define the necessary types and instantiate the mesh source. Two new types are

IdentifierType and IdentifierArrayType. Every cell in a mesh has an identifier, whose type

is determined by the mesh traits. AutomaticTopologyMeshSource requires that the identifier type of

all vertices and cells be unsigned long, which is already the default. However, if you created a new

mesh traits class to use string tags as identifiers, the resulting mesh would not be compatible with

itk::AutomaticTopologyMeshSource. An IdentifierArrayType is simply an itk::Array of

IdentifierType objects.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 3>;

using PointType = MeshType::PointType;

using MeshSourceType = itk::AutomaticTopologyMeshSource<MeshType>;

using IdentifierArrayType = MeshSourceType::IdentifierArrayType;

MeshSourceType::Pointer meshSource;

meshSource = MeshSourceType::New();

Now let us generate the tetrahedron. The following line of code generates all the vertices, edges,

and faces, along with the tetrahedral solid, and adds them to the mesh along with the connectivity

information.

meshSource->AddTetrahedron(meshSource->AddPoint(-1, -1, -1),

meshSource->AddPoint(1, 1, -1),

meshSource->AddPoint(1, -1, 1),

meshSource->AddPoint(-1, 1, 1));

The function AutomaticTopologyMeshSource::AddTetrahedron() takes point identifiers

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html
https://www.itk.org/Doxygen/html/classitk_1_1Array.html

4.3. Mesh 93

as parameters; the identifiers must correspond to points that have already been added.

AutomaticTopologyMeshSource::AddPoint() returns the appropriate identifier type for the point

being added. It first checks to see if the point is already in the mesh. If so, it returns the ID of the

point in the mesh, and if not, it generates a new unique ID, adds the point with that ID, and returns

the ID.

Actually, AddTetrahedron() behaves in the same way. If the tetrahedron has already been added,

it leaves the mesh unchanged and returns the ID that the tetrahedron already has. If not, it adds the

tetrahedron (and all its faces, edges, and vertices), and generates a new ID, which it returns.

It is also possible to add all the points first, and then add a number of cells using the point IDs

directly. This approach corresponds with the way the data is stored in many file formats for 3D

polygonal models.

First we add the points (in this case the vertices of a larger tetrahedron). This example also illustrates

that AddPoint() can take a single PointType as a parameter if desired, rather than a sequence of

floats. Another possibility (not illustrated) is to pass in a C-style array.

PointType p;

IdentifierArrayType idArray(4);

p[0] = -2;

p[1] = -2;

p[2] = -2;

idArray[0] = meshSource->AddPoint(p);

p[0] = 2;

p[1] = 2;

p[2] = -2;

idArray[1] = meshSource->AddPoint(p);

p[0] = 2;

p[1] = -2;

p[2] = 2;

idArray[2] = meshSource->AddPoint(p);

p[0] = -2;

p[1] = 2;

p[2] = 2;

idArray[3] = meshSource->AddPoint(p);

Now we add the cells. This time we are just going to create the boundary of a tetrahedron, so we

must add each face separately.

meshSource->AddTriangle(idArray[0], idArray[1], idArray[2]);

meshSource->AddTriangle(idArray[1], idArray[2], idArray[3]);

meshSource->AddTriangle(idArray[2], idArray[3], idArray[0]);

meshSource->AddTriangle(idArray[3], idArray[0], idArray[1]);

Actually, we could have called, e.g., AddTriangle(4, 5, 6), since IDs are assigned sequen-

94 Chapter 4. Data Representation

tially starting at zero, and idArray[0] contains the ID for the fifth point added. But you should

only do this if you are confident that you know what the IDs are. If you add the same point twice

and don’t realize it, your count will differ from that of the mesh source.

You may be wondering what happens if you call, say, AddEdge(0, 1) followed by AddEdge(1,

0). The answer is that they do count as the same edge, and so only one edge is added. The order of

the vertices determines an orientation, and the first orientation specified is the one that is kept.

Once you have built the mesh you want, you can access it by calling GetOutput(). Here we send it

to cout, which prints some summary data for the mesh.

In contrast to the case with typical filters, GetOutput() does not trigger an update process. The

mesh is always maintained in a valid state as cells are added, and can be accessed at any time. It

would, however, be a mistake to modify the mesh by some other means until AutomaticTopolo-

gyMeshSource is done with it, since the mesh source would then have an inaccurate record of which

points and cells are currently in the mesh.

4.3.8 Iterating Through Cells

The source code for this section can be found in the file

MeshCellsIteration.cxx.

Cells are stored in the itk::Mesh as pointers to a generic cell itk::CellInterface. This implies

that only the virtual methods defined on this base cell class can be invoked. In order to use methods

that are specific to each cell type it is necessary to down-cast the pointer to the actual type of the

cell. This can be done safely by taking advantage of the GetType() method that allows to identify

the actual type of a cell.

Let’s start by assuming a mesh defined with one tetrahedron and all its boundary faces. That is, four

triangles, six edges and four vertices.

The cells can be visited using CellsContainer iterators . The iterator Value() corresponds to a raw

pointer to the CellType base class.

using CellIterator = MeshType::CellsContainer::ConstIterator;

CellIterator cellIterator = mesh->GetCells()->Begin();

CellIterator cellEnd = mesh->GetCells()->End();

while (cellIterator != cellEnd)

{

CellType * cell = cellIterator.Value();

std::cout << cell->GetNumberOfPoints() << std::endl;

++cellIterator;

}

In order to perform down-casting in a safe manner, the cell type can be queried first using

the GetType() method. Codes for the cell types have been defined with an enum type on the

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1CellInterface.html

4.3. Mesh 95

itkCellInterface.h header file. These codes are :

• VERTEX CELL

• LINE CELL

• TRIANGLE CELL

• QUADRILATERAL CELL

• POLYGON CELL

• TETRAHEDRON CELL

• HEXAHEDRON CELL

• QUADRATIC EDGE CELL

• QUADRATIC TRIANGLE CELL

The method GetType() returns one of these codes. It is then possible to test the type of the cell

before down-casting its pointer to the actual type. For example, the following code visits all the

cells in the mesh and tests which ones are actually of type LINE CELL. Only those cells are down-

casted to LineType cells and a method specific for the LineType is invoked.

cellIterator = mesh->GetCells()->Begin();

cellEnd = mesh->GetCells()->End();

while (cellIterator != cellEnd)

{

CellType * cell = cellIterator.Value();

if (cell->GetType() == itk::CellGeometryEnum::LINE_CELL)

{

auto * line = static_cast<LineType *>(cell);

std::cout << "dimension = " << line->GetDimension();

std::cout << " # points = " << line->GetNumberOfPoints();

std::cout << std::endl;

}

++cellIterator;

}

In order to perform different actions on different cell types a switch statement can be used with

cases for every cell type. The following code illustrates an iteration over the cells and the invocation

of different methods on each cell type.

cellIterator = mesh->GetCells()->Begin();

cellEnd = mesh->GetCells()->End();

while (cellIterator != cellEnd)

96 Chapter 4. Data Representation

{

CellType * cell = cellIterator.Value();

switch (cell->GetType())

{

case itk::CellGeometryEnum::VERTEX_CELL:

{

std::cout << "VertexCell : " << std::endl;

auto * line = dynamic_cast<VertexType *>(cell);

std::cout << "dimension = " << line->GetDimension() << std::endl;

std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;

break;

}

case itk::CellGeometryEnum::LINE_CELL:

{

std::cout << "LineCell : " << std::endl;

auto * line = dynamic_cast<LineType *>(cell);

std::cout << "dimension = " << line->GetDimension() << std::endl;

std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;

break;

}

case itk::CellGeometryEnum::TRIANGLE_CELL:

{

std::cout << "TriangleCell : " << std::endl;

auto * line = dynamic_cast<TriangleType *>(cell);

std::cout << "dimension = " << line->GetDimension() << std::endl;

std::cout << "# points = " << line->GetNumberOfPoints() << std::endl;

break;

}

default:

{

std::cout << "Cell with more than three points" << std::endl;

std::cout << "dimension = " << cell->GetDimension() << std::endl;

std::cout << "# points = " << cell->GetNumberOfPoints() << std::endl;

break;

}

}

++cellIterator;

}

4.3.9 Visiting Cells

The source code for this section can be found in the file

MeshCellVisitor.cxx.

In order to facilitate access to particular cell types, a convenience mechanism has been built-in on

the itk::Mesh. This mechanism is based on the Visitor Pattern presented in [3]. The visitor pattern

is designed to facilitate the process of walking through an heterogeneous list of objects sharing a

common base class.

The first requirement for using the CellVisitor mechanism it to include the

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

4.3. Mesh 97

CellInterfaceVisitor header file.

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 3>;

using CellType = MeshType::CellType;

using VertexType = itk::VertexCell<CellType>;

using LineType = itk::LineCell<CellType>;

using TriangleType = itk::TriangleCell<CellType>;

using TetrahedronType = itk::TetrahedronCell<CellType>;

Then, a custom CellVisitor class should be declared. In this particular example, the visitor class is

intended to act only on TriangleType cells. The only requirement on the declaration of the visitor

class is that it must provide a method named Visit(). This method expects as arguments a cell

identifier and a pointer to the specific cell type for which this visitor is intended. Nothing prevents a

visitor class from providing Visit() methods for several different cell types. The multiple methods

will be differentiated by the natural C++ mechanism of function overload. The following code

illustrates a minimal cell visitor class.

class CustomTriangleVisitor

{

public:

using TriangleType = itk::TriangleCell<CellType>;

void

Visit(unsigned long cellId, TriangleType * t)

{

std::cout << "Cell # " << cellId << " is a TriangleType ";

std::cout << t->GetNumberOfPoints() << std::endl;

}

CustomTriangleVisitor() = default;

virtual ˜CustomTriangleVisitor() = default;

};

This newly defined class will now be used to instantiate a cell visitor. In this particular example we

create a class CustomTriangleVisitor which will be invoked each time a triangle cell is found

while the mesh iterates over the cells.

using TriangleVisitorInterfaceType =

itk::CellInterfaceVisitorImplementation<PixelType,

MeshType::CellTraits,

TriangleType,

CustomTriangleVisitor>;

98 Chapter 4. Data Representation

Note that the actual CellInterfaceVisitorImplementation is templated over the PixelType, the

CellTraits, the CellType to be visited and the Visitor class that defines with will be done with the

cell.

A visitor implementation class can now be created using the normal invocation to its New() method

and assigning the result to a itk::SmartPointer.

auto triangleVisitor = TriangleVisitorInterfaceType::New();

Many different visitors can be configured in this way. The set of all visitors can be registered with

the MultiVisitor class provided for the mesh. An instance of the MultiVisitor class will walk through

the cells and delegate action to every registered visitor when the appropriate cell type is encountered.

using CellMultiVisitorType = CellType::MultiVisitor;

auto multiVisitor = CellMultiVisitorType::New();

The visitor is registered with the Mesh using the AddVisitor() method.

multiVisitor->AddVisitor(triangleVisitor);

Finally, the iteration over the cells is triggered by calling the method Accept() on the itk::Mesh.

mesh->Accept(multiVisitor);

The Accept() method will iterate over all the cells and for each one will invite the MultiVisitor to

attempt an action on the cell. If no visitor is interested on the current cell type the cell is just ignored

and skipped.

MultiVisitors make it possible to add behavior to the cells without having to create new methods on

the cell types or creating a complex visitor class that knows about every CellType.

4.3.10 More on Visiting Cells

The source code for this section can be found in the file

MeshCellVisitor2.cxx.

The following section illustrates a realistic example of the use of Cell visitors on the itk::Mesh. A

set of different visitors is defined here, each visitor associated with a particular type of cell. All the

visitors are registered with a MultiVisitor class which is passed to the mesh.

The first step is to include the CellInterfaceVisitor header file.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

4.3. Mesh 99

#include "itkCellInterfaceVisitor.h"

The typical mesh types are now declared.

using PixelType = float;

using MeshType = itk::Mesh<PixelType, 3>;

using CellType = MeshType::CellType;

using VertexType = itk::VertexCell<CellType>;

using LineType = itk::LineCell<CellType>;

using TriangleType = itk::TriangleCell<CellType>;

using TetrahedronType = itk::TetrahedronCell<CellType>;

Then, custom CellVisitor classes should be declared. The only requirement on the declaration of

each visitor class is to provide a method named Visit(). This method expects as arguments a cell

identifier and a pointer to the specific cell type for which this visitor is intended.

The following Vertex visitor simply prints out the identifier of the point with which the cell is

associated. Note that the cell uses the method GetPointId() without any arguments. This method

is only defined on the VertexCell.

class CustomVertexVisitor

{

public:

void

Visit(unsigned long cellId, VertexType * t)

{

std::cout << "cell " << cellId << " is a Vertex " << std::endl;

std::cout << " associated with point id = ";

std::cout << t->GetPointId() << std::endl;

}

virtual ˜CustomVertexVisitor() = default;

};

The following Line visitor computes the length of the line. Note that this visitor is slightly more

complicated since it needs to get access to the actual mesh in order to get point coordinates from the

point identifiers returned by the line cell. This is done by holding a pointer to the mesh and querying

the mesh each time point coordinates are required. The mesh pointer is set up in this case with the

SetMesh() method.

class CustomLineVisitor

{

public:

CustomLineVisitor()

: m_Mesh(nullptr)

{}

virtual ˜CustomLineVisitor() = default;

100 Chapter 4. Data Representation

void

SetMesh(MeshType * mesh)

{

m_Mesh = mesh;

}

void

Visit(unsigned long cellId, LineType * t)

{

std::cout << "cell " << cellId << " is a Line " << std::endl;

LineType::PointIdIterator pit = t->PointIdsBegin();

MeshType::PointType p0;

MeshType::PointType p1;

m_Mesh->GetPoint(*pit++, &p0);

m_Mesh->GetPoint(*pit++, &p1);

const double length = p0.EuclideanDistanceTo(p1);

std::cout << " length = " << length << std::endl;

}

private:

MeshType::Pointer m_Mesh;

};

The Triangle visitor below prints out the identifiers of its points. Note the use of the

PointIdIterator and the PointIdsBegin() and PointIdsEnd() methods.

class CustomTriangleVisitor

{

public:

void

Visit(unsigned long cellId, TriangleType * t)

{

std::cout << "cell " << cellId << " is a Triangle " << std::endl;

LineType::PointIdIterator pit = t->PointIdsBegin();

LineType::PointIdIterator end = t->PointIdsEnd();

while (pit != end)

{

std::cout << " point id = " << *pit << std::endl;

++pit;

}

}

virtual ˜CustomTriangleVisitor() = default;

};

The TetrahedronVisitor below simply returns the number of faces on this figure. Note that

GetNumberOfFaces() is a method exclusive of 3D cells.

class CustomTetrahedronVisitor

{

public:

4.3. Mesh 101

void

Visit(unsigned long cellId, TetrahedronType * t)

{

std::cout << "cell " << cellId << " is a Tetrahedron " << std::endl;

std::cout << " number of faces = ";

std::cout << t->GetNumberOfFaces() << std::endl;

}

virtual ˜CustomTetrahedronVisitor() = default;

};

With the cell visitors we proceed now to instantiate CellVisitor implementations. The visitor classes

defined above are used as template arguments of the cell visitor implementation.

using VertexVisitorInterfaceType =

itk::CellInterfaceVisitorImplementation<PixelType,

MeshType::CellTraits,

VertexType,

CustomVertexVisitor>;

using LineVisitorInterfaceType =

itk::CellInterfaceVisitorImplementation<PixelType,

MeshType::CellTraits,

LineType,

CustomLineVisitor>;

using TriangleVisitorInterfaceType =

itk::CellInterfaceVisitorImplementation<PixelType,

MeshType::CellTraits,

TriangleType,

CustomTriangleVisitor>;

using TetrahedronVisitorInterfaceType =

itk::CellInterfaceVisitorImplementation<PixelType,

MeshType::CellTraits,

TetrahedronType,

CustomTetrahedronVisitor>;

Note that the actual CellInterfaceVisitorImplementation is templated over the PixelType, the

CellTraits, the CellType to be visited and the Visitor class defining what to do with the cell.

A visitor implementation class can now be created using the normal invocation to its New() method

and assigning the result to a itk::SmartPointer.

auto vertexVisitor = VertexVisitorInterfaceType::New();

auto lineVisitor = LineVisitorInterfaceType::New();

auto triangleVisitor = TriangleVisitorInterfaceType::New();

auto tetrahedronVisitor = TetrahedronVisitorInterfaceType::New();

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

102 Chapter 4. Data Representation

Remember that the LineVisitor requires the pointer to the mesh object since it needs to get access to

actual point coordinates. This is done by invoking the SetMesh() method defined above.

lineVisitor->SetMesh(mesh);

Looking carefully you will notice that the SetMesh() method is declared in CustomLineVisitor

but we are invoking it on LineVisitorInterfaceType. This is possible thanks to the way in which

the VisitorInterfaceImplementation is defined. This class derives from the visitor type provided by

the user as the fourth template parameter. LineVisitorInterfaceType is then a derived class of

CustomLineVisitor.

The set of visitors should now be registered with the MultiVisitor class that will walk through the

cells and delegate action to every registered visitor when the appropriate cell type is encountered.

The following lines create a MultiVisitor object.

using CellMultiVisitorType = CellType::MultiVisitor;

auto multiVisitor = CellMultiVisitorType::New();

Every visitor implementation is registered with the Mesh using the AddVisitor() method.

multiVisitor->AddVisitor(vertexVisitor);

multiVisitor->AddVisitor(lineVisitor);

multiVisitor->AddVisitor(triangleVisitor);

multiVisitor->AddVisitor(tetrahedronVisitor);

Finally, the iteration over the cells is triggered by calling the method Accept() on the Mesh class.

mesh->Accept(multiVisitor);

The Accept() method will iterate over all the cells and for each one will invite the MultiVisitor to

attempt an action on the cell. If no visitor is interested on the current cell type, the cell is just ignored

and skipped.

4.4 Path

4.4.1 Creating a PolyLineParametricPath

The source code for this section can be found in the file

PolyLineParametricPath1.cxx.

This example illustrates how to use the itk::PolyLineParametricPath. This class will typically

be used for representing in a concise way the output of an image segmentation algorithm in 2D. The

https://www.itk.org/Doxygen/html/classitk_1_1PolyLineParametricPath.html

4.4. Path 103

PolyLineParametricPath however could also be used for representing any open or close curve in

N-Dimensions as a linear piece-wise approximation.

First, the header file of the PolyLineParametricPath class must be included.

#include "itkPolyLineParametricPath.h"

The path is instantiated over the dimension of the image. In this example the image and path are

two-dimensional.

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<unsigned char, Dimension>;

using PathType = itk::PolyLineParametricPath<Dimension>;

ImageType::ConstPointer image = reader->GetOutput();

auto path = PathType::New();

path->Initialize();

using ContinuousIndexType = PathType::ContinuousIndexType;

ContinuousIndexType cindex;

using ImagePointType = ImageType::PointType;

ImagePointType origin = image->GetOrigin();

ImageType::SpacingType spacing = image->GetSpacing();

ImageType::SizeType size = image->GetBufferedRegion().GetSize();

ImagePointType point;

point[0] = origin[0] + spacing[0] * size[0];

point[1] = origin[1] + spacing[1] * size[1];

using ContinuousIndexValueType = ContinuousIndexType::ValueType;

cindex =

image->TransformPhysicalPointToContinuousIndex<ContinuousIndexValueType>(

origin);

path->AddVertex(cindex);

cindex =

image->TransformPhysicalPointToContinuousIndex<ContinuousIndexValueType>(

point);

path->AddVertex(cindex);

CHAPTER

FIVE

SPATIAL OBJECTS

This chapter introduces the basic classes that describe itk::SpatialObjects.

5.1 Introduction

We promote the philosophy that many of the goals of medical image processing are more effectively

addressed if we consider them in the broader context of object processing. ITK’s Spatial Object

class hierarchy provides a consistent API for querying, manipulating, and interconnecting objects

in physical space. Via this API, methods can be coded to be invariant to the data structure used

to store the objects being processed. By abstracting the representations of objects to support their

representation by data structures other than images, a broad range of medical image analysis research

is supported; key examples are described in the following.

Model-to-image registration. A mathematical instance of an object can be registered with an im-

age to localize the instance of that object in the image. Using SpatialObjects, mutual informa-

tion, cross-correlation, and boundary-to-image metrics can be applied without modification to

perform spatial object-to-image registration.

Model-to-model registration. Iterative closest point, landmark, and surface distance minimization

methods can be used with any ITK transform, to rigidly and non-rigidly register image, FEM,

and Fourier descriptor-based representations of objects as SpatialObjects.

Atlas formation. Collections of images or SpatialObjects can be integrated to represent expected

object characteristics and their common modes of variation. Labels can be associated with the

objects of an atlas.

Storing segmentation results from one or multiple scans. Results of segmentations are best

stored in physical/world coordinates so that they can be combined and compared with other

segmentations from other images taken at other resolutions. Segmentation results from hand

drawn contours, pixel labelings, or model-to-image registrations are treated consistently.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

106 Chapter 5. Spatial Objects

Capturing functional and logical relationships between objects. SpatialObjects can have parent

and children objects. Queries made of an object (such as to determine if a point is inside of

the object) can be made to integrate the responses from the children object. Transformations

applied to a parent can also be propagated to the children. Thus, for example, when a liver

model is moved, its vessels move with it.

Conversion to and from images. Basic functions are provided to render any SpatialObject (or col-

lection of SpatialObjects) into an image.

IO. SpatialObject reading and writing to disk is independent of the SpatialObject class hierarchy.

Meta object IO (through itk::MetaImageIO) methods are provided, and others are easily

defined.

Tubes, blobs, images, surfaces. Are a few of the many SpatialObject data containers and types

provided. New types can be added, generally by only defining one or two member functions

in a derived class.

In the remainder of this chapter several examples are used to demonstrate the many spatial objects

found in ITK and how they can be organized into hierarchies. Further the examples illustrate how

to use SpatialObject transformations to control and calculate the position of objects in space.

5.2 Hierarchy

Spatial objects can be combined to form a hierarchy as a tree. By design, a SpatialObject can

have one parent and only one. Moreover, each transform is stored within each object, therefore the

hierarchy cannot be described as a Directed Acyclic Graph (DAG) but effectively as a tree. The user

is responsible for maintaining the tree structure, no checking is done to ensure a cycle-free tree.

The source code for this section can be found in the file

SpatialObjectHierarchy.cxx.

This example describes how itk::SpatialObject can form a hierarchy. This first example also

shows how to create and manipulate spatial objects.

#include "itkSpatialObject.h"

First, we create two spatial objects and give them the names First Object and Second Object,

respectively.

using SpatialObjectType = itk::SpatialObject<3>;

auto object1 = SpatialObjectType::New();

object1->GetProperty().SetName("First Object");

https://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

5.2. Hierarchy 107

auto object2 = SpatialObjectType::New();

object2->GetProperty().SetName("Second Object");

We then add the second object to the first one by using the AddChild() method. As a result object2

becomes a child of object1.

object1->AddChild(object2);

Whenever the parameters of an object, including its parent-child relationships are changed, we must

then call the Update() method so that the object-to-parent transforms and bounding box internally

managed by each object are maintained. Calling Update() on an object automatically causes the

Update() function of each child to be called.

object1->Update();

object1-¿Update();

if (object2->HasParent())

{

std::cout << "Name of the parent of the object2: ";

std::cout << object2->GetParent()->GetProperty().GetName() << std::endl;

}

To access the list of children of the object, the GetChildren() method returns a pointer to the (STL)

list of children.

SpatialObjectType::ChildrenListType * childrenList = object1->GetChildren();

std::cout << "object1 has " << childrenList->size() << " child"

<< std::endl;

SpatialObjectType::ChildrenListType::const_iterator it =

childrenList->begin();

while (it != childrenList->end())

{

std::cout << "Name of the child of the object 1: ";

std::cout << (*it)->GetProperty().GetName() << std::endl;

++it;

}

Do NOT forget to delete the list of children since the GetChildren() function creates an internal

list.

delete childrenList;

An object can also be removed by using the RemoveChild() method, and then calling Update() on

the now-orphaned child.

108 Chapter 5. Spatial Objects

object1->RemoveChild(object2);

object2->Update();

Then, we can query the number of children an object has with the GetNumberOfChildren()

method.

std::cout << "Number of children for object1: ";

std::cout << object1->GetNumberOfChildren() << std::endl;

The Clear() method erases all the information regarding the object as well as the data. This method

is usually overloaded by derived classes. Note that the Parent-Child relationships of the object are

NOT reset when Clear() is called; however, the object-to-parent transform is reset to Identity. As a

result, Update() should be called before the object is re-used, to re-compute convenience member

variables and values. To remove the children of a node, use the RemoveAllChildren() function.

object1->Clear();

object1->RemoveAllChildren();

The output of this first example looks like the following:

Name of the parent of the object2: First Object

object1 has 1 child

Name of the child of the object 1: Second Object

Number of children for object1: 0

5.3 Transformations

The source code for this section can be found in the file

SpatialObjectTransforms.cxx.

This example describes the different transformations and the Object and World ”spaces” associated

with a spatial object.

Object Space . SpatialObjects have one primary coordinate space that is readily available to them,

their ObjectSpace. This is the space in which the object was inherently defined. No trans-

forms are applied to the points/values that get/set into this space. All children of an object are

added into this space.

ObjectToParentTransform . SpatialObjects have only one transform that they directly control,

their ObjectToParentTransform. This transform specifies how an object’s ObjectSpace

is transformed to fit into its parent’s ObjectSpace. The ObjectToParentTransform is an

affine transform, and it is confirmed to be invertible when assigned, or the assignment fails.

5.3. Transformations 109

WorldSpace . WorldSpace is not directly controlled by any SpatialObject except the SpatialOb-

ject at the top level of the parent-child tree hierarchy of Spatial Objects. That is, any Spa-

tialObject that does not have a parent exists in a WorldSpace that is defined by applying its

ObjectToParentTransform to its ObjectSpace.

Several member functions and variables are available to every SpatialObject so that they can readily

access the WorldSpace in which they exist:

ProtectedComputeObjectToWorldTransform() : This function is called whenever Update()

is called. It composes the object’s ObjectToParentTransform with its parent’s cached

ObjectToWorldTransform, to determine the transform from the object’s ObjectSpace

to WorldSpace. This transform is always invertible. This call will cause all chil-

dren objects to also update their cached ObjectToWorldTransform. This function

should be called on the top level object (via Update()) once all children object’s

ObjectToParentTransforms have been set. This function should be called on children ob-

jects when their ObjectToParentTransforms have been changed.

GetObjectToWorldTransform() : Returns the cached ObjectToWorldTransform.

It is the user’s responsibility to call Update() (and thereby

ProtectedComputeObjectToWorldTransform()) when necessary, prior to calling

GetObjectToWorldTransform(), otherwise the returned transform may be ”stale.”

SetObjectToWorldTransform() : This function updates the object’s ObjectToParentTransform,

using an inverse of the parent’s cached ObjectToWorldTransform, so that the composition

of those transforms equal the transform passed to this function. If an object has no parent, its

ObjectToParentTransform is equal to its ObjectToWorldTransform.

Like the first example, we create two spatial objects and give them the names First Object and

Second Object, respectively.

using SpatialObjectType = itk::SpatialObject<2>;

using TransformType = SpatialObjectType::TransformType;

auto object1 = SpatialObjectType::New();

object1->GetProperty().SetName("First Object");

auto object2 = SpatialObjectType::New();

object2->GetProperty().SetName("Second Object");

object1->AddChild(object2);

First we define a scaling factor of 2 for the object2. This is done by setting the Scale of the

ObjectToParentTransform.

Note that this scaling would also apply to the children of object2, if it had children. If you wish

to scale an object, but not its children, then those children aren’t actually “children”, but they are

110 Chapter 5. Spatial Objects

siblings. So, you should insert a GroupSpatialObject that holds both the object and its siblings

as children. Then you can manipulate the object’s transform/scaling independent of its siblings in

that group, and if you wish to transform the object and its siblings, you apply that transform to the

group.

double scale[2];

scale[0] = 2;

scale[1] = 2;

object2->GetModifiableObjectToParentTransform()->Scale(scale);

Next, we apply an offset on the ObjectToParentTransform to object1 which will also cause a

translation of its child, object2.

TransformType::OffsetType object1Offset;

object1Offset[0] = 4;

object1Offset[1] = 3;

object1->GetModifiableObjectToParentTransform()->SetOffset(object1Offset);

To realize the previous operations on the transformations, we should invoke the Update() that

recomputes all dependent transformations.

By calling this function on object1, it will also descend to its children, thereby also updating the

ObjectToWorldTransform for object2.

object1->Update();

We can now display the ObjectToWorldTransform for both objects. One should notice that the

only valid members of the Affine transformation are a Matrix and an Offset. For instance, when we

invoke the Scale() method the internal Matrix is recomputed to reflect this change.

The AffineTransform performs the following computation

X ′ = R · (S ·X −C)+C+V (5.1)

Where R is the rotation matrix, S is a scaling factor, C is the center of rotation and V is a translation

vector or offset. Therefore the affine matrix M and the affine offset T are defined as:

M = R ·S (5.2)

T =C+V −R ·C (5.3)

This means that Scale() and GetOffset() as well as the GetMatrix() might not be set to the ex-

pected value, especially if the transformation results from a composition with another transformation

since the composition is done using the Matrix and the Offset of the affine transformation.

5.3. Transformations 111

Next, we show the two affine transformations corresponding to the two objects.

First, the ObjectToParentTransform for object2:

std::cout << "object2 ObjectToParent Matrix: " << std::endl;

std::cout << object2->GetObjectToParentTransform()->GetMatrix()

<< std::endl;

std::cout << "object2 ObjectToParent Offset: ";

std::cout << object2->GetObjectToParentTransform()->GetOffset()

<< std::endl;

Second, the ObjectToWorldTransform that is derived from the parent-child hierarchy and the com-

position of the corresponding ObjectToParentTransforms, computed by called to Update(), and

cached for efficient subsequent use, for object2:

std::cout << "object2 ObjectToWorld Matrix: " << std::endl;

std::cout << object2->GetObjectToWorldTransform()->GetMatrix() << std::endl;

std::cout << "object2 ObjectToWorld Offset: ";

std::cout << object2->GetObjectToWorldTransform()->GetOffset() << std::endl;

We can also update an object’s ObjectToParentTransform by changing its

ObjectToWorldTransform and then calling ComputeObjectToParentTransform(), which

changes the ObjectToParentTransform so as to achieve the cached ObjectToWorldTransform.

TransformType::OffsetType Object1ToWorldOffset;

Object1ToWorldOffset[0] = 3;

Object1ToWorldOffset[1] = 3;

object1->GetModifiableObjectToWorldTransform()->SetOffset(

Object1ToWorldOffset);

object1->ComputeObjectToParentTransform();

Finally, we display the resulting affine transformations. First, for the ObjectToParentTransform

for object1.

std::cout << "object1 ObjectToParent Matrix: " << std::endl;

std::cout << object1->GetObjectToParentTransform()->GetMatrix()

<< std::endl;

std::cout << "object1 ObjectToParent Offset: ";

std::cout << object1->GetObjectToParentTransform()->GetOffset()

<< std::endl;

Second, for the ObjectToWorldTransform for object2.

std::cout << "object2 ObjectToWorld Matrix: " << std::endl;

std::cout << object2->GetObjectToWorldTransform()->GetMatrix() << std::endl;

std::cout << "object2 ObjectToWorld Offset: ";

std::cout << object2->GetObjectToWorldTransform()->GetOffset() << std::endl;

112 Chapter 5. Spatial Objects

Also, as a child is disconnected from its parent, it should not move; so its

ObjectToParentTransform should be updated to match its ObjectToWorldTransform.

object1->RemoveChild(object2);

object2->Update();

std::cout << "object2 ObjectToWorld Matrix: " << std::endl;

std::cout << object2->GetObjectToWorldTransform()->GetMatrix() << std::endl;

std::cout << "object2 ObjectToWorld Offset: ";

std::cout << object2->GetObjectToWorldTransform()->GetOffset() << std::endl;

std::cout << "object2 ObjectToParent Matrix: " << std::endl;

std::cout << object2->GetObjectToParentTransform()->GetMatrix()

<< std::endl;

std::cout << "object2 ObjectToParent Offset: ";

std::cout << object2->GetObjectToParentTransform()->GetOffset()

<< std::endl;

The output of this second example looks like the following:

object2 ObjectToParent Matrix:

2 0

0 2

object2 ObjectToParent Offset: 0 0

object2 ObjectToWorld Matrix:

2 0

0 2

object2 ObjectToWorld Offset: 4 3

object1 ObjectToParent Matrix:

1 0

0 1

object1 ObjectToParent Offset: 3 3

object2 ObjectToWorld Matrix:

2 0

0 2

object2 ObjectToWorld Offset: 7 6

object2 ObjectToParent Matrix:

2 0

0 2

object2 ObjectToParent Offset: 7 6

object2 ObjectToWorld Matrix:

2 0

0 2

object2 ObjectToWorld Offset: 7 6

5.4. Types of Spatial Objects 113

5.4 Types of Spatial Objects

This section describes in detail the variety of spatial objects implemented in ITK.

5.4.1 ArrowSpatialObject

The source code for this section can be found in the file

ArrowSpatialObject.cxx.

This example shows how to create an itk::ArrowSpatialObject. Let’s begin by including the

appropriate header file.

#include "itkArrowSpatialObject.h"

The itk::ArrowSpatialObject, like many SpatialObjects, is templated over the dimensionality

of the object.

using ArrowType = itk::ArrowSpatialObject<3>;

auto myArrow = ArrowType::New();

The position of the arrow in the object (local) coordinate frame is defined using the

SetPositionInObjectSpace() method. By default the position is set to the origin of the space.

This is the ”tip” of the arrow.

ArrowType::PointType pos;

pos.Fill(1);

myArrow->SetPositionInObjectSpace(pos);

The length of the arrow in the local coordinate frame is done using the

SetLengthInObjectSpace() method. By default the length is set to 1. This is the euclidean

distance spanned by the arrow’s tail from its tip (position).

myArrow->SetLengthInObjectSpace(2);

The direction of the arrow can be set using the SetDirectionInObjectSpace() method. This is

the direction the tail of the arrow extends from the position. By default the direction is set along the

X axis (first direction).

ArrowType::VectorType direction;

direction.Fill(0);

direction[1] = 1.0;

myArrow->SetDirectionInObjectSpace(direction);

https://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ArrowSpatialObject.html

114 Chapter 5. Spatial Objects

5.4.2 BlobSpatialObject

The source code for this section can be found in the file

BlobSpatialObject.cxx.

itk::BlobSpatialObject defines an n-dimensional blob. This class derives from

itk::itkPointBasedSpatialObject . A blob is defined as a list of points which compose the

object.

Let’s start by including the appropriate header file.

#include "itkBlobSpatialObject.h"

BlobSpatialObject is templated over the dimension of the space. A BlobSpatialObject contains a list

of SpatialObjectPoints. Basically, a SpatialObjectPoint has a position and a color.

#include "itkSpatialObjectPoint.h"

First we declare several standard type definitions.

Every Point-Based SpatialObject also provides type definitions for their SpatialObject point type

(e.g., BlobPointType for BlobSpatialObject) as well as for a physical space point (e.g., an

itk::Point).

Then, we create a list of points and we set the position of each point in the local coordinate system

using the SetPositionInObjectSpace() method. We also set the color of each point to be red.

BlobType::BlobPointListType list;

for (unsigned int i = 0; i < 4; ++i)

{

BlobPointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

p.SetPositionInObjectSpace(pnt);

p.SetRed(1);

p.SetGreen(0);

p.SetBlue(0);

p.SetAlpha(1.0);

list.push_back(p);

}

Next, we create the blob and set its name using the SetName() function. We also set its Identification

https://www.itk.org/Doxygen/html/classitk_1_1BlobSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1itkPointBasedSpatialObject.html

5.4. Types of Spatial Objects 115

number with SetId() and we add the list of points previously created and call Update() so that the

object can update its transforms, bounding boxes, and other cached convenience member variables.

BlobPointer blob = BlobType::New();

blob->GetProperty().SetName("My Blob");

blob->SetId(1);

blob->SetPoints(list);

blob->Update();

The GetPoints() method returns a reference to the internal list of points of the object.

BlobType::BlobPointListType pointList = blob->GetPoints();

std::cout << "The blob contains " << pointList.size();

std::cout << " points" << std::endl;

Then we can access the points using standard STL iterators and GetPositionInWorldSpace() and

GetColor() functions return respectively the position and the color of the point.

GetPositionInWorldSpace() applies the ObjectToParentTransforms of all of the par-

ent objects to this point. Since this object has no parents and since this object’s

ObjectToParentTransform is the identify transform (by default), these world space positions are

the same as the object space positions that were set.

BlobType::BlobPointListType::const_iterator it = blob->GetPoints().begin();

while (it != blob->GetPoints().end())

{

std::cout << "Position = " << (*it).GetPositionInWorldSpace()

<< std::endl;

std::cout << "Color = " << (*it).GetColor() << std::endl;

++it;

}

5.4.3 EllipseSpatialObject

The source code for this section can be found in the file

EllipseSpatialObject.cxx.

itk::EllipseSpatialObject defines an n-dimensional ellipse. Like other spatial objects this

class derives from itk::SpatialObject. Let’s start by including the appropriate header file.

#include "itkEllipseSpatialObject.h"

Like most of the SpatialObjects, the itk::EllipseSpatialObject is templated over the dimen-

sion of the space. In this example we create a 3-dimensional ellipse.

https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

116 Chapter 5. Spatial Objects

using EllipseType = itk::EllipseSpatialObject<3>;

auto myEllipse = EllipseType::New();

Then we set a radius for each dimension. By default the radius is set to 1. Additionally,

after setting the SpatialObject’s radius, we call Update() to update all transforms, bounding

box, and other convenience variables within the class that its other member functions (e.g.,

IsInsideInWorldSpace()) depend upon.

EllipseType::ArrayType radius;

for (unsigned int i = 0; i < 3; ++i)

{

radius[i] = i;

}

myEllipse->SetRadiusInObjectSpace(radius);

myEllipse->Update();

Or if we have the same radius in each dimension we can do

myEllipse->SetRadiusInObjectSpace(2.0);

myEllipse->Update();

We can then display the current radius by using the GetRadiusInObjectSpace() function:

EllipseType::ArrayType myCurrentRadius =

myEllipse->GetRadiusInObjectSpace();

std::cout << "Current radius is " << myCurrentRadius << std::endl;

Like other SpatialObjects, we can query the object if a point is inside the object by using the

IsInsideInWorldSpace(itk::Point) function. This function expects the point to be in world

coordinates.

itk::Point<double, 3> insidePoint;

insidePoint.Fill(1.0);

if (myEllipse->IsInsideInWorldSpace(insidePoint))

{

std::cout << "The point " << insidePoint;

std::cout << " is really inside the ellipse" << std::endl;

}

itk::Point<double, 3> outsidePoint;

outsidePoint.Fill(3.0);

if (!myEllipse->IsInsideInWorldSpace(outsidePoint))

{

std::cout << "The point " << outsidePoint;

std::cout << " is really outside the ellipse" << std::endl;

}

5.4. Types of Spatial Objects 117

All spatial objects can be queried for a value at a point. The IsEvaluableAtInWorldSpace()

function returns a boolean to know if the object is evaluable at a particular point.

if (myEllipse->IsEvaluableAtInWorldSpace(insidePoint))

{

std::cout << "The point " << insidePoint;

std::cout << " is evaluable at the point " << insidePoint << std::endl;

}

If the object is evaluable at that point, the ValueAtInWorldSpace() function returns the current

value at that position. Most of the objects returns a boolean value which is set to true when the point

is inside the object and false when it is outside. However, for some objects, it is more interesting to

return a value representing, for instance, the distance from the center of the object or the distance

from the boundary.

double value;

myEllipse->ValueAtInWorldSpace(insidePoint, value);

std::cout << "The value inside the ellipse is: " << value << std::endl;

Like other spatial objects, we can also query the bounding box of the object by using

GetMyBoundingBoxInWorldSpace(). The resulting bounding box is the world space.

const EllipseType::BoundingBoxType * boundingBox =

myEllipse->GetMyBoundingBoxInWorldSpace();

std::cout << "Bounding Box: " << boundingBox->GetBounds() << std::endl;

5.4.4 GaussianSpatialObject

The source code for this section can be found in the file

GaussianSpatialObject.cxx.

This example shows how to create a itk::GaussianSpatialObject which defines a Gaussian in

an n-dimensional space. This object is particularly useful to query the value at a point in physical

space. Let’s begin by including the appropriate header file.

#include "itkGaussianSpatialObject.h"

The itk::GaussianSpatialObject is templated over the dimensionality of the object.

using GaussianType = itk::GaussianSpatialObject<3>;

auto myGaussian = GaussianType::New();

The SetMaximum() function is used to set the maximum value of the Gaussian.

https://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GaussianSpatialObject.html

118 Chapter 5. Spatial Objects

myGaussian->SetMaximum(2);

The radius of the Gaussian is defined by the SetRadiusInObjectSpace() method. By default the

radius is set to 1.0.

myGaussian->SetRadiusInObjectSpace(3);

The standard ValueAt() function is used to determine the value of the Gaussian at a particular point

in physical space.

itk::Point<double, 3> pt;

pt[0] = 1;

pt[1] = 2;

pt[2] = 1;

double value;

myGaussian->ValueAtInWorldSpace(pt, value);

std::cout << "ValueAtInWorldSpace(" << pt << ") = " << value << std::endl;

5.4.5 GroupSpatialObject

The source code for this section can be found in the file

GroupSpatialObject.cxx.

A itk::GroupSpatialObject does not have any data associated with it. It can be used to group

objects or to add transforms to a current object. In this example we show how to use a GroupSpa-

tialObject.

Let’s begin by including the appropriate header file.

#include "itkGroupSpatialObject.h"

The itk::GroupSpatialObject is templated over the dimensionality of the object.

using GroupType = itk::GroupSpatialObject<3>;

auto myGroup = GroupType::New();

Next, we create an itk::EllipseSpatialObject and add it to the group.

using EllipseType = itk::EllipseSpatialObject<3>;

auto myEllipse = EllipseType::New();

myEllipse->SetRadiusInObjectSpace(2);

myGroup->AddChild(myEllipse);

https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

5.4. Types of Spatial Objects 119

We then translate the group by 10mm in each direction. Therefore the ellipse is translated in physical

space at the same time.

GroupType::VectorType offset;

offset.Fill(10);

myGroup->GetModifiableObjectToParentTransform()->SetOffset(offset);

myGroup->Update();

We can then query if a point is inside the group using the IsInsideInWorldSpace() function. We

need to specify in this case that we want to consider all the hierarchy, therefore we set the depth to

2.

GroupType::PointType point;

point.Fill(10);

std::cout << "Is my point " << point

<< " inside?: " << myGroup->IsInsideInWorldSpace(point, 2)

<< std::endl;

Like any other SpatialObjects we can remove the ellipse from the group using the RemoveChild()

method.

myGroup->RemoveChild(myEllipse);

With ITKv5, the GroupSpatialObject also replaces the SceneSpatialObject. Much of the func-

tionality is unchanged.

The source code for this section can be found in the file

SceneSpatialObject.cxx.

This example describes how to use the itk::GroupSpatialObject as a replacement to ITKv4’s

SceneSpatialObject. This example begins by including the appropriate header file.

#include "itkGroupSpatialObject.h"

A GroupSpatialObject is templated over the dimension of the space which requires all the objects

referenced by the GroupSpatialObject to have the same dimension.

First we define some type definitions and we create the GroupSpatialObject.

using GroupSpatialObjectType = itk::GroupSpatialObject<3>;

auto scene = GroupSpatialObjectType::New();

Then we create two itk::EllipseSpatialObjects.

https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

120 Chapter 5. Spatial Objects

using EllipseType = itk::EllipseSpatialObject<3>;

auto ellipse1 = EllipseType::New();

ellipse1->SetRadiusInObjectSpace(1);

ellipse1->SetId(1);

auto ellipse2 = EllipseType::New();

ellipse2->SetId(2);

ellipse2->SetRadiusInObjectSpace(2);

Then we add the two ellipses into the GroupSpatialObject.

scene->AddChild(ellipse1);

scene->AddChild(ellipse2);

We can query the number of object in the GroupSpatialObject with the GetNumberOfObjects()

function. This function takes two optional arguments: the depth at which we should count the

number of objects (default is set to infinity) and the name of the object to count (default is set to

ITK NULLPTR). This allows the user to count, for example, only ellipses.

std::cout << "Number of objects in the GroupSpatialObject = ";

std::cout << scene->GetNumberOfChildren() << std::endl;

The GetObjectById() returns the first object in the GroupSpatialObject that has the specified

identification number.

std::cout << "Object in the GroupSpatialObject with an ID == 2: "

<< std::endl;

scene->GetObjectById(2)->Print(std::cout);

Objects can also be removed from the GroupSpatialObject using the RemoveChild() function.

scene->RemoveChild(ellipse1);

The list of current objects in the GroupSpatialObject can be retrieved using the GetChildren()

method. Like the GetNumberOfChildren() method, GetChildren() can take two arguments: a

search depth and a matching name.

GroupSpatialObjectType::ObjectListType * myObjectList =

scene->GetChildren();

std::cout << "Number of children in the GroupSpatialObject = ";

std::cout << myObjectList->size() << std::endl;

In some cases, it is useful to define the hierarchy by using ParentId() and the current identification

number. This results in having a flat list of SpatialObjects in the GroupSpatialObject. Therefore,

5.4. Types of Spatial Objects 121

the GroupSpatialObject provides the FixParentChildHierarchyUsingParentIds() method

which reorganizes the Parent-Child hierarchy based on identification numbers.

scene->FixParentChildHierarchyUsingParentIds();

The scene can also be cleared by using the RemoveAllChildren() function.

scene->RemoveAllChildren();

5.4.6 ImageSpatialObject

The source code for this section can be found in the file

ImageSpatialObject.cxx.

An itk::ImageSpatialObject contains an itk::Image but adds the notion of spatial trans-

formations and parent-child hierarchy. Let’s begin the next example by including the appropriate

header file.

#include "itkImageSpatialObject.h"

We first create a simple 2D image of size 10 by 10 pixels.

using Image = itk::Image<short, 2>;

auto image = Image::New();

Image::SizeType size = { { 10, 10 } };

Image::RegionType region;

region.SetSize(size);

image->SetRegions(region);

image->Allocate();

Next we fill the image with increasing values.

using Iterator = itk::ImageRegionIterator<Image>;

Iterator it(image, region);

short pixelValue = 0;

for (it.GoToBegin(); !it.IsAtEnd(); ++it, ++pixelValue)

{

it.Set(pixelValue);

}

We can now define the ImageSpatialObject which is templated over the dimension and the pixel

type of the image.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

122 Chapter 5. Spatial Objects

using ImageSpatialObject = itk::ImageSpatialObject<2, short>;

auto imageSO = ImageSpatialObject::New();

Then we set the itkImage to the ImageSpatialObject by using the SetImage() function.

imageSO->SetImage(image);

imageSO->Update();

At this point we can use IsInsideInWorldSpace(), IsInsideInObjectSpace(),

ValueAtInWorldSpace(), ValueAtInObjectSpace(), DerivativeAtInWorldSpace(),

and DerivativeAtInObjectSpace() functions inherent in SpatialObjects. The

IsInsideInWorldSpace() value can be particularly useful when dealing with registration.

using Point = itk::Point<double, 2>;

Point insidePoint;

insidePoint.Fill(9);

if (imageSO->IsInsideInWorldSpace(insidePoint))

{

std::cout << insidePoint << " is inside the image." << std::endl;

}

The ValueAtInWorldSpace() returns the value of the closest pixel, i.e no interpolation, to a given

physical point.

double returnedValue;

imageSO->ValueAtInWorldSpace(insidePoint, returnedValue);

std::cout << "ValueAt(" << insidePoint << ") = " << returnedValue

<< std::endl;

The derivative at a specified position in space can be computed using the

DerivativeAtInWorldSpace() function. The first argument is the point in physical coordi-

nates where we are evaluating the derivatives. The second argument is the order of the derivation,

and the third argument is the result expressed as a itk::Vector. Derivatives are computed

iteratively using finite differences and, like the ValueAtInWorldSpace(), no interpolator is used.

ImageSpatialObject::DerivativeVectorType returnedDerivative;

imageSO->DerivativeAtInWorldSpace(insidePoint, 1, returnedDerivative);

std::cout << "First derivative at " << insidePoint;

std::cout << " = " << returnedDerivative << std::endl;

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.4. Types of Spatial Objects 123

5.4.7 ImageMaskSpatialObject

The source code for this section can be found in the file

ImageMaskSpatialObject.cxx.

An itk::ImageMaskSpatialObject is similar to the itk::ImageSpatialObject and derived

from it. However, the main difference is that the IsInsideInWorldSpace() returns true if the pixel

intensity in the image is not zero.

The supported pixel types does not include itk::RGBPixel, itk::RGBAPixel, etc. So far it only

allows to manage images of simple types like unsigned short, unsigned int, or itk::Vector. Let’s

begin by including the appropriate header file.

#include "itkImageMaskSpatialObject.h"

The ImageMaskSpatialObject is templated over the dimensionality.

using ImageMaskSpatialObject = itk::ImageMaskSpatialObject<3>;

Next we create an itk::Image of size 50x50x50 filled with zeros except a bright square in the

middle which defines the mask.

using PixelType = ImageMaskSpatialObject::PixelType;

using ImageType = ImageMaskSpatialObject::ImageType;

using Iterator = itk::ImageRegionIterator<ImageType>;

auto image = ImageType::New();

ImageType::SizeType size = { { 50, 50, 50 } };

ImageType::IndexType index = { { 0, 0, 0 } };

ImageType::RegionType region;

region.SetSize(size);

region.SetIndex(index);

image->SetRegions(region);

image->Allocate(true); // initialize buffer to zero

ImageType::RegionType insideRegion;

ImageType::SizeType insideSize = { { 30, 30, 30 } };

ImageType::IndexType insideIndex = { { 10, 10, 10 } };

insideRegion.SetSize(insideSize);

insideRegion.SetIndex(insideIndex);

Iterator it(image, insideRegion);

it.GoToBegin();

while (!it.IsAtEnd())

{

it.Set(itk::NumericTraits<PixelType>::max());

https://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBAPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

124 Chapter 5. Spatial Objects

++it;

}

Then, we create an ImageMaskSpatialObject.

auto maskSO = ImageMaskSpatialObject::New();

We then pass the corresponding pointer to the image.

maskSO->SetImage(image);

maskSO->Update();

We can then test if a physical itk::Point is inside or outside the mask image. This is particularly

useful during the registration process when only a part of the image should be used to compute the

metric.

ImageMaskSpatialObject::PointType inside;

inside.Fill(20);

std::cout << "Is my point " << inside << " inside my mask? "

<< maskSO->IsInsideInWorldSpace(inside) << std::endl;

ImageMaskSpatialObject::PointType outside;

outside.Fill(45);

std::cout << "Is my point " << outside << " outside my mask? "

<< !maskSO->IsInsideInWorldSpace(outside) << std::endl;

5.4.8 LandmarkSpatialObject

The source code for this section can be found in the file

LandmarkSpatialObject.cxx.

itk::LandmarkSpatialObject contains a list of itk::SpatialObjectPoints which have a po-

sition and a color. Let’s begin this example by including the appropriate header file.

#include "itkLandmarkSpatialObject.h"

LandmarkSpatialObject is templated over the dimension of the space.

Here we create a 3-dimensional landmark.

using LandmarkType = itk::LandmarkSpatialObject<3>;

using LandmarkPointer = LandmarkType::Pointer;

using LandmarkPointType = LandmarkType::LandmarkPointType;

using PointType = LandmarkType::PointType;

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1LandmarkSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectPoint.html

5.4. Types of Spatial Objects 125

LandmarkPointer landmark = LandmarkType::New();

Next, we set some properties of the object like its name and its identification number.

landmark->GetProperty().SetName("Landmark1");

landmark->SetId(1);

We are now ready to add points into the landmark. We first create a list of SpatialObjectPoint and

for each point we set the position and the color.

LandmarkType::LandmarkPointListType list;

for (unsigned int i = 0; i < 5; ++i)

{

LandmarkPointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

p.SetPositionInObjectSpace(pnt);

p.SetColor(1, 0, 0, 1);

list.push_back(p);

}

Then we add the list to the object using the SetPoints() method. Calling Update() afterwards

ensures that World Space representations are also updated to match changes in the SpatialObject’s

parameters.

landmark->SetPoints(list);

landmark->Update();

The current point list can be accessed using the GetPoints() method. The method returns a refer-

ence to the (STL) list.

size_t nPoints = landmark->GetPoints().size();

std::cout << "Number of Points in the landmark: " << nPoints << std::endl;

LandmarkType::LandmarkPointListType::const_iterator it =

landmark->GetPoints().begin();

while (it != landmark->GetPoints().end())

{

std::cout << "Position: " << (*it).GetPositionInObjectSpace()

<< std::endl;

std::cout << "Color: " << (*it).GetColor() << std::endl;

++it;

}

126 Chapter 5. Spatial Objects

5.4.9 LineSpatialObject

The source code for this section can be found in the file

LineSpatialObject.cxx.

itk::LineSpatialObject defines a line in an n-dimensional space. A line is defined as a list of

points which compose the line, i.e a polyline. We begin the example by including the appropriate

header files.

#include "itkLineSpatialObject.h"

LineSpatialObject is templated over the dimension of the space. A LineSpatialObject con-

tains a list of LineSpatialObjectPoints. A LineSpatialObjectPoint has a position, n− 1

normals and a color. Each normal is expressed as a itk::CovariantVector of size N.

First, we define some type definitions and we create our line.

using LineType = itk::LineSpatialObject<3>;

using LinePointer = LineType::Pointer;

using LinePointType = LineType::LinePointType;

using PointType = LineType::PointType;

using CovariantVectorType = LineType::CovariantVectorType;

LinePointer Line = LineType::New();

We create a point list and we set the position of each point in the local coordinate system using the

SetPositionInObjectSpace() method. We also set the color of each point to red.

The two normals are set using the SetNormalInObjectSpace() function; the first argument is the

normal itself and the second argument is the index of the normal.

LineType::LinePointListType list;

for (unsigned int i = 0; i < 3; ++i)

{

LinePointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

p.SetPositionInObjectSpace(pnt);

p.SetColor(1, 0, 0, 1);

CovariantVectorType normal1;

CovariantVectorType normal2;

for (unsigned int j = 0; j < 3; ++j)

{

normal1[j] = j;

https://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

5.4. Types of Spatial Objects 127

normal2[j] = j * 2;

}

p.SetNormalInObjectSpace(normal1, 0);

p.SetNormalInObjectSpace(normal2, 1);

list.push_back(p);

}

Next, we set the name of the object using SetName(). We also set its identification number with

SetId() and we set the list of points previously created.

Line->GetProperty().SetName("Line1");

Line->SetId(1);

Line->SetPoints(list);

Line->Update();

The GetPoints() method returns a reference to the internal list of points of the object.

LineType::LinePointListType pointList = Line->GetPoints();

std::cout << "Number of points representing the line: ";

std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators. The GetPositionInObjectSpace()

and GetColor() functions return respectively the position and the color of the point. Using the

GetNormalInObjectSpace(unsigned int) function we can access each normal.

LineType::LinePointListType::const_iterator it = Line->GetPoints().begin();

while (it != Line->GetPoints().end())

{

std::cout << "Position = " << (*it).GetPositionInObjectSpace()

<< std::endl;

std::cout << "Color = " << (*it).GetColor() << std::endl;

std::cout << "First normal = " << (*it).GetNormalInObjectSpace(0)

<< std::endl;

std::cout << "Second normal = " << (*it).GetNormalInObjectSpace(1)

<< std::endl;

std::cout << std::endl;

++it;

}

5.4.10 MeshSpatialObject

The source code for this section can be found in the file

MeshSpatialObject.cxx.

128 Chapter 5. Spatial Objects

A itk::MeshSpatialObject contains a pointer to an itk::Mesh but adds the notion of

spatial transformations and parent-child hierarchy. This example shows how to create an

itk::MeshSpatialObject , use it to form a binary image, and write the mesh to disk.

Let’s begin by including the appropriate header file.

#include "itkSpatialObjectToImageFilter.h"

#include "itkMeshSpatialObject.h"

#include "itkSpatialObjectReader.h"

#include "itkSpatialObjectWriter.h"

The MeshSpatialObject wraps an itk::Mesh, therefore we first create a mesh.

using MeshTrait = itk::DefaultDynamicMeshTraits<float, 3, 3>;

using MeshType = itk::Mesh<float, 3, MeshTrait>;

using CellTraits = MeshType::CellTraits;

using CellInterfaceType = itk::CellInterface<float, CellTraits>;

using TetraCellType = itk::TetrahedronCell<CellInterfaceType>;

using PointType = MeshType::PointType;

using CellType = MeshType::CellType;

using CellAutoPointer = CellType::CellAutoPointer;

auto myMesh = MeshType::New();

MeshType::CoordRepType testPointCoords[4][3] = {

{ 0, 0, 0 }, { 9, 0, 0 }, { 9, 9, 0 }, { 0, 0, 9 }

};

MeshType::PointIdentifier tetraPoints[4] = { 0, 1, 2, 4 };

int i;

for (i = 0; i < 4; ++i)

{

myMesh->SetPoint(i, PointType(testPointCoords[i]));

}

myMesh->SetCellsAllocationMethod(

itk::MeshEnums::MeshClassCellsAllocationMethod::

CellsAllocatedDynamicallyCellByCell);

CellAutoPointer testCell1;

testCell1.TakeOwnership(new TetraCellType);

testCell1->SetPointIds(tetraPoints);

myMesh->SetCell(0, testCell1);

We then create a MeshSpatialObject which is templated over the type of mesh previously de-

https://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1MeshSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

5.4. Types of Spatial Objects 129

fined...

using MeshSpatialObjectType = itk::MeshSpatialObject<MeshType>;

auto myMeshSpatialObject = MeshSpatialObjectType::New();

... and pass the Mesh pointer to the MeshSpatialObject

myMeshSpatialObject->SetMesh(myMesh);

myMeshSpatialObject->Update();

The actual pointer to the passed mesh can be retrieved using the GetMesh() function, just like any

other SpatialObjects.

myMeshSpatialObject->GetMesh();

The GetBoundingBoxInWorldSpace(), ValueAtInWorldSpace(), IsInsideInWorldSpace(),

and related functions in ObjectSpace can be used to access important information.

std::cout

<< "Mesh bounds : "

<< myMeshSpatialObject->GetMyBoundingBoxInWorldSpace()->GetBounds()

<< std::endl;

MeshSpatialObjectType::PointType myPhysicalPoint;

myPhysicalPoint.Fill(1);

std::cout << "Is my physical point inside? : "

<< myMeshSpatialObject->IsInsideInWorldSpace(myPhysicalPoint)

<< std::endl;

Now that we have defined the MeshSpatialObject, we can save the actual mesh using the

itk::SpatialObjectWriter. In order to do so, we need to specify the type of Mesh we are

writing.

using WriterType = itk::SpatialObjectWriter<3, float, MeshTrait>;

auto writer = WriterType::New();

Then we set the mesh spatial object and the name of the file and call the the Update() function.

writer->SetInput(myMeshSpatialObject);

writer->SetFileName("myMesh.meta");

writer->Update();

Reading the saved mesh is done using the itk::SpatialObjectReader . Once again we need to

specify the type of mesh we intend to read.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html

130 Chapter 5. Spatial Objects

using ReaderType = itk::SpatialObjectReader<3, float, MeshTrait>;

auto reader = ReaderType::New();

We set the name of the file we want to read and call update

reader->SetFileName("myMesh.meta");

reader->Update();

Next, we show how to create a binary image of a MeshSpatialObject using the

itk::SpatialObjectToImageFilter . The resulting image will have ones inside and zeros outside

the mesh. First we define and instantiate the SpatialObjectToImageFilter.

using ImageType = itk::Image<unsigned char, 3>;

using GroupType = itk::GroupSpatialObject<3>;

using SpatialObjectToImageFilterType =

itk::SpatialObjectToImageFilter<GroupType, ImageType>;

auto imageFilter = SpatialObjectToImageFilterType::New();

Then we pass the output of the reader, i.e the MeshSpatialObject, to the filter.

imageFilter->SetInput(reader->GetGroup());

Finally we trigger the execution of the filter by calling the Update() method. Note that depending

on the size of the mesh, the computation time can increase significantly.

imageFilter->Update();

Then we can get the resulting binary image using the GetOutput() function.

ImageType::Pointer myBinaryMeshImage = imageFilter->GetOutput();

5.4.11 SurfaceSpatialObject

The source code for this section can be found in the file

SurfaceSpatialObject.cxx.

itk::SurfaceSpatialObject defines a surface in n-dimensional space. A

SurfaceSpatialObject is defined by a list of points which lie on the surface. Each point

has a position and a normal. The example begins by including the appropriate header file.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SurfaceSpatialObject.html

5.4. Types of Spatial Objects 131

#include "itkSurfaceSpatialObject.h"

SurfaceSpatialObject is templated over the dimension of the space. A SurfaceSpatialObject

contains a list of SurfaceSpatialObjectPoints. A SurfaceSpatialObjectPoint has a posi-

tion, a normal and a color.

First we define some type definitions

using SurfaceType = itk::SurfaceSpatialObject<3>;

using SurfacePointer = SurfaceType::Pointer;

using SurfacePointType = SurfaceType::SurfacePointType;

using CovariantVectorType = SurfaceType::CovariantVectorType;

using PointType = SurfaceType::PointType;

SurfacePointer surface = SurfaceType::New();

We create a point list and we set the position of each point in the local coordinate system using the

SetPositionInObjectSpace() method. We also set the color of each point to red.

SurfaceType::SurfacePointListType list;

for (unsigned int i = 0; i < 3; ++i)

{

SurfacePointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

p.SetPositionInObjectSpace(pnt);

p.SetColor(1, 0, 0, 1);

CovariantVectorType normal;

for (unsigned int j = 0; j < 3; ++j)

{

normal[j] = j;

}

p.SetNormalInObjectSpace(normal);

list.push_back(p);

}

Next, we create the surface and set his name using SetName(). We also set its Identification number

with SetId() and we add the list of points previously created.

surface->GetProperty().SetName("Surface1");

surface->SetId(1);

surface->SetPoints(list);

surface->Update();

132 Chapter 5. Spatial Objects

The GetPoints() method returns a reference to the internal list of points of the object.

SurfaceType::SurfacePointListType pointList = surface->GetPoints();

std::cout << "Number of points representing the surface: ";

std::cout << pointList.size() << std::endl;

Then we can access the points using standard STL iterators. GetPositionInObjectSpace()

and GetColor() functions return respectively the position and the color of the point.

GetNormalInObjectSpace() returns the normal as a itk::CovariantVector .

SurfaceType::SurfacePointListType::const_iterator it =

surface->GetPoints().begin();

while (it != surface->GetPoints().end())

{

std::cout << "Position = " << (*it).GetPositionInObjectSpace()

<< std::endl;

std::cout << "Normal = " << (*it).GetNormalInObjectSpace() << std::endl;

std::cout << "Color = " << (*it).GetColor() << std::endl;

std::cout << std::endl;

it++;

}

5.4.12 TubeSpatialObject

itk::TubeSpatialObject is a class for the representation of tubular structures using SpatialOb-

jects. In particular, it is intended to be used to represent vascular networks extracted from 2D and

3D images. It can also be used to represent airways, nerves, bile ducts, and more.

The class itk::DTITubeSpatialObject is derived from this class and adds constructs for repre-

senting fiber tracts from diffusion tensor images.

The source code for this section can be found in the file

TubeSpatialObject.cxx.

itk::TubeSpatialObject defines an n-dimensional tube. A tube is defined as a list of centerline

points which have a position, a radius, some normals and other properties. Let’s start by including

the appropriate header file.

#include "itkTubeSpatialObject.h"

TubeSpatialObject is templated over the dimension of the space. A TubeSpatialObject contains a

list of TubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

5.4. Types of Spatial Objects 133

using TubeType = itk::TubeSpatialObject<3>;

using TubePointer = TubeType::Pointer;

using TubePointType = TubeType::TubePointType;

using PointType = TubeType::PointType;

using CovariantVectorType = TubePointType::CovariantVectorType;

TubePointer tube = TubeType::New();

We create a point list and we set:

1. The position of each point in the local coordinate system using the

SetPositionInObjectSpace() method.

2. The radius of the tube at this position using SetRadiusInObjectSpace().

3. The two normals at the tube is set using SetNormal1InObjectSpace() and

SetNormal2InObjectSpace().

4. The color of the point is set to red in our case.

TubeType::TubePointListType list;

for (i = 0; i < 5; ++i)

{

TubePointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

p.SetPositionInObjectSpace(pnt);

p.SetRadiusInObjectSpace(1);

CovariantVectorType normal1;

CovariantVectorType normal2;

for (unsigned int j = 0; j < 3; ++j)

{

normal1[j] = j;

normal2[j] = j * 2;

}

p.SetNormal1InObjectSpace(normal1);

p.SetNormal2InObjectSpace(normal2);

p.SetColor(1, 0, 0, 1);

list.push_back(p);

}

Next, we create the tube and set its name using SetName(). We also set its identification number

with SetId() and, at the end, we add the list of points previously created.

134 Chapter 5. Spatial Objects

tube->GetProperty().SetName("Tube1");

tube->SetId(1);

tube->SetPoints(list);

tube->Update();

The GetPoints() method return a reference to the internal list of points of the object.

TubeType::TubePointListType pointList = tube->GetPoints();

std::cout << "Number of points representing the tube: ";

std::cout << pointList.size() << std::endl;

The ComputeTangentAndNormals() function computes the normals and the tangent for each point

using finite differences.

tube->ComputeTangentsAndNormals();

Then we can access the points using STL iterators. GetPositionInObjectSpace()

and GetColor() functions return respectively the position and the color of the point.

GetRadiusInObjectSpace() returns the radius at that point. GetNormal1InObjectSpace()

and GetNormal2InObjectSpace() functions return a itk::CovariantVector and

GetTangentInObjectSpace() returns a itk::Vector.

TubeType::TubePointListType::const_iterator it = tube->GetPoints().begin();

i = 0;

while (it != tube->GetPoints().end())

{

std::cout << std::endl;

std::cout << "Point #" << i << std::endl;

std::cout << "Position: " << (*it).GetPositionInObjectSpace()

<< std::endl;

std::cout << "Radius: " << (*it).GetRadiusInObjectSpace() << std::endl;

std::cout << "Tangent: " << (*it).GetTangentInObjectSpace() << std::endl;

std::cout << "First Normal: " << (*it).GetNormal1InObjectSpace()

<< std::endl;

std::cout << "Second Normal: " << (*it).GetNormal2InObjectSpace()

<< std::endl;

std::cout << "Color = " << (*it).GetColor() << std::endl;

it++;

i++;

}

5.4.13 DTITubeSpatialObject

The source code for this section can be found in the file

DTITubeSpatialObject.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.4. Types of Spatial Objects 135

itk::DTITubeSpatialObject derives from itk::TubeSpatialObject. It represents a fiber

tracts from Diffusion Tensor Imaging. A DTITubeSpatialObject is described as a list of center-

line points which have a position, a radius, normals, the fractional anisotropy (FA) value, the ADC

value, the geodesic anisotropy (GA) value, the eigenvalues and vectors as well as the full tensor

matrix.

Let’s start by including the appropriate header file.

#include "itkDTITubeSpatialObject.h"

DTITubeSpatialObject is templated over the dimension of the space. A DTITubeSpatialObject con-

tains a list of DTITubeSpatialObjectPoints.

First we define some type definitions and we create the tube.

using DTITubeType = itk::DTITubeSpatialObject<3>;

using DTITubePointType = DTITubeType::DTITubePointType;

using PointType = DTITubeType::PointType;

auto dtiTube = DTITubeType::New();

We create a point list and we set:

1. The position of each point in the local coordinate system using the

SetPositionInObjectSpace() method.

2. The radius of the tube at this position using SetRadiusInObjectSpace().

3. The FA value using AddField(DTITubePointType::FA).

4. The ADC value using AddField(DTITubePointType::ADC).

5. The GA value using AddField(DTITubePointType::GA).

6. The full tensor matrix supposed to be symmetric definite positive value using

SetTensorMatrix().

7. The color of the point is set to red in our case.

DTITubeType::DTITubePointListType list;

for (i = 0; i < 5; ++i)

{

DTITubePointType p;

PointType pnt;

pnt[0] = i;

pnt[1] = i + 1;

pnt[2] = i + 2;

https://www.itk.org/Doxygen/html/classitk_1_1DTITubeSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1TubeSpatialObject.html

136 Chapter 5. Spatial Objects

p.SetPositionInObjectSpace(pnt);

p.SetRadiusInObjectSpace(1);

p.AddField(

itk::DTITubeSpatialObjectPointEnums::DTITubeSpatialObjectPointField::FA,

i);

p.AddField(itk::DTITubeSpatialObjectPointEnums::

DTITubeSpatialObjectPointField::ADC,

2 * i);

p.AddField(

itk::DTITubeSpatialObjectPointEnums::DTITubeSpatialObjectPointField::GA,

3 * i);

p.AddField("Lambda1", 4 * i);

p.AddField("Lambda2", 5 * i);

p.AddField("Lambda3", 6 * i);

auto * v = new float[6];

for (unsigned int k = 0; k < 6; ++k)

{

v[k] = k;

}

p.SetTensorMatrix(v);

delete[] v;

p.SetColor(1, 0, 0, 1);

list.push_back(p);

}

Next, we create the tube and set its name using SetName(). We also set its identification number

with SetId() and, at the end, we add the list of points previously created.

dtiTube->GetProperty().SetName("DTITube");

dtiTube->SetId(1);

dtiTube->SetPoints(list);

dtiTube->Update();

The GetPoints() method return a reference to the internal list of points of the object.

DTITubeType::DTITubePointListType pointList = dtiTube->GetPoints();

std::cout << "Number of points representing the fiber tract: ";

std::cout << pointList.size() << std::endl;

Then we can access the points using STL iterators. GetPositionInObjectSpace() and

GetColor() functions return respectively the position and the color of the point.

DTITubeType::DTITubePointListType::const_iterator it =

dtiTube->GetPoints().begin();

i = 0;

while (it != dtiTube->GetPoints().end())

{

std::cout << std::endl;

std::cout << "Point #" << i << std::endl;

5.5. Read/Write SpatialObjects 137

std::cout << "Position: " << (*it).GetPositionInObjectSpace()

<< std::endl;

std::cout << "Radius: " << (*it).GetRadiusInObjectSpace() << std::endl;

std::cout << "FA: "

<< (*it).GetField(itk::DTITubeSpatialObjectPointEnums::

DTITubeSpatialObjectPointField::FA)

<< std::endl;

std::cout << "ADC: "

<< (*it).GetField(itk::DTITubeSpatialObjectPointEnums::

DTITubeSpatialObjectPointField::ADC)

<< std::endl;

std::cout << "GA: "

<< (*it).GetField(itk::DTITubeSpatialObjectPointEnums::

DTITubeSpatialObjectPointField::GA)

<< std::endl;

std::cout << "Lambda1: " << (*it).GetField("Lambda1") << std::endl;

std::cout << "Lambda2: " << (*it).GetField("Lambda2") << std::endl;

std::cout << "Lambda3: " << (*it).GetField("Lambda3") << std::endl;

std::cout << "TensorMatrix: " << (*it).GetTensorMatrix()[0] << " : ";

std::cout << (*it).GetTensorMatrix()[1] << " : ";

std::cout << (*it).GetTensorMatrix()[2] << " : ";

std::cout << (*it).GetTensorMatrix()[3] << " : ";

std::cout << (*it).GetTensorMatrix()[4] << " : ";

std::cout << (*it).GetTensorMatrix()[5] << std::endl;

std::cout << "Color = " << (*it).GetColor() << std::endl;

++it;

++i;

}

5.5 Read/Write SpatialObjects

The source code for this section can be found in the file

ReadWriteSpatialObject.cxx.

Reading and writing SpatialObjects is a fairly simple task. The classes

itk::SpatialObjectReader and itk::SpatialObjectWriter are used to read and write

these objects, respectively. (Note these classes make use of the MetaIO auxiliary I/O routines and

therefore have a .meta file suffix.)

We begin this example by including the appropriate header files.

#include "itkSpatialObjectReader.h"

#include "itkSpatialObjectWriter.h"

#include "itkEllipseSpatialObject.h"

Next, we create a SpatialObjectWriter that is templated over the dimension of the object(s) we want

to write.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectReader.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectWriter.html

138 Chapter 5. Spatial Objects

using WriterType = itk::SpatialObjectWriter<3>;

auto writer = WriterType::New();

For this example, we create an itk::EllipseSpatialObject.

using EllipseType = itk::EllipseSpatialObject<3>;

auto ellipse = EllipseType::New();

ellipse->SetRadiusInObjectSpace(3);

Finally, we set to the writer the object to write using the SetInput() method and we set the name

of the file with SetFileName() and call the Update() method to actually write the information.

writer->SetInput(ellipse);

writer->SetFileName("ellipse.meta");

writer->Update();

Now we are ready to open the freshly created object. We first create a SpatialObjectReader which

is also templated over the dimension of the object in the file. This means that the file should contain

only objects with the same dimension.

using ReaderType = itk::SpatialObjectReader<3>;

auto reader = ReaderType::New();

Next we set the name of the file to read using SetFileName() and we call the Update() method to

read the file.

reader->SetFileName("ellipse.meta");

reader->Update();

To get the objects in the file you can call the GetGroup() method. Calls to GetGroup() returns a

pointer to a itk::GroupSpatialObject .

ReaderType::GroupType * group = reader->GetGroup();

std::cout << "Number of objects in the group: ";

std::cout << group->GetNumberOfChildren() << std::endl;

5.6 Statistics Computation via SpatialObjects

The source code for this section can be found in the file

SpatialObjectToImageStatisticsCalculator.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html

5.6. Statistics Computation via SpatialObjects 139

This example describes how to use the itk::SpatialObjectToImageStatisticsCalculator to

compute statistics of an itk::Image only in a region defined inside a given itk::SpatialObject.

#include "itkSpatialObjectToImageStatisticsCalculator.h"

We first create a test image using the itk::RandomImageSource

using ImageType = itk::Image<unsigned char, 2>;

using RandomImageSourceType = itk::RandomImageSource<ImageType>;

auto randomImageSource = RandomImageSourceType::New();

ImageType::SizeValueType size[2];

size[0] = 10;

size[1] = 10;

randomImageSource->SetSize(size);

randomImageSource->Update();

ImageType::Pointer image = randomImageSource->GetOutput();

Next we create an itk::EllipseSpatialObject with a radius of 2. We also move the ellipse to

the center of the image.

using EllipseType = itk::EllipseSpatialObject<2>;

auto ellipse = EllipseType::New();

ellipse->SetRadiusInObjectSpace(2);

EllipseType::PointType offset;

offset.Fill(5);

ellipse->SetCenterInObjectSpace(offset);

ellipse->Update();

Then we can create the itk::SpatialObjectToImageStatisticsCalculator.

using CalculatorType =

itk::SpatialObjectToImageStatisticsCalculator<ImageType, EllipseType>;

auto calculator = CalculatorType::New();

We pass a pointer to the image to the calculator.

calculator->SetImage(image);

We also pass the SpatialObject. The statistics will be computed inside the SpatialObject (Internally

the calculator is using the IsInside() function).

calculator->SetSpatialObject(ellipse);

At the end we trigger the computation via the Update() function and we can retrieve the mean and

the covariance matrix using GetMean() and GetCovarianceMatrix() respectively.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageStatisticsCalculator.html

140 Chapter 5. Spatial Objects

calculator->Update();

std::cout << "Sample mean = " << calculator->GetMean() << std::endl;

std::cout << "Sample covariance = " << calculator->GetCovarianceMatrix();

CHAPTER

SIX

ITERATORS

This chapter introduces the image iterator, an important generic programming construct for image

processing in ITK. An iterator is a generalization of the familiar C programming language pointer

used to reference data in memory. ITK has a wide variety of image iterators, some of which are

highly specialized to simplify common image processing tasks.

The next section is a brief introduction that defines iterators in the context of ITK. Section 6.2 de-

scribes the programming interface common to most ITK image iterators. Sections 6.3–6.4 document

specific ITK iterator types and provide examples of how they are used.

6.1 Introduction

Generic programming models define functionally independent components called containers and al-

gorithms. Container objects store data and algorithms operate on data. To access data in containers,

algorithms use a third class of objects called iterators. An iterator is an abstraction of a memory

pointer. Every container type must define its own iterator type, but all iterators are written to pro-

vide a common interface so that algorithm code can reference data in a generic way and maintain

functional independence from containers.

The iterator is so named because it is used for iterative, sequential access of container values. It-

erators appear in for and while loop constructs, visiting each data point in turn. A C pointer, for

example, is a type of iterator. It can be moved forward (incremented) and backward (decremented)

through memory to sequentially reference elements of an array. Many iterator implementations have

an interface similar to a C pointer.

In ITK we use iterators to write generic image processing code for images instantiated with different

combinations of pixel type, pixel container type, and dimensionality. Because ITK image iterators

are specifically designed to work with image containers, their interface and implementation is opti-

mized for image processing tasks. Using the ITK iterators instead of accessing data directly through

the itk::Image interface has many advantages. Code is more compact and often generalizes au-

tomatically to higher dimensions, algorithms run much faster, and iterators simplify tasks such as

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

142 Chapter 6. Iterators

multithreading and neighborhood-based image processing.

6.2 Programming Interface

This section describes the standard ITK image iterator programming interface. Some specialized

image iterators may deviate from this standard or provide additional methods.

6.2.1 Creating Iterators

All image iterators have at least one template parameter that is the image type over which they

iterate. There is no restriction on the dimensionality of the image or on the pixel type of the image.

An iterator constructor requires at least two arguments, a smart pointer to the image to iterate across,

and an image region. The image region, called the iteration region, is a rectilinear area in which iter-

ation is constrained. The iteration region must be wholly contained within the image. More specif-

ically, a valid iteration region is any subregion of the image within the current BufferedRegion.

See Section 4.1 for more information on image regions.

There is a const and a non-const version of most ITK image iterators. A non-const iterator cannot be

instantiated on a non-const image pointer. Const versions of iterators may read, but may not write

pixel values.

Here is a simple example that defines and constructs a simple image iterator for an itk::Image.

using ImageType = itk::Image<float, 3>;

using ConstIteratorType = itk::ImageRegionConstIterator<ImageType>;

using IteratorType = itk::ImageRegionIterator<ImageType>;

ImageType::Pointer image = SomeFilter->GetOutput();

ConstIteratorType constIterator(image, image->GetRequestedRegion());

IteratorType iterator(image, image->GetRequestedRegion());

6.2.2 Moving Iterators

An iterator is described as walking its iteration region. At any time, the iterator will reference, or

“point to”, one pixel location in the N-dimensional (ND) image. Forward iteration goes from the

beginning of the iteration region to the end of the iteration region. Reverse iteration, goes from just

past the end of the region back to the beginning. There are two corresponding starting positions for

iterators, the begin position and the end position. An iterator can be moved directly to either of these

two positions using the following methods.

• GoToBegin() Points the iterator to the first valid data element in the region.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

6.2. Programming Interface 143

END Position

Iteration region

BEGIN Position

itk::Image

Figure 6.1: Normal path of an iterator through a 2D image. The iteration region is shown in a darker shade. An

arrow denotes a single iterator step, the result of one ++ operation.

• GoToEnd() Points the iterator to one position past the last valid element in the region.

Note that the end position is not actually located within the iteration region. This is important

to remember because attempting to dereference an iterator at its end position will have undefined

results.

ITK iterators are moved back and forth across their iterations using the decrement and increment

operators.

• operator++() Increments the iterator one position in the positive direction. Only the

prefix increment operator is defined for ITK image iterators.

• operator--() Decrements the iterator one position in the negative direction. Only the

prefix decrement operator is defined for ITK image iterators.

Figure 6.1 illustrates typical iteration over an image region. Most iterators increment and decrement

in the direction of the fastest increasing image dimension, wrapping to the first position in the next

higher dimension at region boundaries. In other words, an iterator first moves across columns, then

down rows, then from slice to slice, and so on.

In addition to sequential iteration through the image, some iterators may define random access oper-

ators. Unlike the increment operators, random access operators may not be optimized for speed and

require some knowledge of the dimensionality of the image and the extent of the iteration region to

use properly.

• operator+=(OffsetType) Moves the iterator to the pixel position at the current in-

dex plus specified itk::Offset.

https://www.itk.org/Doxygen/html/classitk_1_1Offset.html

144 Chapter 6. Iterators

• operator-=(OffsetType) Moves the iterator to the pixel position at the current in-

dex minus specified Offset.

• SetPosition(IndexType) Moves the iterator to the given itk::Index position.

The SetPosition() method may be extremely slow for more complicated iterator types. In general,

it should only be used for setting a starting iteration position, like you would use GoToBegin() or

GoToEnd().

Some iterators do not follow a predictable path through their iteration regions and have no fixed be-

ginning or ending pixel locations. A conditional iterator, for example, visits pixels only if they have

certain values or connectivities. Random iterators, increment and decrement to random locations

and may even visit a given pixel location more than once.

An iterator can be queried to determine if it is at the end or the beginning of its iteration region.

• bool IsAtEnd() True if the iterator points to one position past the end of the iteration

region.

• bool IsAtBegin() True if the iterator points to the first position in the iteration region.

The method is typically used to test for the end of reverse iteration.

An iterator can also report its current image index position.

• IndexType GetIndex() Returns the Index of the image pixel that the iterator currently

points to.

For efficiency, most ITK image iterators do not perform bounds checking. It is possible to move an

iterator outside of its valid iteration region. Dereferencing an out-of-bounds iterator will produce

undefined results.

6.2.3 Accessing Data

ITK image iterators define two basic methods for reading and writing pixel values.

• PixelType Get() Returns the value of the pixel at the iterator position.

• void Set(PixelType) Sets the value of the pixel at the iterator position. Not defined

for const versions of iterators.

The Get() and Set() methods are inlined and optimized for speed so that their use is equivalent

to dereferencing the image buffer directly. There are a few common cases, however, where using

Get() and Set() do incur a penalty. Consider the following code, which fetches, modifies, and then

writes a value back to the same pixel location.

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

6.2. Programming Interface 145

it.Set(it.Get() + 1);

As written, this code requires one more memory dereference than is necessary. Some iterators define

a third data access method that avoids this penalty.

• PixelType &Value() Returns a reference to the pixel at the iterator position.

The Value() method can be used as either an lval or an rval in an expression. It has all the properties

of operator*. The Value() method makes it possible to rewrite our example code more efficiently.

it.Value()++;

Consider using the Value() method instead of Get() or Set() when a call to operator= on a

pixel is non-trivial, such as when working with vector pixels, and operations are done in-place in the

image. The disadvantage of using Value is that it cannot support image adapters (see Section 7 on

page 181 for more information about image adaptors).

6.2.4 Iteration Loops

Using the methods described in the previous sections, we can now write a simple example to do

pixel-wise operations on an image. The following code calculates the squares of all values in an

input image and writes them to an output image.

ConstIteratorType in(inputImage, inputImage->GetRequestedRegion());

IteratorType out(outputImage, inputImage->GetRequestedRegion());

for (in.GoToBegin(), out.GoToBegin(); !in.IsAtEnd(); ++in, ++out)

{

out.Set(in.Get() * in.Get());

}

Notice that both the input and output iterators are initialized over the same region, the

RequestedRegion of inputImage. This is good practice because it ensures that the output iter-

ator walks exactly the same set of pixel indices as the input iterator, but does not require that the

output and input be the same size. The only requirement is that the input image must contain a

region (a starting index and size) that matches the RequestedRegion of the output image.

Equivalent code can be written by iterating through the image in reverse. The syntax is slightly more

awkward because the end of the iteration region is not a valid position and we can only test whether

the iterator is strictly equal to its beginning position. It is often more convenient to write reverse

iteration in a while loop.

146 Chapter 6. Iterators

in.GoToEnd();

out.GoToEnd();

while (!in.IsAtBegin())

{

--in;

--out;

out.Set(in.Get() * in.Get());

}

6.3 Image Iterators

This section describes iterators that walk rectilinear image regions and reference a single pixel at a

time. The itk::ImageRegionIterator is the most basic ITK image iterator and the first choice for

most applications. The rest of the iterators in this section are specializations of ImageRegionIterator

that are designed make common image processing tasks more efficient or easier to implement.

6.3.1 ImageRegionIterator

The source code for this section can be found in the file

ImageRegionIterator.cxx.

The itk::ImageRegionIterator is optimized for iteration speed and is the first choice for itera-

tive, pixel-wise operations when location in the image is not important. ImageRegionIterator is the

least specialized of the ITK image iterator classes. It implements all of the methods described in the

preceding section.

The following example illustrates the use of itk::ImageRegionConstIterator and ImageRe-

gionIterator. Most of the code constructs introduced apply to other ITK iterators as well. This

simple application crops a subregion from an image by copying its pixel values into to a second,

smaller image.

We begin by including the appropriate header files.

#include "itkImageRegionIterator.h"

Next we define a pixel type and corresponding image type. ITK iterator classes expect the image

type as their template parameter.

constexpr unsigned int Dimension = 2;

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, Dimension>;

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionConstIterator.html

6.3. Image Iterators 147

using ConstIteratorType = itk::ImageRegionConstIterator<ImageType>;

using IteratorType = itk::ImageRegionIterator<ImageType>;

Information about the subregion to copy is read from the command line. The subregion is defined

by an itk::ImageRegion object, with a starting grid index and a size (Section 4.1).

ImageType::RegionType inputRegion;

ImageType::RegionType::IndexType inputStart;

ImageType::RegionType::SizeType size;

inputStart[0] = std::stoi(argv[3]);

inputStart[1] = std::stoi(argv[4]);

size[0] = std::stoi(argv[5]);

size[1] = std::stoi(argv[6]);

inputRegion.SetSize(size);

inputRegion.SetIndex(inputStart);

The destination region in the output image is defined using the input region size, but a different start

index. The starting index for the destination region is the corner of the newly generated image.

ImageType::RegionType outputRegion;

ImageType::RegionType::IndexType outputStart;

outputStart[0] = 0;

outputStart[1] = 0;

outputRegion.SetSize(size);

outputRegion.SetIndex(outputStart);

After reading the input image and checking that the desired subregion is, in fact, contained in the

input, we allocate an output image. It is fundamental to set valid values to some of the basic image

information during the copying process. In particular, the starting index of the output region is now

filled up with zero values and the coordinates of the physical origin are computed as a shift from the

origin of the input image. This is quite important since it will allow us to later register the extracted

region against the original image.

auto outputImage = ImageType::New();

outputImage->SetRegions(outputRegion);

const ImageType::SpacingType & spacing = inputImage->GetSpacing();

const ImageType::PointType & inputOrigin = inputImage->GetOrigin();

double outputOrigin[Dimension];

for (unsigned int i = 0; i < Dimension; ++i)

{

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

148 Chapter 6. Iterators

outputOrigin[i] = inputOrigin[i] + spacing[i] * inputStart[i];

}

outputImage->SetSpacing(spacing);

outputImage->SetOrigin(outputOrigin);

outputImage->Allocate();

The necessary images and region definitions are now in place. All that is left to do is to create the

iterators and perform the copy. Note that image iterators are not accessed via smart pointers so they

are light-weight objects that are instantiated on the stack. Also notice how the input and output

iterators are defined over the same corresponding region. Though the images are different sizes,

they both contain the same target subregion.

ConstIteratorType inputIt(inputImage, inputRegion);

IteratorType outputIt(outputImage, outputRegion);

inputIt.GoToBegin();

outputIt.GoToBegin();

while (!inputIt.IsAtEnd())

{

outputIt.Set(inputIt.Get());

++inputIt;

++outputIt;

}

The while loop above is a common construct in ITK. The beauty of these four lines of code is that

they are equally valid for one, two, three, or even ten dimensional data, and no knowledge of the

size of the image is necessary. Consider the ugly alternative of ten nested for loops for traversing

an image.

Let’s run this example on the image FatMRISlice.png found in Examples/Data. The command

line arguments specify the input and output file names, then the x, y origin and the x, y size of the

cropped subregion.

ImageRegionIterator FatMRISlice.png ImageRegionIteratorOutput.png 20 70

210 140

The output is the cropped subregion shown in Figure 6.2.

6.3.2 ImageRegionIteratorWithIndex

The source code for this section can be found in the file

ImageRegionIteratorWithIndex.cxx.

The “WithIndex” family of iterators was designed for algorithms that use both the value and the location of

image pixels in calculations. Unlike itk::ImageRegionIterator, which calculates an index only when

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html

6.3. Image Iterators 149

Figure 6.2: Cropping a region from an image. The original image is shown at left. The image on the right is the

result of applying the ImageRegionIterator example code.

asked for, itk::ImageRegionIteratorWithIndex maintains its index location as a member variable that is

updated during the increment or decrement process. Iteration speed is penalized, but the index queries are more

efficient.

The following example illustrates the use of ImageRegionIteratorWithIndex. The algorithm mirrors a 2D image

across its x-axis (see itk::FlipImageFilter for an ND version). The algorithm makes extensive use of the

GetIndex() method.

We start by including the proper header file.

#include "itkImageRegionIteratorWithIndex.h"

For this example, we will use an RGB pixel type so that we can process color images. Like most other ITK

image iterator, ImageRegionIteratorWithIndex class expects the image type as its single template parameter.

constexpr unsigned int Dimension = 2;

using RGBPixelType = itk::RGBPixel<unsigned char>;

using ImageType = itk::Image<RGBPixelType, Dimension>;

using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;

An ImageType smart pointer called inputImage points to the output of the image reader. After updating the

image reader, we can allocate an output image of the same size, spacing, and origin as the input image.

auto outputImage = ImageType::New();

outputImage->SetRegions(inputImage->GetRequestedRegion());

outputImage->CopyInformation(inputImage);

outputImage->Allocate();

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIteratorWithIndex.html
https://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

150 Chapter 6. Iterators

Figure 6.3: Results of using ImageRegionIteratorWithIndex to mirror an image across an axis. The original

image is shown at left. The mirrored output is shown at right.

Next we create the iterator that walks the output image. This algorithm requires no iterator for the input image.

IteratorType outputIt(outputImage, outputImage->GetRequestedRegion());

This axis flipping algorithm works by iterating through the output image, querying the iterator for its index,

and copying the value from the input at an index mirrored across the x-axis.

ImageType::IndexType requestedIndex =

outputImage->GetRequestedRegion().GetIndex();

ImageType::SizeType requestedSize =

outputImage->GetRequestedRegion().GetSize();

for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)

{

ImageType::IndexType idx = outputIt.GetIndex();

idx[0] = requestedIndex[0] + requestedSize[0] - 1 - idx[0];

outputIt.Set(inputImage->GetPixel(idx));

}

Let’s run this example on the image VisibleWomanEyeSlice.png found in the Examples/Data directory.

Figure 6.3 shows how the original image has been mirrored across its x-axis in the output.

6.3. Image Iterators 151

6.3.3 ImageLinearIteratorWithIndex

The source code for this section can be found in the file

ImageLinearIteratorWithIndex.cxx.

The itk::ImageLinearIteratorWithIndex is designed for line-by-line processing of an image. It walks a

linear path along a selected image direction parallel to one of the coordinate axes of the image. This iterator

conceptually breaks an image into a set of parallel lines that span the selected image dimension.

Like all image iterators, movement of the ImageLinearIteratorWithIndex is constrained within an image region

R. The line ℓ through which the iterator moves is defined by selecting a direction and an origin. The line ℓ
extends from the origin to the upper boundary of R. The origin can be moved to any position along the lower

boundary of R.

Several additional methods are defined for this iterator to control movement of the iterator along the line ℓ and

movement of the origin of ℓ.

• NextLine()Moves the iterator to the beginning pixel location of the next line in the image. The origin

of the next line is determined by incrementing the current origin along the fastest increasing dimension

of the subspace of the image that excludes the selected dimension.

• PreviousLine()Moves the iterator to the last valid pixel location in the previous line. The origin of

the previous line is determined by decrementing the current origin along the fastest increasing dimension

of the subspace of the image that excludes the selected dimension.

• GoToBeginOfLine()Moves the iterator to the beginning pixel of the current line.

• GoToEndOfLine() Moves the iterator to one past the last valid pixel of the current line.

• GoToReverseBeginOfLine()Moves the iterator to the last valid pixel of the current line.

• IsAtReverseEndOfLine() Returns true if the iterator points to one position before the beginning

pixel of the current line.

• IsAtEndOfLine() Returns true if the iterator points to one position past the last valid pixel of the

current line.

The following code example shows how to use the ImageLinearIteratorWithIndex. It implements the same

algorithm as in the previous example, flipping an image across its x-axis. Two line iterators are iterated in

opposite directions across the x-axis. After each line is traversed, the iterator origins are stepped along the

y-axis to the next line.

Headers for both the const and non-const versions are needed.

#include "itkImageLinearIteratorWithIndex.h"

The RGB image and pixel types are defined as in the previous example. The ImageLinearIteratorWithIndex

class and its const version each have single template parameters, the image type.

using IteratorType = itk::ImageLinearIteratorWithIndex<ImageType>;

using ConstIteratorType = itk::ImageLinearConstIteratorWithIndex<ImageType>;

After reading the input image, we allocate an output image that of the same size, spacing, and origin.

https://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

152 Chapter 6. Iterators

auto outputImage = ImageType::New();

outputImage->SetRegions(inputImage->GetRequestedRegion());

outputImage->CopyInformation(inputImage);

outputImage->Allocate();

Next we create the two iterators. The const iterator walks the input image, and the non-const iterator walks

the output image. The iterators are initialized over the same region. The direction of iteration is set to 0, the x

dimension.

ConstIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());

IteratorType outputIt(outputImage, inputImage->GetRequestedRegion());

inputIt.SetDirection(0);

outputIt.SetDirection(0);

Each line in the input is copied to the output. The input iterator moves forward across columns while the output

iterator moves backwards.

for (inputIt.GoToBegin(), outputIt.GoToBegin(); !inputIt.IsAtEnd();

outputIt.NextLine(), inputIt.NextLine())

{

inputIt.GoToBeginOfLine();

outputIt.GoToEndOfLine();

while (!inputIt.IsAtEndOfLine())

{

--outputIt;

outputIt.Set(inputIt.Get());

++inputIt;

}

}

Running this example on VisibleWomanEyeSlice.png produces the same output image shown in Figure 6.3.

The source code for this section can be found in the file

ImageLinearIteratorWithIndex2.cxx.

This example shows how to use the itk::ImageLinearIteratorWithIndex for computing the mean across

time of a 4D image where the first three dimensions correspond to spatial coordinates and the fourth dimension

corresponds to time. The result of the mean across time is to be stored in a 3D image.

#include "itkImageLinearConstIteratorWithIndex.h"

First we declare the types of the images, the 3D and 4D readers.

using PixelType = unsigned char;

using Image3DType = itk::Image<PixelType, 3>;

using Image4DType = itk::Image<PixelType, 4>;

https://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

6.3. Image Iterators 153

using Reader4DType = itk::ImageFileReader<Image4DType>;

using Writer3DType = itk::ImageFileWriter<Image3DType>;

Next, define the necessary types for indices, points, spacings, and size.

auto image3D = Image3DType::New();

using Index3DType = Image3DType::IndexType;

using Size3DType = Image3DType::SizeType;

using Region3DType = Image3DType::RegionType;

using Spacing3DType = Image3DType::SpacingType;

using Origin3DType = Image3DType::PointType;

using Index4DType = Image4DType::IndexType;

using Size4DType = Image4DType::SizeType;

using Spacing4DType = Image4DType::SpacingType;

using Origin4DType = Image4DType::PointType;

Here we make sure that the values for our resultant 3D mean image match up with the input 4D image.

for (unsigned int i = 0; i < 3; ++i)

{

size3D[i] = size4D[i];

index3D[i] = index4D[i];

spacing3D[i] = spacing4D[i];

origin3D[i] = origin4D[i];

}

image3D->SetSpacing(spacing3D);

image3D->SetOrigin(origin3D);

Region3DType region3D;

region3D.SetIndex(index3D);

region3D.SetSize(size3D);

image3D->SetRegions(region3D);

image3D->Allocate();

Next we iterate over time in the input image series, compute the average, and store that value in the correspond-

ing pixel of the output 3D image.

IteratorType it(image4D, region4D);

it.SetDirection(3); // Walk along time dimension

it.GoToBegin();

while (!it.IsAtEnd())

{

SumType sum{};

it.GoToBeginOfLine();

index4D = it.GetIndex();

while (!it.IsAtEndOfLine())

{

154 Chapter 6. Iterators

sum += it.Get();

++it;

}

MeanType mean =

static_cast<MeanType>(sum) / static_cast<MeanType>(timeLength);

index3D[0] = index4D[0];

index3D[1] = index4D[1];

index3D[2] = index4D[2];

image3D->SetPixel(index3D, static_cast<PixelType>(mean));

it.NextLine();

}

As you can see, we avoid to use a 3D iterator to walk over the mean image. The reason is that there is no

guarantee that the 3D iterator will walk in the same order as the 4D. Iterators just adhere to their contract of

visiting every pixel, but do not enforce any particular order for the visits. The linear iterator guarantees it will

visit the pixels along a line of the image in the order in which they are placed in the line, but does not state in

what order one line will be visited with respect to other lines. Here we simply take advantage of knowing the

first three components of the 4D iterator index, and use them to place the resulting mean value in the output 3D

image.

6.3.4 ImageSliceIteratorWithIndex

The source code for this section can be found in the file

ImageSliceIteratorWithIndex.cxx.

The itk::ImageSliceIteratorWithIndex class is an extension of

itk::ImageLinearIteratorWithIndex from iteration along lines to iteration along both lines and

planes in an image. A slice is a 2D plane spanned by two vectors pointing along orthogonal coordinate axes.

The slice orientation of the slice iterator is defined by specifying its two spanning axes.

• SetFirstDirection() Specifies the first coordinate axis direction of the slice plane.

• SetSecondDirection() Specifies the second coordinate axis direction of the slice plane.

Several new methods control movement from slice to slice.

• NextSlice() Moves the iterator to the beginning pixel location of the next slice in the image. The

origin of the next slice is calculated by incrementing the current origin index along the fastest increasing

dimension of the image subspace which excludes the first and second dimensions of the iterator.

• PreviousSlice()Moves the iterator to the last valid pixel location in the previous slice. The origin

of the previous slice is calculated by decrementing the current origin index along the fastest increasing

dimension of the image subspace which excludes the first and second dimensions of the iterator.

• IsAtReverseEndOfSlice()Returns true if the iterator points to one position before the beginning

pixel of the current slice.

• IsAtEndOfSlice() Returns true if the iterator points to one position past the last valid pixel of the

current slice.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSliceIteratorWithIndex.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageLinearIteratorWithIndex.html

6.3. Image Iterators 155

The slice iterator moves line by line using NextLine() and PreviousLine(). The line direction is parallel to

the second coordinate axis direction of the slice plane (see also Section 6.3.3).

The next code example calculates the maximum intensity projection along one of the coordinate axes of an

image volume. The algorithm is straightforward using ImageSliceIteratorWithIndex because we can coordinate

movement through a slice of the 3D input image with movement through the 2D planar output.

Here is how the algorithm works. For each 2D slice of the input, iterate through all the pixels line by line. Copy

a pixel value to the corresponding position in the 2D output image if it is larger than the value already contained

there. When all slices have been processed, the output image is the desired maximum intensity projection.

We include a header for the const version of the slice iterator. For writing values to the 2D projection image,

we use the linear iterator from the previous section. The linear iterator is chosen because it can be set to follow

the same path in its underlying 2D image that the slice iterator follows over each slice of the 3D image.

#include "itkImageSliceConstIteratorWithIndex.h"

#include "itkImageLinearIteratorWithIndex.h"

The pixel type is defined as unsigned short. For this application, we need two image types, a 3D image for

the input, and a 2D image for the intensity projection.

using PixelType = unsigned short;

using ImageType2D = itk::Image<PixelType, 2>;

using ImageType3D = itk::Image<PixelType, 3>;

A slice iterator type is defined to walk the input image.

using LinearIteratorType = itk::ImageLinearIteratorWithIndex<ImageType2D>;

using SliceIteratorType =

itk::ImageSliceConstIteratorWithIndex<ImageType3D>;

The projection direction is read from the command line. The projection image will be the size of the 2D plane

orthogonal to the projection direction. Its spanning vectors are the two remaining coordinate axes in the volume.

These axes are recorded in the direction array.

auto projectionDirection = static_cast<unsigned int>(std::stoi(argv[3]));

unsigned int i, j;

unsigned int direction[2];

for (i = 0, j = 0; i < 3; ++i)

{

if (i != projectionDirection)

{

direction[j] = i;

j++;

}

}

The direction array is now used to define the projection image size based on the input image size. The output

156 Chapter 6. Iterators

image is created so that its common dimension(s) with the input image are the same size. For example, if we

project along the x axis of the input, the size and origin of the y axes of the input and output will match. This

makes the code slightly more complicated, but prevents a counter-intuitive rotation of the output.

ImageType2D::RegionType region;

ImageType2D::RegionType::SizeType size;

ImageType2D::RegionType::IndexType index;

ImageType3D::RegionType requestedRegion = inputImage->GetRequestedRegion();

index[direction[0]] = requestedRegion.GetIndex()[direction[0]];

index[1 - direction[0]] = requestedRegion.GetIndex()[direction[1]];

size[direction[0]] = requestedRegion.GetSize()[direction[0]];

size[1 - direction[0]] = requestedRegion.GetSize()[direction[1]];

region.SetSize(size);

region.SetIndex(index);

auto outputImage = ImageType2D::New();

outputImage->SetRegions(region);

outputImage->Allocate();

Next we create the necessary iterators. The const slice iterator walks the 3D input image, and the non-const

linear iterator walks the 2D output image. The iterators are initialized to walk the same linear path through a

slice. Remember that the second direction of the slice iterator defines the direction that linear iteration walks

within a slice.

SliceIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());

LinearIteratorType outputIt(outputImage, outputImage->GetRequestedRegion());

inputIt.SetFirstDirection(direction[1]);

inputIt.SetSecondDirection(direction[0]);

outputIt.SetDirection(1 - direction[0]);

Now we are ready to compute the projection. The first step is to initialize all of the projection values to their

nonpositive minimum value. The projection values are then updated row by row from the first slice of the input.

At the end of the first slice, the input iterator steps to the first row in the next slice, while the output iterator,

whose underlying image consists of only one slice, rewinds to its first row. The process repeats until the last

slice of the input is processed.

outputIt.GoToBegin();

while (!outputIt.IsAtEnd())

{

while (!outputIt.IsAtEndOfLine())

{

outputIt.Set(itk::NumericTraits<unsigned short>::NonpositiveMin());

++outputIt;

}

6.3. Image Iterators 157

Figure 6.4: The maximum intensity projection through three slices of a volume.

outputIt.NextLine();

}

inputIt.GoToBegin();

outputIt.GoToBegin();

while (!inputIt.IsAtEnd())

{

while (!inputIt.IsAtEndOfSlice())

{

while (!inputIt.IsAtEndOfLine())

{

outputIt.Set(std::max(outputIt.Get(), inputIt.Get()));

++inputIt;

++outputIt;

}

outputIt.NextLine();

inputIt.NextLine();

}

outputIt.GoToBegin();

inputIt.NextSlice();

}

Running this example code on the 3D image Examples/Data/BrainProtonDensity3Slices.mha using the

z-axis as the axis of projection gives the image shown in Figure 6.4.

158 Chapter 6. Iterators

6.3.5 ImageRandomConstIteratorWithIndex

The source code for this section can be found in the file

ImageRandomConstIteratorWithIndex.cxx.

itk::ImageRandomConstIteratorWithIndex was developed to randomly sample pixel values. When incre-

mented or decremented, it jumps to a random location in its image region.

The user must specify a sample size when creating this iterator. The sample size, rather than a specific image

index, defines the end position for the iterator. IsAtEnd() returns true when the current sample number

equals the sample size. IsAtBegin() returns true when the current sample number equals zero. An important

difference from other image iterators is that ImageRandomConstIteratorWithIndex may visit the same pixel

more than once.

Let’s use the random iterator to estimate some simple image statistics. The next example calculates an estimate

of the arithmetic mean of pixel values.

First, include the appropriate header and declare pixel and image types.

#include "itkImageRandomConstIteratorWithIndex.h"

constexpr unsigned int Dimension = 2;

using PixelType = unsigned short;

using ImageType = itk::Image<PixelType, Dimension>;

using ConstIteratorType = itk::ImageRandomConstIteratorWithIndex<ImageType>;

The input image has been read as inputImage. We now create an iterator with a number of samples set by

command line argument. The call to ReinitializeSeed seeds the random number generator. The iterator is

initialized over the entire valid image region.

ConstIteratorType inputIt(inputImage, inputImage->GetRequestedRegion());

inputIt.SetNumberOfSamples(std::stoi(argv[2]));

inputIt.ReinitializeSeed();

Now take the specified number of samples and calculate their average value.

float mean = 0.0f;

for (inputIt.GoToBegin(); !inputIt.IsAtEnd(); ++inputIt)

{

mean += static_cast<float>(inputIt.Get());

}

mean = mean / std::stod(argv[2]);

/* The following table shows the results of running this example on several of the data files from

Examples/Data with a range of sample sizes.

https://www.itk.org/Doxygen/html/classitk_1_1ImageRandomConstIteratorWithIndex.html

6.4. Neighborhood Iterators 159

Sample Size

10 100 1000 10000

RatLungSlice1.mha 50.5 52.4 53.0 52.4

RatLungSlice2.mha 46.7 47.5 47.4 47.6

BrainT1Slice.png 47.2 64.1 68.0 67.8

Table 6.1: Estimates of mean image pixel value using the ImageRandomConstIteratorWithIndex at different

sample sizes.

*/

6.4 Neighborhood Iterators

In ITK, a pixel neighborhood is loosely defined as a small set of pixels that are locally adjacent to one another

in an image. The size and shape of a neighborhood, as well the connectivity among pixels in a neighborhood,

may vary with the application.

Many image processing algorithms are neighborhood-based, that is, the result at a pixel i is computed from the

values of pixels in the ND neighborhood of i. Consider finite difference operations in 2D. A derivative at pixel

index i = (j,k), for example, is taken as a weighted difference of the values at (j+1,k) and (j−1,k). Other

common examples of neighborhood operations include convolution filtering and image morphology.

This section describes a class of ITK image iterators that are designed for working with pixel neighborhoods.

An ITK neighborhood iterator walks an image region just like a normal image iterator, but instead of only refer-

encing a single pixel at each step, it simultaneously points to the entire ND neighborhood of pixels. Extensions

to the standard iterator interface provide read and write access to all neighborhood pixels and information such

as the size, extent, and location of the neighborhood.

Neighborhood iterators use the same operators defined in Section 6.2 and the same code constructs as normal

iterators for looping through an image. Figure 6.5 shows a neighborhood iterator moving through an iteration

region. This iterator defines a 3x3 neighborhood around each pixel that it visits. The center of the neighborhood

iterator is always positioned over its current index and all other neighborhood pixel indices are referenced as

offsets from the center index. The pixel under the center of the neighborhood iterator and all pixels under the

shaded area, or extent, of the iterator can be dereferenced.

In addition to the standard image pointer and iteration region (Section 6.2), neighborhood iterator constructors

require an argument that specifies the extent of the neighborhood to cover. Neighborhood extent is symmetric

across its center in each axis and is given as an array of N distances that are collectively called the radius. Each

element d of the radius, where 0 < d < N and N is the dimensionality of the neighborhood, gives the extent of

the neighborhood in pixels for dimension N. The length of each face of the resulting ND hypercube is 2d +1

pixels, a distance of d on either side of the single pixel at the neighbor center. Figure 6.6 shows the relationship

between the radius of the iterator and the size of the neighborhood for a variety of 2D iterator shapes.

The radius of the neighborhood iterator is queried after construction by calling the GetRadius() method. Some

other methods provide some useful information about the iterator and its underlying image.

160 Chapter 6. Iterators

END Position

BEGIN Position

Iteration Region
Neighborhood

Iterator

itk::Image

Figure 6.5: Path of a 3x3 neighborhood iterator through a 2D image region. The extent of the neighborhood is

indicated by the hashing around the iterator position. Pixels that lie within this extent are accessible through the

iterator. An arrow denotes a single iterator step, the result of one ++ operation.

6.4. Neighborhood Iterators 161

10 1 2

3 4 5

6 7 8

0 2

3 4 5

6 7 8

9 10 11

12 13 14

0 1 2

0

1

2

3

4

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

(−1, −1) (0, −1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (0,1) (1,1)

(0,1)

(1,2)

(−1,−2) (0,−2) (1,−2)

(−1,−1) (0,−1) (1,−1)

(−1,0) (0,0) (1,0)

(−1,1) (1,1)

(−1,2) (0,2)

(−1,0) (0,0) (1,0)

(0,−2)

(0,−1)

(0,0)

(0,1)

(0,2)

radius = [1,1]
size = [3,3]

radius = [1,2]
size = [3,5]

radius = [1,0]
size = [3,1]

radius = [3,1]
size = [7,3]

size = [1,5]

(−3,−1) (−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1) (3,−1)

(−3,0) (−2,0) (−1,0) (0,0) (1,0) (2,0) (3,0)

(−3,1) (−2,1) (−1,1) (0,1) (1,1) (2,1) (3,1)

radius = [0,2]

Figure 6.6: Several possible 2D neighborhood iterator shapes are shown along with their radii and sizes. A

neighborhood pixel can be dereferenced by its integer index (top) or its offset from the center (bottom). The

center pixel of each iterator is shaded.

162 Chapter 6. Iterators

• SizeType GetRadius() Returns the ND radius of the neighborhood as an itk::Size.

• const ImageType *GetImagePointer() Returns the pointer to the image referenced by the

iterator.

• unsigned long Size() Returns the size in number of pixels of the neighborhood.

The neighborhood iterator interface extends the normal ITK iterator interface for setting and getting pixel

values. One way to dereference pixels is to think of the neighborhood as a linear array where each pixel has

a unique integer index. The index of a pixel in the array is determined by incrementing from the upper-left-

forward corner of the neighborhood along the fastest increasing image dimension: first column, then row, then

slice, and so on. In Figure 6.6, the unique integer index is shown at the top of each pixel. The center pixel is

always at position n/2, where n is the size of the array.

• PixelType GetPixel(const unsigned int i) Returns the value of the pixel at neighbor-

hood position i.

• void SetPixel(const unsigned int i, PixelType p) Sets the value of the pixel at

position i to p.

Another way to think about a pixel location in a neighborhood is as an ND offset from the neighborhood center.

The upper-left-forward corner of a 3x3x3 neighborhood, for example, can be described by offset (−1,−1,−1).
The bottom-right-back corner of the same neighborhood is at offset (1,1,1). In Figure 6.6, the offset from

center is shown at the bottom of each neighborhood pixel.

• PixelType GetPixel(const OffsetType &o) Get the value of the pixel at the position off-

set o from the neighborhood center.

• void SetPixel(const OffsetType &o, PixelType p) Set the value at the position off-

set o from the neighborhood center to the value p.

The neighborhood iterators also provide a shorthand for setting and getting the value at the center of the neigh-

borhood.

• PixelType GetCenterPixel() Gets the value at the center of the neighborhood.

• void SetCenterPixel(PixelType p) Sets the value at the center of the neighborhood to the

value p

There is another shorthand for setting and getting values for pixels that lie some integer distance from the

neighborhood center along one of the image axes.

• PixelType GetNext(unsigned int d) Get the value immediately adjacent to the neighbor-

hood center in the positive direction along the d axis.

• void SetNext(unsigned int d, PixelType p) Set the value immediately adjacent to the

neighborhood center in the positive direction along the d axis to the value p.

• PixelType GetPrevious(unsigned int d) Get the value immediately adjacent to the

neighborhood center in the negative direction along the d axis.

• void SetPrevious(unsigned int d, PixelType p) Set the value immediately adjacent

to the neighborhood center in the negative direction along the d axis to the value p.

https://www.itk.org/Doxygen/html/classitk_1_1Size.html

6.4. Neighborhood Iterators 163

• PixelType GetNext(unsigned int d, unsigned int s) Get the value of the pixel lo-

cated s pixels from the neighborhood center in the positive direction along the d axis.

• void SetNext(unsigned int d, unsigned int s, PixelType p) Set the value of

the pixel located s pixels from the neighborhood center in the positive direction along the d axis to

value p.

• PixelType GetPrevious(unsigned int d, unsigned int s) Get the value of the

pixel located s pixels from the neighborhood center in the positive direction along the d axis.

• void SetPrevious(unsigned int d, unsigned int s, PixelType p) Set the

value of the pixel located s pixels from the neighborhood center in the positive direction along the d

axis to value p.

It is also possible to extract or set all of the neighborhood values from an iterator at once using a regular ITK

neighborhood object. This may be useful in algorithms that perform a particularly large number of calculations

in the neighborhood and would otherwise require multiple dereferences of the same pixels.

• NeighborhoodType GetNeighborhood()Return a itk::Neighborhood of the same size and

shape as the neighborhood iterator and contains all of the values at the iterator position.

• void SetNeighborhood(NeighborhoodType &N) Set all of the values in the neighborhood

at the iterator position to those contained in Neighborhood N, which must be the same size and shape as

the iterator.

Several methods are defined to provide information about the neighborhood.

• IndexType GetIndex() Return the image index of the center pixel of the neighborhood iterator.

• IndexType GetIndex(OffsetType o) Return the image index of the pixel at offset o from the

neighborhood center.

• IndexType GetIndex(unsigned int i) Return the image index of the pixel at array position

i.

• OffsetType GetOffset(unsigned int i) Return the offset from the neighborhood center

of the pixel at array position i.

• unsigned long GetNeighborhoodIndex(OffsetType o) Return the array position of the

pixel at offset o from the neighborhood center.

• std::slice GetSlice(unsigned int n) Return a std::slice through the iterator neigh-

borhood along axis n.

A neighborhood-based calculation in a neighborhood close to an image boundary may require data that falls

outside the boundary. The iterator in Figure 6.5, for example, is centered on a boundary pixel such that three

of its neighbors actually do not exist in the image. When the extent of a neighborhood falls outside the image,

pixel values for missing neighbors are supplied according to a rule, usually chosen to satisfy the numerical

requirements of the algorithm. A rule for supplying out-of-bounds values is called a boundary condition.

ITK neighborhood iterators automatically detect out-of-bounds dereferences and will return values according

to boundary conditions. The boundary condition type is specified by the second, optional template parameter

of the iterator. By default, neighborhood iterators use a Neumann condition where the first derivative across the

https://www.itk.org/Doxygen/html/classitk_1_1Neighborhood.html

164 Chapter 6. Iterators

boundary is zero. The Neumann rule simply returns the closest in-bounds pixel value to the requested out-of-

bounds location. Several other common boundary conditions can be found in the ITK toolkit. They include a

periodic condition that returns the pixel value from the opposite side of the data set, and is useful when working

with periodic data such as Fourier transforms, and a constant value condition that returns a set value v for all

out-of-bounds pixel dereferences. The constant value condition is equivalent to padding the image with value

v.

Bounds checking is a computationally expensive operation because it occurs each time the iterator is incre-

mented. To increase efficiency, a neighborhood iterator automatically disables bounds checking when it detects

that it is not necessary. A user may also explicitly disable or enable bounds checking. Most neighborhood

based algorithms can minimize the need for bounds checking through clever definition of iteration regions.

These techniques are explored in Section 6.4.1.

• void NeedToUseBoundaryConditionOn() Explicitly turn bounds checking on. This method

should be used with caution because unnecessarily enabling bounds checking may result in a significant

performance decrease. In general you should allow the iterator to automatically determine this setting.

• void NeedToUseBoundaryConditionOff()Explicitly disable bounds checking. This method

should be used with caution because disabling bounds checking when it is needed will result in out-of-

bounds reads and undefined results.

• void OverrideBoundaryCondition(BoundaryConditionType *b) Overrides the tem-

plated boundary condition, using boundary condition object b instead. Object b should not be deleted

until it has been released by the iterator. This method can be used to change iterator behavior at run-time.

• void ResetBoundaryCondition() Discontinues the use of any run-time specified boundary

condition and returns to using the condition specified in the template argument.

• void SetPixel(unsigned int i, PixelType p, bool status) Sets the value at

neighborhood array position i to value p. If the position i is out-of-bounds, status is set to false,

otherwise status is set to true.

The following sections describe the two ITK neighborhood iterator classes, itk::NeighborhoodIterator

and itk::ShapedNeighborhoodIterator. Each has a const and a non-const version. The shaped itera-

tor is a refinement of the standard NeighborhoodIterator that supports an arbitrarily-shaped (non-rectilinear)

neighborhood.

6.4.1 NeighborhoodIterator

The standard neighborhood iterator class in ITK is the itk::NeighborhoodIterator. Together with its

const version, itk::ConstNeighborhoodIterator, it implements the complete API described above. This

section provides several examples to illustrate the use of NeighborhoodIterator.

Basic neighborhood techniques: edge detection

The source code for this section can be found in the file

NeighborhoodIterators1.cxx.

This example uses the itk::NeighborhoodIterator to implement a simple Sobel edge detection algorithm

[4]. The algorithm uses the neighborhood iterator to iterate through an input image and calculate a series of

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ConstNeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html

6.4. Neighborhood Iterators 165

finite difference derivatives. Since the derivative results cannot be written back to the input image without

affecting later calculations, they are written instead to a second, output image. Most neighborhood processing

algorithms follow this read-only model on their inputs.

We begin by including the proper header files. The itk::ImageRegionIterator will be used to write the

results of computations to the output image. A const version of the neighborhood iterator is used because the

input image is read-only.

#include "itkConstNeighborhoodIterator.h"

#include "itkImageRegionIterator.h"

The finite difference calculations in this algorithm require floating point values. Hence, we define the image

pixel type to be float and the file reader will automatically cast fixed-point data to float.

We declare the iterator types using the image type as the template parameter. The second template parameter

of the neighborhood iterator, which specifies the boundary condition, has been omitted because the default

condition is appropriate for this algorithm.

using PixelType = float;

using ImageType = itk::Image<PixelType, 2>;

using ReaderType = itk::ImageFileReader<ImageType>;

using NeighborhoodIteratorType = itk::ConstNeighborhoodIterator<ImageType>;

using IteratorType = itk::ImageRegionIterator<ImageType>;

The following code creates and executes the ITK image reader. The Update call on the reader object is sur-

rounded by the standard try/catch blocks to handle any exceptions that may be thrown by the reader.

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

try

{

reader->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

We can now create a neighborhood iterator to range over the output of the reader. For Sobel edge-detection in

2D, we need a square iterator that extends one pixel away from the neighborhood center in every dimension.

NeighborhoodIteratorType::RadiusType radius;

radius.Fill(1);

NeighborhoodIteratorType it(

radius, reader->GetOutput(), reader->GetOutput()->GetRequestedRegion());

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegionIterator.html

166 Chapter 6. Iterators

The following code creates an output image and iterator.

auto output = ImageType::New();

output->SetRegions(reader->GetOutput()->GetRequestedRegion());

output->Allocate();

IteratorType out(output, reader->GetOutput()->GetRequestedRegion());

Sobel edge detection uses weighted finite difference calculations to construct an edge magnitude image. Nor-

mally the edge magnitude is the root sum of squares of partial derivatives in all directions, but for simplicity

this example only calculates the x component. The result is a derivative image biased toward maximally vertical

edges.

The finite differences are computed from pixels at six locations in the neighborhood. In this example, we use

the iterator GetPixel() method to query the values from their offsets in the neighborhood. The example in

Section 6.4.1 uses convolution with a Sobel kernel instead.

Six positions in the neighborhood are necessary for the finite difference calculations. These positions are

recorded in offset1 through offset6.

NeighborhoodIteratorType::OffsetType offset1 = { { -1, -1 } };

NeighborhoodIteratorType::OffsetType offset2 = { { 1, -1 } };

NeighborhoodIteratorType::OffsetType offset3 = { { -1, 0 } };

NeighborhoodIteratorType::OffsetType offset4 = { { 1, 0 } };

NeighborhoodIteratorType::OffsetType offset5 = { { -1, 1 } };

NeighborhoodIteratorType::OffsetType offset6 = { { 1, 1 } };

It is equivalent to use the six corresponding integer array indices instead. For example, the offsets (-1,-1) and

(1, -1) are equivalent to the integer indices 0 and 2, respectively.

The calculations are done in a for loop that moves the input and output iterators synchronously across their

respective images. The sum variable is used to sum the results of the finite differences.

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

float sum;

sum = it.GetPixel(offset2) - it.GetPixel(offset1);

sum += 2.0 * it.GetPixel(offset4) - 2.0 * it.GetPixel(offset3);

sum += it.GetPixel(offset6) - it.GetPixel(offset5);

out.Set(sum);

}

The last step is to write the output buffer to an image file. Writing is done inside a try/catch block to handle

any exceptions. The output is rescaled to intensity range [0,255] and cast to unsigned char so that it can be

saved and visualized as a PNG image.

using WritePixelType = unsigned char;

using WriteImageType = itk::Image<WritePixelType, 2>;

using WriterType = itk::ImageFileWriter<WriteImageType>;

6.4. Neighborhood Iterators 167

Figure 6.7: Applying the Sobel operator in different orientations to an MRI image (left) produces x (center) and

y (right) derivative images.

using RescaleFilterType =

itk::RescaleIntensityImageFilter<ImageType, WriteImageType>;

auto rescaler = RescaleFilterType::New();

rescaler->SetOutputMinimum(0);

rescaler->SetOutputMaximum(255);

rescaler->SetInput(output);

auto writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(rescaler->GetOutput());

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

The center image of Figure 6.7 shows the output of the Sobel algorithm applied to

Examples/Data/BrainT1Slice.png.

Convolution filtering: Sobel operator

The source code for this section can be found in the file

NeighborhoodIterators2.cxx.

168 Chapter 6. Iterators

In this example, the Sobel edge-detection routine is rewritten using convolution filtering. Convolution filtering

is a standard image processing technique that can be implemented numerically as the inner product of all

image neighborhoods with a convolution kernel [4] [2]. In ITK, we use a class of objects called neighborhood

operators as convolution kernels and a special function object called itk::NeighborhoodInnerProduct to

calculate inner products.

The basic ITK convolution filtering routine is to step through the image with a neighborhood iterator and

use NeighborhoodInnerProduct to find the inner product of each neighborhood with the desired kernel. The

resulting values are written to an output image. This example uses a neighborhood operator called the

itk::SobelOperator, but all neighborhood operators can be convolved with images using this basic routine.

Other examples of neighborhood operators include derivative kernels, Gaussian kernels, and morphological

operators. itk::NeighborhoodOperatorImageFilter is a generalization of the code in this section to ND

images and arbitrary convolution kernels.

We start writing this example by including the header files for the Sobel kernel and the inner product function.

#include "itkSobelOperator.h"

#include "itkNeighborhoodInnerProduct.h"

Refer to the previous example for a description of reading the input image and setting up the output image and

iterator.

The following code creates a Sobel operator. The Sobel operator requires a direction for its partial derivatives.

This direction is read from the command line. Changing the direction of the derivatives changes the bias of the

edge detection, i.e. maximally vertical or maximally horizontal.

itk::SobelOperator<PixelType, 2> sobelOperator;

sobelOperator.SetDirection(std::stoi(argv[3]));

sobelOperator.CreateDirectional();

The neighborhood iterator is initialized as before, except that now it takes its radius directly from the radius of

the Sobel operator. The inner product function object is templated over image type and requires no initialization.

NeighborhoodIteratorType::RadiusType radius = sobelOperator.GetRadius();

NeighborhoodIteratorType it(

radius, reader->GetOutput(), reader->GetOutput()->GetRequestedRegion());

itk::NeighborhoodInnerProduct<ImageType> innerProduct;

Using the Sobel operator, inner product, and neighborhood iterator objects, we can now write a very simple for

loop for performing convolution filtering. As before, out-of-bounds pixel values are supplied automatically by

the iterator.

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

out.Set(innerProduct(it, sobelOperator));

}

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodInnerProduct.html
https://www.itk.org/Doxygen/html/classitk_1_1SobelOperator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperatorImageFilter.html

6.4. Neighborhood Iterators 169

The output is rescaled and written as in the previous example. Applying this example in the x and y directions

produces the images at the center and right of Figure 6.7. Note that x-direction operator produces the same

output image as in the previous example.

Optimizing iteration speed

The source code for this section can be found in the file

NeighborhoodIterators3.cxx.

This example illustrates a technique for improving the efficiency of neighborhood calculations by eliminating

unnecessary bounds checking. As described in Section 6.4, the neighborhood iterator automatically enables or

disables bounds checking based on the iteration region in which it is initialized. By splitting our image into

boundary and non-boundary regions, and then processing each region using a different neighborhood iterator,

the algorithm will only perform bounds-checking on those pixels for which it is actually required. This trick

can provide a significant speedup for simple algorithms such as our Sobel edge detection, where iteration speed

is a critical.

Splitting the image into the necessary regions is an easy task when you use the

itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator . The face calculator is so named

because it returns a list of the “faces” of the ND dataset. Faces are those regions whose pixels all lie within

a distance d from the boundary, where d is the radius of the neighborhood stencil used for the numerical

calculations. In other words, faces are those regions where a neighborhood iterator of radius d will always

overlap the boundary of the image. The face calculator also returns the single inner region, in which

out-of-bounds values are never required and bounds checking is not necessary.

The face calculator object is defined in itkNeighborhoodAlgorithm.h. We include this file in addition to

those from the previous two examples.

#include "itkNeighborhoodAlgorithm.h"

First we load the input image and create the output image and inner product function as in the previous exam-

ples. The image iterators will be created in a later step. Next we create a face calculator object. An empty list

is created to hold the regions that will later on be returned by the face calculator.

using FaceCalculatorType =

itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageType>;

FaceCalculatorType faceCalculator;

FaceCalculatorType::FaceListType faceList;

The face calculator function is invoked by passing it an image pointer, an image region, and a neighborhood

radius. The image pointer is the same image used to initialize the neighborhood iterator, and the image region

is the region that the algorithm is going to process. The radius is the radius of the iterator.

Notice that in this case the image region is given as the region of the output image and the image pointer is

given as that of the input image. This is important if the input and output images differ in size, i.e. the input

image is larger than the output image. ITK image filters, for example, operate on data from the input image but

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodAlgorithm::ImageBoundaryFacesCalculator.html

170 Chapter 6. Iterators

only generate results in the RequestedRegion of the output image, which may be smaller than the full extent

of the input.

faceList = faceCalculator(reader->GetOutput(),

output->GetRequestedRegion(),

sobelOperator.GetRadius());

The face calculator has returned a list of 2N +1 regions. The first element in the list is always the inner region,

which may or may not be important depending on the application. For our purposes it does not matter because

all regions are processed the same way. We use an iterator to traverse the list of faces.

FaceCalculatorType::FaceListType::iterator fit;

We now rewrite the main loop of the previous example so that each region in the list is processed by a separate

iterator. The iterators it and out are reinitialized over each region in turn. Bounds checking is automatically

enabled for those regions that require it, and disabled for the region that does not.

IteratorType out;

NeighborhoodIteratorType it;

for (fit = faceList.begin(); fit != faceList.end(); ++fit)

{

it = NeighborhoodIteratorType(

sobelOperator.GetRadius(), reader->GetOutput(), *fit);

out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

out.Set(innerProduct(it, sobelOperator));

}

}

The output is written as before. Results for this example are the same as the previous example. You may not

notice the speedup except on larger images. When moving to 3D and higher dimensions, the effects are greater

because the volume to surface area ratio is usually larger. In other words, as the number of interior pixels

increases relative to the number of face pixels, there is a corresponding increase in efficiency from disabling

bounds checking on interior pixels.

Separable convolution: Gaussian filtering

The source code for this section can be found in the file

NeighborhoodIterators4.cxx.

We now introduce a variation on convolution filtering that is useful when a convolution kernel is separable. In

this example, we create a different neighborhood iterator for each axial direction of the image and then take

separate inner products with a 1D discrete Gaussian kernel. The idea of using several neighborhood iterators

at once has applications beyond convolution filtering and may improve efficiency when the size of the whole

neighborhood relative to the portion of the neighborhood used in calculations becomes large.

6.4. Neighborhood Iterators 171

The only new class necessary for this example is the Gaussian operator.

#include "itkGaussianOperator.h"

The Gaussian operator, like the Sobel operator, is instantiated with a pixel type and a dimensionality. Addition-

ally, we set the variance of the Gaussian, which has been read from the command line as standard deviation.

itk::GaussianOperator<PixelType, 2> gaussianOperator;

gaussianOperator.SetVariance(std::stod(argv[3]) * std::stod(argv[3]));

The only further changes from the previous example are in the main loop. Once again we use the results

from face calculator to construct a loop that processes boundary and non-boundary image regions separately.

Separable convolution, however, requires an additional, outer loop over all the image dimensions. The direction

of the Gaussian operator is reset at each iteration of the outer loop using the new dimension. The iterators

change direction to match because they are initialized with the radius of the Gaussian operator.

Input and output buffers are swapped at each iteration so that the output of the previous iteration becomes the

input for the current iteration. The swap is not performed on the last iteration.

ImageType::Pointer input = reader->GetOutput();

for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)

{

gaussianOperator.SetDirection(i);

gaussianOperator.CreateDirectional();

faceList = faceCalculator(

input, output->GetRequestedRegion(), gaussianOperator.GetRadius());

for (fit = faceList.begin(); fit != faceList.end(); ++fit)

{

it =

NeighborhoodIteratorType(gaussianOperator.GetRadius(), input, *fit);

out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

out.Set(innerProduct(it, gaussianOperator));

}

}

// Swap the input and output buffers

if (i != ImageType::ImageDimension - 1)

{

ImageType::Pointer tmp = input;

input = output;

output = tmp;

}

}

The output is rescaled and written as in the previous examples. Figure 6.8 shows the results of Gaussian blurring

172 Chapter 6. Iterators

Figure 6.8: Results of convolution filtering with a Gaussian kernel of increasing standard deviation σ (from left

to right, σ = 0, σ = 1, σ = 2, σ = 5). Increased blurring reduces contrast and changes the average intensity

value of the image, which causes the image to appear brighter when rescaled.

the image Examples/Data/BrainT1Slice.png using increasing kernel widths.

Slicing the neighborhood

The source code for this section can be found in the file

NeighborhoodIterators5.cxx.

This example introduces slice-based neighborhood processing. A slice, in this context, is a 1D path through an

ND neighborhood. Slices are defined for generic arrays by the std::slice class as a start index, a step size,

and an end index. Slices simplify the implementation of certain neighborhood calculations. They also provide

a mechanism for taking inner products with subregions of neighborhoods.

Suppose, for example, that we want to take partial derivatives in the y direction of a neighborhood, but offset

those derivatives by one pixel position along the positive x direction. For a 3 × 3, 2D neighborhood iter-

ator, we can construct an std::slice, (start = 2, stride = 3, end = 8), that represents the neigh-

borhood offsets (1,−1), (1,0), (1,1) (see Figure 6.6). If we pass this slice as an extra argument to the

itk::NeighborhoodInnerProduct function, then the inner product is taken only along that slice. This

“sliced” inner product with a 1D itk::DerivativeOperator gives the desired derivative.

The previous separable Gaussian filtering example can be rewritten using slices and slice-based inner products.

In general, slice-based processing is most useful when doing many different calculations on the same neighbor-

hood, where defining multiple iterators as in Section 6.4.1 becomes impractical or inefficient. Good examples

of slice-based neighborhood processing can be found in any of the ND anisotropic diffusion function objects,

such as itk::CurvatureNDAnisotropicDiffusionFunction.

The first difference between this example and the previous example is that the Gaussian operator is only initial-

ized once. Its direction is not important because it is only a 1D array of coefficients.

itk::GaussianOperator<PixelType, 2> gaussianOperator;

gaussianOperator.SetDirection(0);

gaussianOperator.SetVariance(std::stod(argv[3]) * std::stod(argv[3]));

gaussianOperator.CreateDirectional();

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodInnerProduct.html
https://www.itk.org/Doxygen/html/classitk_1_1DerivativeOperator.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureNDAnisotropicDiffusionFunction.html

6.4. Neighborhood Iterators 173

Next we need to define a radius for the iterator. The radius in all directions matches that of the single extent of

the Gaussian operator, defining a square neighborhood.

NeighborhoodIteratorType::RadiusType radius;

radius.Fill(gaussianOperator.GetRadius()[0]);

The inner product and face calculator are defined for the main processing loop as before, but now the iterator

is reinitialized each iteration with the square radius instead of the radius of the operator. The inner product is

taken using a slice along the axial direction corresponding to the current iteration. Note the use of GetSlice()

to return the proper slice from the iterator itself. GetSlice() can only be used to return the slice along the

complete extent of the axial direction of a neighborhood.

ImageType::Pointer input = reader->GetOutput();

faceList = faceCalculator(input, output->GetRequestedRegion(), radius);

for (unsigned int i = 0; i < ImageType::ImageDimension; ++i)

{

for (fit = faceList.begin(); fit != faceList.end(); ++fit)

{

it = NeighborhoodIteratorType(radius, input, *fit);

out = IteratorType(output, *fit);

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

out.Set(innerProduct(it.GetSlice(i), it, gaussianOperator));

}

}

// Swap the input and output buffers

if (i != ImageType::ImageDimension - 1)

{

ImageType::Pointer tmp = input;

input = output;

output = tmp;

}

}

This technique produces exactly the same results as the previous example. A little experimentation, however,

will reveal that it is less efficient since the neighborhood iterator is keeping track of extra, unused pixel locations

for each iteration, while the previous example only references those pixels that it needs. In cases, however,

where an algorithm takes multiple derivatives or convolution products over the same neighborhood, slice-based

processing can increase efficiency and simplify the implementation.

Random access iteration

The source code for this section can be found in the file

NeighborhoodIterators6.cxx.

Some image processing routines do not need to visit every pixel in an image. Flood-fill and connected-

component algorithms, for example, only visit pixels that are locally connected to one another. Algorithms

174 Chapter 6. Iterators

such as these can be efficiently written using the random access capabilities of the neighborhood iterator.

The following example finds local minima. Given a seed point, we can search the neighborhood of that point

and pick the smallest value m. While m is not at the center of our current neighborhood, we move in the

direction of m and repeat the analysis. Eventually we discover a local minimum and stop. This algorithm is

made trivially simple in ND using an ITK neighborhood iterator.

To illustrate the process, we create an image that descends everywhere to a single minimum: a positive dis-

tance transform to a point. The details of creating the distance transform are not relevant to the discussion of

neighborhood iterators, but can be found in the source code of this example. Some noise has been added to the

distance transform image for additional interest.

The variable input is the pointer to the distance transform image. The local minimum algorithm is initialized

with a seed point read from the command line.

ImageType::IndexType index;

index[0] = std::stoi(argv[2]);

index[1] = std::stoi(argv[3]);

Next we create the neighborhood iterator and position it at the seed point.

NeighborhoodIteratorType::RadiusType radius;

radius.Fill(1);

NeighborhoodIteratorType it(radius, input, input->GetRequestedRegion());

it.SetLocation(index);

Searching for the local minimum involves finding the minimum in the current neighborhood, then shifting the

neighborhood in the direction of that minimum. The for loop below records the itk::Offset of the minimum

neighborhood pixel. The neighborhood iterator is then moved using that offset. When a local minimum is

detected, flag will remain false and the while loop will exit. Note that this code is valid for an image of any

dimensionality.

bool flag = true;

while (flag == true)

{

NeighborhoodIteratorType::OffsetType nextMove;

nextMove.Fill(0);

flag = false;

PixelType min = it.GetCenterPixel();

for (unsigned int i = 0; i < it.Size(); ++i)

{

if (it.GetPixel(i) < min)

{

min = it.GetPixel(i);

nextMove = it.GetOffset(i);

flag = true;

}

}

https://www.itk.org/Doxygen/html/classitk_1_1Offset.html

6.4. Neighborhood Iterators 175

Figure 6.9: Paths traversed by the neighborhood iterator from different seed points to the local minimum. The

true minimum is at the center of the image. The path of the iterator is shown in white. The effect of noise in the

image is seen as small perturbations in each path.

it.SetCenterPixel(255.0);

it += nextMove;

}

Figure 6.9 shows the results of the algorithm for several seed points. The white line is the path of the iterator

from the seed point to the minimum in the center of the image. The effect of the additive noise is visible as the

small perturbations in the paths.

6.4.2 ShapedNeighborhoodIterator

This section describes a variation on the neighborhood iterator called a shaped neighborhood iterator. A shaped

neighborhood is defined like a bit mask, or stencil, with different offsets in the rectilinear neighborhood of the

normal neighborhood iterator turned off or on to create a pattern. Inactive positions (those not in the stencil)

are not updated during iteration and their values cannot be read or written. The shaped iterator is implemented

in the class itk::ShapedNeighborhoodIterator, which is a subclass of itk::NeighborhoodIterator.

A const version, itk::ConstShapedNeighborhoodIterator, is also available.

Like a regular neighborhood iterator, a shaped neighborhood iterator must be initialized with an ND radius

object, but the radius of the neighborhood of a shaped iterator only defines the set of possible neighbors. Any

number of possible neighbors can then be activated or deactivated. The shaped neighborhood iterator defines

an API for activating neighbors. When a neighbor location, defined relative to the center of the neighborhood,

is activated, it is placed on the active list and is then part of the stencil. An iterator can be “reshaped” at any

time by adding or removing offsets from the active list.

• void ActivateOffset(OffsetType &o) Include the offset o in the stencil of active neighbor-

hood positions. Offsets are relative to the neighborhood center.

• void DeactivateOffset(OffsetType &o) Remove the offset o from the stencil of active

neighborhood positions. Offsets are relative to the neighborhood center.

• void ClearActiveList()Deactivate all positions in the iterator stencil by clearing the active list.

https://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1ConstShapedNeighborhoodIterator.html

176 Chapter 6. Iterators

• unsigned int GetActiveIndexListSize() Return the number of pixel locations that are

currently active in the shaped iterator stencil.

Because the neighborhood is less rigidly defined in the shaped iterator, the set of pixel access methods is

restricted. Only the GetPixel() and SetPixel() methods are available, and calling these methods on an

inactive neighborhood offset will return undefined results.

For the common case of traversing all pixel offsets in a neighborhood, the shaped iterator class provides an

iterator through the active offsets in its stencil. This stencil iterator can be incremented or decremented and

defines Get() and Set() for reading and writing the values in the neighborhood.

• ShapedNeighborhoodIterator::Iterator Begin() Return a const or non-const iterator

through the shaped iterator stencil that points to the first valid location in the stencil.

• ShapedNeighborhoodIterator::Iterator End() Return a const or non-const iterator

through the shaped iterator stencil that points one position past the last valid location in the stencil.

The functionality and interface of the shaped neighborhood iterator is best described by example. We will use

the ShapedNeighborhoodIterator to implement some binary image morphology algorithms (see [4], [2], et al.).

The examples that follow implement erosion and dilation.

Shaped neighborhoods: morphological operations

The source code for this section can be found in the file

ShapedNeighborhoodIterators1.cxx.

This example uses itk::ShapedNeighborhoodIterator to implement a binary erosion algorithm. If we

think of an image I as a set of pixel indices, then erosion of I by a smaller set E, called the structuring element,

is the set of all indices at locations x in I such that when E is positioned at x, every element in E is also contained

in I.

This type of algorithm is easy to implement with shaped neighborhood iterators because we can use the iterator

itself as the structuring element E and move it sequentially through all positions x. The result at x is obtained

by checking values in a simple iteration loop through the neighborhood stencil.

We need two iterators, a shaped iterator for the input image and a regular image iterator for writing results to

the output image.

#include "itkConstShapedNeighborhoodIterator.h"

#include "itkImageRegionIterator.h"

Since we are working with binary images in this example, an unsigned char pixel type will do. The image

and iterator types are defined using the pixel type.

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, 2>;

using ShapedNeighborhoodIteratorType =

itk::ConstShapedNeighborhoodIterator<ImageType>;

https://www.itk.org/Doxygen/html/classitk_1_1ShapedNeighborhoodIterator.html

6.4. Neighborhood Iterators 177

using IteratorType = itk::ImageRegionIterator<ImageType>;

Refer to the examples in Section 6.4.1 or the source code of this example for a description of how to read the

input image and allocate a matching output image.

The size of the structuring element is read from the command line and used to define a radius for the shaped

neighborhood iterator. Using the method developed in section 6.4.1 to minimize bounds checking, the iterator

itself is not initialized until entering the main processing loop.

unsigned int element_radius = std::stoi(argv[3]);

ShapedNeighborhoodIteratorType::RadiusType radius;

radius.Fill(element_radius);

The face calculator object introduced in Section 6.4.1 is created and used as before.

using FaceCalculatorType =

itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator<ImageType>;

FaceCalculatorType faceCalculator;

FaceCalculatorType::FaceListType faceList;

FaceCalculatorType::FaceListType::iterator fit;

faceList =

faceCalculator(reader->GetOutput(), output->GetRequestedRegion(), radius);

Now we initialize some variables and constants.

IteratorType out;

constexpr PixelType background_value = 0;

constexpr PixelType foreground_value = 255;

const auto rad = static_cast<float>(element_radius);

The outer loop of the algorithm is structured as in previous neighborhood iterator examples. Each region in the

face list is processed in turn. As each new region is processed, the input and output iterators are initialized on

that region.

The shaped iterator that ranges over the input is our structuring element and its active stencil must be created

accordingly. For this example, the structuring element is shaped like a circle of radius element radius. Each

of the appropriate neighborhood offsets is activated in the double for loop.

for (fit = faceList.begin(); fit != faceList.end(); ++fit)

{

ShapedNeighborhoodIteratorType it(radius, reader->GetOutput(), *fit);

out = IteratorType(output, *fit);

// Creates a circular structuring element by activating all the pixels

// less than radius distance from the center of the neighborhood.

178 Chapter 6. Iterators

for (float y = -rad; y <= rad; ++y)

{

for (float x = -rad; x <= rad; ++x)

{

ShapedNeighborhoodIteratorType::OffsetType off;

float dis = std::sqrt(x * x + y * y);

if (dis <= rad)

{

off[0] = static_cast<int>(x);

off[1] = static_cast<int>(y);

it.ActivateOffset(off);

}

}

}

The inner loop, which implements the erosion algorithm, is fairly simple. The for loop steps the input and

output iterators through their respective images. At each step, the active stencil of the shaped iterator is traversed

to determine whether all pixels underneath the stencil contain the foreground value, i.e. are contained within

the set I. Note the use of the stencil iterator, ci, in performing this check.

// Implements erosion

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = true;

for (ci = it.Begin(); ci != it.End(); ++ci)

{

if (ci.Get() == background_value)

{

flag = false;

break;

}

}

if (flag == true)

{

out.Set(foreground_value);

}

else

{

out.Set(background_value);

}

}

}

The source code for this section can be found in the file

ShapedNeighborhoodIterators2.cxx.

The logic of the inner loop can be rewritten to perform dilation. Dilation of the set I by E is the set of all x such

that E positioned at x contains at least one element in I.

6.4. Neighborhood Iterators 179

Figure 6.10: The effects of morphological operations on a binary image using a circular structuring element of

size 4. From left to right are the original image, erosion, dilation, opening, and closing. The opening operation is

erosion of the image followed by dilation. Closing is dilation of the image followed by erosion.

// Implements dilation

for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)

{

ShapedNeighborhoodIteratorType::ConstIterator ci;

bool flag = false;

for (ci = it.Begin(); ci != it.End(); ++ci)

{

if (ci.Get() != background_value)

{

flag = true;

break;

}

}

if (flag == true)

{

out.Set(foreground_value);

}

else

{

out.Set(background_value);

}

}

}

The output image is written and visualized directly as a binary image of unsigned chars. Figure 6.10 illus-

trates some results of erosion and dilation on the image Examples/Data/BinaryImage.png. Applying erosion

and dilation in sequence effects the morphological operations of opening and closing.

CHAPTER

SEVEN

IMAGE ADAPTORS

The purpose of an image adaptor is to make one image appear like another image, possibly of a different

pixel type. A typical example is to take an image of pixel type unsigned char and present it as an image of

pixel type float. The motivation for using image adaptors in this case is to avoid the extra memory resources

required by using a casting filter. When we use the itk::CastImageFilter for the conversion, the filter

creates a memory buffer large enough to store the float image. The float image requires four times the

memory of the original image and contains no useful additional information. Image adaptors, on the other

hand, do not require the extra memory as pixels are converted only when they are read using image iterators

(see Chapter 6).

Image adaptors are particularly useful when there is infrequent pixel access, since the actual conversion occurs

on the fly during the access operation. In such cases the use of image adaptors may reduce overall computation

time as well as reduce memory usage. The use of image adaptors, however, can be disadvantageous in some

situations. For example, when the downstream filter is executed multiple times, a CastImageFilter will cache

its output after the first execution and will not re-execute when the filter downstream is updated. Conversely,

an image adaptor will compute the cast every time.

Another application for image adaptors is to perform lightweight pixel-wise operations replacing the need for

a filter. In the toolkit, adaptors are defined for many single valued and single parameter functions such as

trigonometric, exponential and logarithmic functions. For example,

• itk::ExpImageAdaptor

• itk::SinImageAdaptor

• itk::CosImageAdaptor

The following examples illustrate common applications of image adaptors.

7.1 Image Casting

The source code for this section can be found in the file

ImageAdaptor1.cxx.

This example illustrates how the itk::ImageAdaptor can be used to cast an image from one pixel type to

https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ExpImageAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1SinImageAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1CosImageAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html

182 Chapter 7. Image Adaptors

Y

ImageCasting
Filter

Filter
B

Image
Z

Filter
A

Image
X

Filter
B

Image
Z

Filter
A

Image
X

Adaptor

Y

Figure 7.1: The difference between using a CastImageFilter and an ImageAdaptor. ImageAdaptors convert

pixel values when they are accessed by iterators. Thus, they do not produces an intermediate image. In

the example illustrated by this figure, the Image Y is not created by the ImageAdaptor; instead, the image is

simulated on the fly each time an iterator from the filter downstream attempts to access the image data.

another. In particular, we will adapt an unsigned char image to make it appear as an image of pixel type

float.

We begin by including the relevant headers.

#include "itkImageAdaptor.h"

First, we need to define a pixel accessor class that does the actual conversion. Note that in general, the only valid

operations for pixel accessors are those that only require the value of the input pixel. As such, neighborhood

type operations are not possible. A pixel accessor must provide methods Set() and Get(), and define the types

of InternalPixelType and ExternalPixelType. The InternalPixelType corresponds to the pixel type of

the image to be adapted (unsigned char in this example). The ExternalPixelType corresponds to the pixel

type we wish to emulate with the ImageAdaptor (float in this case).

class CastPixelAccessor

{

public:

using InternalType = unsigned char;

using ExternalType = float;

static void

Set(InternalType & output, const ExternalType & input)

{

output = static_cast<InternalType>(input);

}

static ExternalType

Get(const InternalType & input)

{

return static_cast<ExternalType>(input);

}

};

7.2. Adapting RGB Images 183

The CastPixelAccessor class simply applies a static cast to the pixel values. We now use this pixel accessor

to define the image adaptor type and create an instance using the standard New() method.

using InputPixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<InputPixelType, Dimension>;

using ImageAdaptorType = itk::ImageAdaptor<ImageType, CastPixelAccessor>;

auto adaptor = ImageAdaptorType::New();

We also create an image reader templated over the input image type and read the input image from file.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

The output of the reader is then connected as the input to the image adaptor.

adaptor->SetImage(reader->GetOutput());

In the following code, we visit the image using an iterator instantiated using the adapted image type and

compute the sum of the pixel values.

using IteratorType = itk::ImageRegionIteratorWithIndex<ImageAdaptorType>;

IteratorType it(adaptor, adaptor->GetBufferedRegion());

double sum = 0.0;

it.GoToBegin();

while (!it.IsAtEnd())

{

float value = it.Get();

sum += value;

++it;

}

Although in this example, we are just performing a simple summation, the key concept is that access to pixels

is performed as if the pixel is of type float. Additionally, it should be noted that the adaptor is used as if it

was an actual image and not as a filter. ImageAdaptors conform to the same API as the itk::Image class.

7.2 Adapting RGB Images

The source code for this section can be found in the file

ImageAdaptor2.cxx.

This example illustrates how to use the itk::ImageAdaptor to access the individual components of an RGB

image. In this case, we create an ImageAdaptor that will accept a RGB image as input and presents it as a scalar

image. The pixel data will be taken directly from the red channel of the original image.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html

184 Chapter 7. Image Adaptors

As with the previous example, the bulk of the effort in creating the image adaptor is associated with the def-

inition of the pixel accessor class. In this case, the accessor converts a RGB vector to a scalar containing the

red channel component. Note that in the following, we do not need to define the Set() method since we only

expect the adaptor to be used for reading data from the image.

class RedChannelPixelAccessor

{

public:

using InternalType = itk::RGBPixel<float>;

using ExternalType = float;

static ExternalType

Get(const InternalType & input)

{

return static_cast<ExternalType>(input.GetRed());

}

};

The Get() method simply calls the GetRed() method defined in the itk::RGBPixel class.

Now we use the internal pixel type of the pixel accessor to define the input image type, and then proceed to

instantiate the ImageAdaptor type.

using InputPixelType = RedChannelPixelAccessor::InternalType;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<InputPixelType, Dimension>;

using ImageAdaptorType =

itk::ImageAdaptor<ImageType, RedChannelPixelAccessor>;

auto adaptor = ImageAdaptorType::New();

We create an image reader and connect the output to the adaptor as before.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

adaptor->SetImage(reader->GetOutput());

We create an itk::RescaleIntensityImageFilter and an itk::ImageFileWriter to rescale the dynamic

range of the pixel values and send the extracted channel to an image file. Note that the image type used for

the rescaling filter is the ImageAdaptorType itself. That is, the adaptor type is used in the same context as an

image type.

using OutputImageType = itk::Image<unsigned char, Dimension>;

using RescalerType =

itk::RescaleIntensityImageFilter<ImageAdaptorType, OutputImageType>;

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

7.2. Adapting RGB Images 185

auto rescaler = RescalerType::New();

using WriterType = itk::ImageFileWriter<OutputImageType>;

auto writer = WriterType::New();

Now we connect the adaptor as the input to the rescaler and set the parameters for the intensity rescaling.

rescaler->SetOutputMinimum(0);

rescaler->SetOutputMaximum(255);

rescaler->SetInput(adaptor);

writer->SetInput(rescaler->GetOutput());

Finally, we invoke the Update() method on the writer and take precautions to catch any exception that may be

thrown during the execution of the pipeline.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Exception caught " << excp << std::endl;

return EXIT_FAILURE;

}

ImageAdaptors for the green and blue channels can easily be implemented by modifying the pixel accessor

of the red channel and then using the new pixel accessor for instantiating the type of an image adaptor. The

following define a green channel pixel accessor.

class GreenChannelPixelAccessor

{

public:

using InternalType = itk::RGBPixel<float>;

using ExternalType = float;

static ExternalType

Get(const InternalType & input)

{

return static_cast<ExternalType>(input.GetGreen());

}

};

A blue channel pixel accessor is similarly defined.

class BlueChannelPixelAccessor

{

public:

using InternalType = itk::RGBPixel<float>;

186 Chapter 7. Image Adaptors

Figure 7.2: Using ImageAdaptor to extract the components of an RGB image. The image on the left is a

subregion of the Visible Woman cryogenic data set. The red, green and blue components are shown from left to

right as scalar images extracted with an ImageAdaptor.

using ExternalType = float;

static ExternalType

Get(const InternalType & input)

{

return static_cast<ExternalType>(input.GetBlue());

}

};

Figure 7.2 shows the result of extracting the red, green and blue components from a region of the Visible

Woman cryogenic data set.

7.3 Adapting Vector Images

The source code for this section can be found in the file

ImageAdaptor3.cxx.

This example illustrates the use of itk::ImageAdaptor to obtain access to the components of a vector image.

Specifically, it shows how to manage pixel accessors containing internal parameters. In this example we create

an image of vectors by using a gradient filter. Then, we use an image adaptor to extract one of the components

of the vector image. The vector type used by the gradient filter is the itk::CovariantVector class.

We start by including the relevant headers.

#include "itkGradientRecursiveGaussianImageFilter.h"

A pixel accessors class may have internal parameters that affect the operations performed on input pixel data.

Image adaptors support parameters in their internal pixel accessor by using the assignment operator. Any

pixel accessor which has internal parameters must therefore implement the assignment operator. The following

https://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

7.3. Adapting Vector Images 187

defines a pixel accessor for extracting components from a vector pixel. The m Index member variable is used

to select the vector component to be returned.

class VectorPixelAccessor

{

public:

using InternalType = itk::CovariantVector<float, 2>;

using ExternalType = float;

VectorPixelAccessor() = default;

VectorPixelAccessor &

operator=(const VectorPixelAccessor & vpa) = default;

ExternalType

Get(const InternalType & input) const

{

return static_cast<ExternalType>(input[m_Index]);

}

void

SetIndex(unsigned int index)

{

m_Index = index;

}

private:

unsigned int m_Index{ 0 };

};

The Get() method simply returns the i-th component of the vector as indicated by the index. The assignment

operator transfers the value of the index member variable from one instance of the pixel accessor to another.

In order to test the pixel accessor, we generate an image of vectors using the

itk::GradientRecursiveGaussianImageFilter. This filter produces an output image of

itk::CovariantVector pixel type. Covariant vectors are the natural representation for gradients

since they are the equivalent of normals to iso-values manifolds.

using InputPixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using VectorPixelType = itk::CovariantVector<float, Dimension>;

using VectorImageType = itk::Image<VectorPixelType, Dimension>;

using GradientFilterType =

itk::GradientRecursiveGaussianImageFilter<InputImageType,

VectorImageType>;

auto gradient = GradientFilterType::New();

We instantiate the ImageAdaptor using the vector image type as the first template parameter and the pixel

accessor as the second template parameter.

https://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

188 Chapter 7. Image Adaptors

using ImageAdaptorType =

itk::ImageAdaptor<VectorImageType, itk::VectorPixelAccessor>;

auto adaptor = ImageAdaptorType::New();

The index of the component to be extracted is specified from the command line. In the following, we create the

accessor, set the index and connect the accessor to the image adaptor using the SetPixelAccessor() method.

itk::VectorPixelAccessor accessor;

accessor.SetIndex(std::stoi(argv[3]));

adaptor->SetPixelAccessor(accessor);

We create a reader to load the image specified from the command line and pass its output as the input to the

gradient filter.

using ReaderType = itk::ImageFileReader<InputImageType>;

auto reader = ReaderType::New();

gradient->SetInput(reader->GetOutput());

reader->SetFileName(argv[1]);

gradient->Update();

We now connect the output of the gradient filter as input to the image adaptor. The adaptor emulates a scalar

image whose pixel values are taken from the selected component of the vector image.

adaptor->SetImage(gradient->GetOutput());

As in the previous example, we rescale the scalar image before writing the image out to file. Figure 7.3 shows

the result of applying the example code for extracting both components of a two dimensional gradient.

7.4 Adaptors for Simple Computation

The source code for this section can be found in the file

ImageAdaptor4.cxx.

Image adaptors can also be used to perform simple pixel-wise computations on image data. The following

example illustrates how to use the itk::ImageAdaptor for image thresholding.

A pixel accessor for image thresholding requires that the accessor maintain the threshold value. Therefore, it

must also implement the assignment operator to set this internal parameter.

class ThresholdingPixelAccessor

{

public:

using InternalType = unsigned char;

https://www.itk.org/Doxygen/html/classitk_1_1ImageAdaptor.html

7.4. Adaptors for Simple Computation 189

Figure 7.3: Using ImageAdaptor to access components of a vector image. The input image on the left was

passed through a gradient image filter and the two components of the resulting vector image were extracted

using an image adaptor.

using ExternalType = unsigned char;

ThresholdingPixelAccessor() = default;

ExternalType

Get(const InternalType & input) const

{

return (input > m_Threshold) ? 1 : 0;

}

void

SetThreshold(const InternalType threshold)

{

m_Threshold = threshold;

}

ThresholdingPixelAccessor &

operator=(const ThresholdingPixelAccessor & vpa) = default;

private:

InternalType m_Threshold{ 0 };

};

} // namespace itk

The Get() method returns one if the input pixel is above the threshold and zero otherwise. The assignment

operator transfers the value of the threshold member variable from one instance of the pixel accessor to another.

To create an image adaptor, we first instantiate an image type whose pixel type is the same as the internal pixel

type of the pixel accessor.

190 Chapter 7. Image Adaptors

using PixelType = itk::ThresholdingPixelAccessor::InternalType;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

We instantiate the ImageAdaptor using the image type as the first template parameter and the pixel accessor as

the second template parameter.

using ImageAdaptorType =

itk::ImageAdaptor<ImageType, itk::ThresholdingPixelAccessor>;

auto adaptor = ImageAdaptorType::New();

The threshold value is set from the command line. A threshold pixel accessor is created and connected to the

image adaptor in the same manner as in the previous example.

itk::ThresholdingPixelAccessor accessor;

accessor.SetThreshold(std::stoi(argv[3]));

adaptor->SetPixelAccessor(accessor);

We create a reader to load the input image and connect the output of the reader as the input to the adaptor.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

reader->Update();

adaptor->SetImage(reader->GetOutput());

As before, we rescale the emulated scalar image before writing it out to file. Figure 7.4 illustrates the result of

applying the thresholding adaptor to a typical gray scale image using two different threshold values. Note that

the same effect could have been achieved by using the itk::BinaryThresholdImageFilter but at the price

of holding an extra copy of the image in memory.

7.5 Adaptors and Writers

Image adaptors will not behave correctly when connected directly to a writer. The reason is that writers

tend to get direct access to the image buffer from their input, since image adaptors do not have a real buffer

their behavior in this circumstances is incorrect. You should avoid instantiating the ImageFileWriter or the

ImageSeriesWriter over an image adaptor type.

https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

7.5. Adaptors and Writers 191

Figure 7.4: Using ImageAdaptor to perform a simple image computation. An ImageAdaptor is used to perform

binary thresholding on the input image on the left. The center image was created using a threshold of 180, while

the image on the right corresponds to a threshold of 220.

Part III

Development Guidelines

CHAPTER

EIGHT

HOW TO WRITE A FILTER

This purpose of this chapter is help developers create their own filter (process object). This chapter is divided

into four major parts. An initial definition of terms is followed by an overview of the filter creation process.

Next, data streaming is discussed. The way data is streamed in ITK must be understood in order to write correct

filters. Finally, a section on multi-threading describes what you must do in order to take advantage of shared

memory parallel processing.

8.1 Terminology

The following is some basic terminology for the discussion that follows. Chapter 3 provides additional back-

ground information.

• The data processing pipeline is a directed graph of process and data objects. The pipeline inputs,

operators on, and outputs data.

• A filter, or process object, has one or more inputs, and one or more outputs.

• A source, or source process object, initiates the data processing pipeline, and has one or more outputs.

• A mapper, or mapper process object, terminates the data processing pipeline. The mapper has one

or more outputs, and may write data to disk, interface with a display system, or interface to any other

system.

• A data object represents and provides access to data. In ITK, the data object (ITK class

itk::DataObject) is typically of type itk::Image or itk::Mesh.

• A region (ITK class itk::Region) represents a piece, or subset of the entire data set.

• An image region (ITK class itk::ImageRegion) represents a structured portion of data. ImageRegion

is implemented using the itk::Index and itk::Size classes

• A mesh region (ITK class itk::MeshRegion) represents an unstructured portion of data.

• The LargestPossibleRegion is the theoretical single, largest piece (region) that could represent the entire

dataset. The LargestPossibleRegion is used in the system as the measure of the largest possible data size.

https://www.itk.org/Doxygen/html/classitk_1_1DataObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html
https://www.itk.org/Doxygen/html/classitk_1_1Region.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1MeshRegion.html

196 Chapter 8. How To Write A Filter

• The BufferedRegion is a contiguous block of memory that is less than or equal to in size to the Largest-

PossibleRegion. The buffered region is what has actually been allocated by a filter to hold its output.

• The RequestedRegion is the piece of the dataset that a filter is required to produce. The RequestedRe-

gion is less than or equal in size to the BufferedRegion. The RequestedRegion may differ in size from

the BufferedRegion due to performance reasons. The RequestedRegion may be set by a user, or by an

application that needs just a portion of the data.

• The modified time (represented by ITK class itk::TimeStamp) is a monotonically increasing integer

value that characterizes a point in time when an object was last modified.

• Downstream is the direction of dataflow, from sources to mappers.

• Upstream is the opposite of downstream, from mappers to sources.

• The pipeline modified time for a particular data object is the maximum modified time of all upstream

data objects and process objects.

• The term information refers to metadata that characterizes data. For example, index and dimensions are

information characterizing an image region.

8.2 Overview of Filter Creation

Filters are defined with respect to the type of data

ProcessObject

Reader Gaussian
Filter

Image

ProcessObjectDataObject

Figure 8.1: Relationship between DataObject and

ProcessObject.

they input (if any), and the type of data they out-

put (if any). The key to writing a ITK filter is to

identify the number and types of input and output.

Having done so, there are often superclasses that

simplify this task via class derivation. For example,

most filters in ITK take a single image as input, and

produce a single image on output. The superclass

itk::ImageToImageFilter is a convenience class

that provide most of the functionality needed for such a filter.

Some common base classes for new filters include:

• ImageToImageFilter: the most common filter base for segmentation algorithms. Takes an image and

produces a new image, by default of the same dimensions. Override GenerateOutputInformation to

produce a different size.

• UnaryFunctorImageFilter: used when defining a filter that applies a function to an image.

• BinaryFunctorImageFilter: used when defining a filter that applies an operation to two images.

• ImageFunction: a functor that can be applied to an image, evaluating f (x) at each point in the image.

• MeshToMeshFilter: a filter that transforms meshes, such as tessellation, polygon reduction, and so on.

• LightObject: abstract base for filters that don’t fit well anywhere else in the class hierarchy. Also useful

for “calculator” filters; i.e. a sink filter that takes an input and calculates a result which is retrieved using

a Get() method.

https://www.itk.org/Doxygen/html/classitk_1_1TimeStamp.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

8.3. Streaming Large Data 197

Once the appropriate superclass is identified, the filter writer implements the class defining the methods re-

quired by most all ITK objects: New(), PrintSelf(), and protected constructor, copy constructor, delete,

and operator=, and so on. Also, don’t forget standard type aliases like Self, Superclass, Pointer, and

ConstPointer. Then the filter writer can focus on the most important parts of the implementation: defin-

ing the API, data members, and other implementation details of the algorithm. In particular, the filter

writer will have to implement either a GenerateData() (non-threaded) or ThreadedGenerateData() and

DynamicThreadedGenerateData() methods. (See Section 3.2.7 for an overview of multi-threading in ITK.)

An important note: the GenerateData() method is required to allocate memory for the output.

The ThreadedGenerateData() method is not. In default implementation (see itk::ImageSource,

a superclass of itk::ImageToImageFilter) GenerateData() allocates memory and then invokes

DynamicThreadedGenerateData() or ThreadedGenerateData().

One of the most important decisions that the developer must make is whether the filter can stream data; that is,

process just a portion of the input to produce a portion of the output. Often superclass behavior works well: if

the filter processes the input using single pixel access, then the default behavior is adequate. If not, then the

user may have to a) find a more specialized superclass to derive from, or b) override one or more methods that

control how the filter operates during pipeline execution. The next section describes these methods.

8.3 Streaming Large Data

The data associated with multi-dimensional images is large and becoming larger. This trend is due to advances

in scanning resolution, as well as increases in computing capability. Any practical segmentation and registration

software system must address this fact in order to be useful in application. ITK addresses this problem via its

data streaming facility.

In ITK, streaming is the process of dividing data into pieces, or regions, and then processing this data through

the data pipeline. Recall that the pipeline consists of process objects that generate data objects, connected into

a pipeline topology. The input to a process object is a data object (unless the process initiates the pipeline and

then it is a source process object). These data objects in turn are consumed by other process objects, and so on,

until a directed graph of data flow is constructed. Eventually the pipeline is terminated by one or more mappers,

that may write data to storage, or interface with a graphics or other system. This is illustrated in figures 8.1 and

8.2.

A significant benefit of this architecture is that the relatively complex process of managing pipeline execution

is designed into the system. This means that keeping the pipeline up to date, executing only those portions of

the pipeline that have changed, multi-threading execution, managing memory allocation, and streaming is all

built into the architecture. However, these features do introduce complexity into the system, the bulk of which

is seen by class developers. The purpose of this chapter is to describe the pipeline execution process in detail,

with a focus on data streaming.

8.3.1 Overview of Pipeline Execution

The pipeline execution process performs several important functions.

1. It determines which filters, in a pipeline of filters, need to execute. This prevents redundant execution

and minimizes overall execution time.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html

198 Chapter 8. How To Write A Filter

Image

Image
File

Reader
Filter

Gaussian Thresholding

Writer

Image
File

Renderer

Display

Image Image

Figure 8.2: The Data Pipeline

2. It initializes the (filter’s) output data objects, preparing them for new data. In addition, it determines how

much memory each filter must allocate for its output, and allocates it.

3. The execution process determines how much data a filter must process in order to produce an output of

sufficient size for downstream filters; it also takes into account any limits on memory or special filter

requirements. Other factors include the size of data processing kernels, that affect how much data input

data (extra padding) is required.

4. It subdivides data into subpieces for multi-threading. (Note that the division of data into subpieces is

exactly same problem as dividing data into pieces for streaming; hence multi-threading comes for free

as part of the streaming architecture.)

5. It may free (or release) output data if filters no longer need it to compute, and the user requests that data

is to be released. (Note: a filter’s output data object may be considered a “cache”. If the cache is allowed

to remain (ReleaseDataFlagOff()) between pipeline execution, and the filter, or the input to the filter,

never changes, then process objects downstream of the filter just reuse the filter’s cache to re-execute.)

To perform these functions, the execution process negotiates with the filters that define the pipeline. Only each

filter can know how much data is required on input to produce a particular output. For example, a shrink filter

with a shrink factor of two requires an image twice as large (in terms of its x-y dimensions) on input to produce

a particular size output. An image convolution filter would require extra input (boundary padding) depending

on the size of the convolution kernel. Some filters require the entire input to produce an output (for example,

a histogram), and have the option of requesting the entire input. (In this case streaming does not work unless

the developer creates a filter that can request multiple pieces, caching state between each piece to assemble the

final output.)

Ultimately the negotiation process is controlled by the request for data of a particular size (i.e., region). It may

be that the user asks to process a region of interest within a large image, or that memory limitations result in

processing the data in several pieces. For example, an application may compute the memory required by a

pipeline, and then use itk::StreamingImageFilter to break the data processing into several pieces. The

https://www.itk.org/Doxygen/html/classitk_1_1StreamingImageFilter.html

8.3. Streaming Large Data 199

Update()

Reader
Filter

Gaussian Thresholding

Image Image Image

Update()

GenerateData()

Update()

GenerateData()

GenerateData()

Figure 8.3: Sequence of the Data Pipeline updating mechanism

data request is propagated through the pipeline in the upstream direction, and the negotiation process configures

each filter to produce output data of a particular size.

The secret to creating a streaming filter is to understand how this negotiation process works, and how to override

its default behavior by using the appropriate virtual functions defined in itk::ProcessObject. The next

section describes the specifics of these methods, and when to override them. Examples are provided along the

way to illustrate concepts.

8.3.2 Details of Pipeline Execution

Typically pipeline execution is initiated when a process object receives the ProcessObject::Update()

method invocation. This method is simply delegated to the output of the filter, invoking the

DataObject::Update() method. Note that this behavior is typical of the interaction between ProcessOb-

ject and DataObject: a method invoked on one is eventually delegated to the other. In this way the data request

from the pipeline is propagated upstream, initiating data flow that returns downstream.

The DataObject::Update() method in turn invokes three other methods:

• DataObject::UpdateOutputInformation()

• DataObject::PropagateRequestedRegion()

• DataObject::UpdateOutputData()

UpdateOutputInformation()

The UpdateOutputInformation() method first calls the VerifyPreconditions to check that all required

inputs are set and all parameters are valid and consistent. This enables quick failure of a filter when not

configure correctly. The default implementation checks that all required pipeline inputs are set.

https://www.itk.org/Doxygen/html/classitk_1_1ProcessObject.html

200 Chapter 8. How To Write A Filter

Next the pipeline modified time is determined. The RequestedRegion is set to process all the data, i.e., the

LargestPossibleRegion, if neither UpdateLargestPossibleRegion was called nor RequestedRegion has not

been set. The UpdateOutputInformation() propagates upstream through the entire pipeline and terminates

at the sources.

After the upstream inputs have completed their UpdateOutputInformation the metadata of inputs are avail-

able. The VerifyInputInformation is then called. The default implementation in ImageToImageFilter

checks that all input images occupy the same physical space. This may need to be overridden if the filter does

not require the image’s voxels occupy the same physical space.

During UpdateOutputInformation(), filters have a chance to override the

ProcessObject::GenerateOutputInformation() method (GenerateOutputInformation() is in-

voked by UpdateOutputInformation()). The default behavior is for the GenerateOutputInformation()

to copy the metadata describing the input to the output (via DataObject::CopyInformation()). Remember,

information is metadata describing the output, such as the origin, spacing, and LargestPossibleRegion (i.e.,

largest possible size) of an image.

A good example of this behavior is itk::ShrinkImageFilter. This filter takes an input image and shrinks it

by some integral value. The result is that the spacing and LargestPossibleRegion of the output will be different

to that of the input. Thus, GenerateOutputInformation() is overloaded.

PropagateRequestedRegion()

The PropagateRequestedRegion() call propagates upstream to satisfy a data request. In typical application

this data request is usually the LargestPossibleRegion, but if streaming is necessary, or the user is interested

in updating just a portion of the data, the RequestedRegion may be any valid region within the LargestPossi-

bleRegion.

The function of PropagateRequestedRegion() is, given a request for data (the amount is specified by Re-

questedRegion), propagate upstream configuring the filter’s input and output process object’s to the correct size.

Eventually, this means configuring the BufferedRegion, that is the amount of data actually allocated.

The reason for the buffered region is this: the output of a filter may be consumed by more than one downstream

filter. If these consumers each request different amounts of input (say due to kernel requirements or other

padding needs), then the upstream, generating filter produces the data to satisfy both consumers, that may

mean it produces more data than one of the consumers needs.

The ProcessObject::PropagateRequestedRegion() method invokes three methods that the filter developer

may choose to overload.

• EnlargeOutputRequestedRegion(DataObject *output) gives the (filter) subclass a chance to indi-

cate that it will provide more data than required for the output. This can happen, for example, when a

source can only produce the whole output (i.e., the LargestPossibleRegion).

• GenerateOutputRequestedRegion(DataObject *output) gives the subclass a chance to define how

to set the requested regions for each of its outputs, given this output’s requested region. The default

implementation is to make all the output requested regions the same. A subclass may need to override

this method if each output is a different resolution. This method is only overridden if a filter has multiple

outputs.

• GenerateInputRequestedRegion() gives the subclass a chance to request a larger requested region on

https://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html

8.4. Threaded Filter Execution 201

the inputs. This is necessary when, for example, a filter requires more data at the “internal” boundaries

to produce the boundary values - due to kernel operations or other region boundary effects.

itk::RGBGibbsPriorFilter is an example of a filter that needs to invoke

EnlargeOutputRequestedRegion(). The designer of this filter decided that the filter should operate on all the

data. Note that a subtle interplay between this method and GenerateInputRequestedRegion() is occurring

here. The default behavior of GenerateInputRequestedRegion() (at least for itk::ImageToImageFilter)

is to set the input RequestedRegion to the output’s ReqestedRegion. Hence, by overriding the method

EnlargeOutputRequestedRegion() to set the output to the LargestPossibleRegion, effectively sets the

input to this filter to the LargestPossibleRegion (and probably causing all upstream filters to process their

LargestPossibleRegion as well. This means that the filter, and therefore the pipeline, does not stream. This

could be fixed by reimplementing the filter with the notion of streaming built in to the algorithm.)

itk::GradientMagnitudeImageFilter is an example of a filter that needs to invoke

GenerateInputRequestedRegion(). It needs a larger input requested region because a kernel is re-

quired to compute the gradient at a pixel. Hence the input needs to be “padded out” so the filter has enough

data to compute the gradient at each output pixel.

UpdateOutputData()

UpdateOutputData() is the third and final method as a result of the Update() method. The purpose of this

method is to determine whether a particular filter needs to execute in order to bring its output up to date. (A

filter executes when its GenerateData() method is invoked.) Filter execution occurs when a) the filter is

modified as a result of modifying an instance variable; b) the input to the filter changes; c) the input data has

been released; or d) an invalid RequestedRegion was set previously and the filter did not produce data. Filters

execute in order in the downstream direction. Once a filter executes, all filters downstream of it must also

execute.

DataObject::UpdateOutputData() is delegated to the DataObject’s source (i.e., the ProcessObject that gen-

erated it) only if the DataObject needs to be updated. A comparison of modified time, pipeline time, release

data flag, and valid requested region is made. If any one of these conditions indicate that the data needs regener-

ation, then the source’s ProcessObject::UpdateOutputData() is invoked. These calls are made recursively

up the pipeline until a source filter object is encountered, or the pipeline is determined to be up to date and valid.

At this point, the recursion unrolls, and the execution of the filter proceeds. (This means that the output data

is initialized, StartEvent is invoked, the filters GenerateData() is called, EndEvent is invoked, and input data

to this filter may be released, if requested. In addition, this filter’s InformationTime is updated to the current

time.)

The developer will never override UpdateOutputData(). The developer need only write the GenerateData()

method (non-threaded) or DynamicThreadedGenerateData() method. A discussion on threading follows in

the next section.

8.4 Threaded Filter Execution

Filters that can process data in pieces can typically multi-process using the data parallel, shared memory im-

plementation built into the pipeline execution process. To create a multi-threaded filter, simply define and

https://www.itk.org/Doxygen/html/classitk_1_1RGBGibbsPriorFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html

202 Chapter 8. How To Write A Filter

implement a DynamicThreadedGenerateData(). For example, a itk::ImageToImageFilter would create

the method:

void

DynamicThreadedGenerateData(

const OutputImageRegionType & outputRegionForThread) override;

The key to threading is to generate output for the output region given as the parameter. In ITK, this

is simple to do because an output iterator can be created using the region provided. Hence the output

can be iterated over, accessing the corresponding input pixels as necessary to compute the value of

the output pixel.

Multi-threading requires caution when performing I/O (including using cout or cerr) or invoking

events. A safe practice is to allow only the invoking thread to perform I/O or generate events. If

more than one thread tries to write to the same place at the same time, the program can behave badly,

and possibly even deadlock or crash.

DynamicThreadedGenerateData signature allows number of pieces (output regions) to be pro-

cessed to be different, usually bigger than the number of real threads executing the work. In turn, this

allows load balancing. The number of work units controls filter parallelism, and the name ‘threads’

is reserved for real threads as exposed by itk::MultiThreaderBase and its descendants.

8.5 Filter Conventions

In order to fully participate in the ITK pipeline, filters are expected to follow certain conventions, and

provide certain interfaces. This section describes the minimum requirements for a filter to integrate

into the ITK framework.

A filter should define public types for the class itself (Self) and its Superclass, and const and

non-const smart pointers, thus:

using Self = ExampleImageFilter;

using Superclass = ImageToImageFilter<TImage, TImage>;

using Pointer = SmartPointer<Self>;

using ConstPointer = SmartPointer<const Self>;

The Pointer type is particularly useful, as it is a smart pointer that will be used by all client code

to hold a reference-counted instantiation of the filter.

Once the above types have been defined, you can use the following convenience macros, which

permit your filter to participate in the object factory mechanism, and to be created using the canonical

::New():

https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiThreaderBase.html

8.5. Filter Conventions 203

/** Method for creation through the object factory. */

itkNewMacro(Self);

/** Run-time type information (and related methods). */

itkOverrideGetNameOfClassMacro(ExampleImageFilter);

The default constructor should be protected, and provide sensible defaults (usually zero) for all

parameters. The copy constructor and assignment operator should not implemented in order to

prevent instantiating the filter without the factory methods (above). They should be declared in

the public section using the ITK DISALLOW COPY AND ASSIGN macro (see Section C.18 on page

365).

Finally, the template implementation code (in the .hxx file) should be included, bracketed by a test

for manual instantiation, thus:

#ifndef ITK_MANUAL_INSTANTIATION

include "itkExampleFilter.hxx"

#endif

8.5.1 Optional

A filter can be printed to an std::ostream (such as std::cout) by implementing the following

method:

void

PrintSelf(std::ostream & os, Indent indent) const;

and writing the name-value pairs of the filter parameters to the supplied output stream. This is

particularly useful for debugging.

8.5.2 Useful Macros

Many convenience macros are provided by ITK, to simplify filter coding. Some of these are de-

scribed below:

itkStaticConstMacro Declares a static variable of the given type, with the specified initial value.

itkGetMacro Defines an accessor method for the specified scalar data member. The convention is

for data members to have a prefix of m .

itkSetMacro Defines a mutator method for the specified scalar data member, of the supplied type.

This will automatically set the Modified flag, so the filter stage will be executed on the next

Update().

204 Chapter 8. How To Write A Filter

Stage...nSource Stage1 Stage2 Sink

Composite

Figure 8.4: A Composite filter encapsulates a number of other filters.

itkBooleanMacro Defines a pair of OnFlag and OffFlag methods for a boolean variable m Flag.

itkGetConstObjectMacro, itkSetObjectMacro Defines an accessor and mutator for an ITK ob-

ject. The Get form returns a smart pointer to the object.

Much more useful information can be learned from browsing the source in

Code/Common/itkMacro.h and for the itk::Object and itk::LightObject classes.

8.6 How To Write A Composite Filter

In general, most ITK filters implement one particular algorithm, whether it be image filtering, an

information metric, or a segmentation algorithm. In the previous section, we saw how to write new

filters from scratch. However, it is often very useful to be able to make a new filter by combining

two or more existing filters, which can then be used as a building block in a complex pipeline. This

approach follows the Composite pattern [3], whereby the composite filter itself behaves just as a

regular filter, providing its own (potentially higher level) interface and using other filters (whose

detail is hidden to users of the class) for the implementation. This composite structure is shown in

Figure 8.4, where the various Stage-n filters are combined into one by the Composite filter. The

Source and Sink filters only see the interface published by the Composite. Using the Composite

pattern, a composite filter can encapsulate a pipeline of arbitrary complexity. These can in turn be

nested inside other pipelines.

8.6.1 Implementing a Composite Filter

There are a few considerations to take into account when implementing a composite filter. All the

usual requirements for filters apply (as discussed above), but the following guidelines should be

considered:

1. The template arguments it takes must be sufficient to instantiate all of the component filters.

Each component filter needs a type supplied by either the implementor or the enclosing class.

For example, an ImageToImageFilter normally takes an input and output image type (which

https://www.itk.org/Doxygen/html/classitk_1_1Object.html
https://www.itk.org/Doxygen/html/classitk_1_1LightObject.html

8.6. How To Write A Composite Filter 205

Gradient RescaleThreshold

Reader Writer

CompositeExampleImageFilter

Figure 8.5: Example of a typical composite filter. Note that the output of the last filter in the internal pipeline

must be grafted into the output of the composite filter.

may be the same). But if the output of the composite filter is a classified image, we need to

either decide on the output type inside the composite filter, or restrict the choices of the user

when she/he instantiates the filter.

2. The types of the component filters should be declared in the header, preferably with

protected visibility. This is because the internal structure normally should not be visible to

users of the class, but should be to descendent classes that may need to modify or customize

the behavior.

3. The component filters should be private data members of the composite class, as in

FilterType::Pointer.

4. The default constructor should build the pipeline by creating the stages and connect them

together, along with any default parameter settings, as appropriate.

5. The input and output of the composite filter need to be grafted on to the head and tail (respec-

tively) of the component filters.

This grafting process is illustrated in Figure 8.5.

8.6.2 A Simple Example

The source code for this section can be found in the file

CompositeFilterExample.cxx.

The composite filter we will build combines three filters: a gradient magnitude operator, which will

calculate the first-order derivative of the image; a thresholding step to select edges over a given

strength; and finally a rescaling filter, to ensure the resulting image data is visible by scaling the

intensity to the full spectrum of the output image type.

Since this filter takes an image and produces another image (of identical type), we will specialize

the ImageToImageFilter:

Next we include headers for the component filters:

206 Chapter 8. How To Write A Filter

#include "itkGradientMagnitudeImageFilter.h"

#include "itkThresholdImageFilter.h"

#include "itkRescaleIntensityImageFilter.h"

Now we can declare the filter itself. It is within the ITK namespace, and we decide to make it

use the same image type for both input and output, so that the template declaration needs only one

parameter. Deriving from ImageToImageFilter provides default behavior for several important

aspects, notably allocating the output image (and making it the same dimensions as the input).

namespace itk

{

template <typename TImage>

class CompositeExampleImageFilter : public ImageToImageFilter<TImage, TImage>

{

public:

ITK_DISALLOW_COPY_AND_MOVE(CompositeExampleImageFilter);

Next we have the standard declarations, used for object creation with the object factory:

using Self = CompositeExampleImageFilter;

using Superclass = ImageToImageFilter<TImage, TImage>;

using Pointer = SmartPointer<Self>;

using ConstPointer = SmartPointer<const Self>;

Here we declare an alias (to save typing) for the image’s pixel type, which determines the type of

the threshold value. We then use the convenience macros to define the Get and Set methods for this

parameter.

using ImageType = TImage;

using PixelType = typename ImageType::PixelType;

itkGetMacro(Threshold, PixelType);

itkSetMacro(Threshold, PixelType);

Now we can declare the component filter types, templated over the enclosing image type:

protected:

using ThresholdType = ThresholdImageFilter<ImageType>;

using GradientType = GradientMagnitudeImageFilter<ImageType, ImageType>;

using RescalerType = RescaleIntensityImageFilter<ImageType, ImageType>;

The component filters are declared as data members, all using the smart pointer types.

8.6. How To Write A Composite Filter 207

typename GradientType::Pointer m_GradientFilter;

typename ThresholdType::Pointer m_ThresholdFilter;

typename RescalerType::Pointer m_RescaleFilter;

PixelType m_Threshold;

};

} // end namespace itk

The constructor sets up the pipeline, which involves creating the stages, connecting them together,

and setting default parameters.

template <typename TImage>

CompositeExampleImageFilter<TImage>::CompositeExampleImageFilter()

{

m_Threshold = 1;

m_GradientFilter = GradientType::New();

m_ThresholdFilter = ThresholdType::New();

m_ThresholdFilter->SetInput(m_GradientFilter->GetOutput());

m_RescaleFilter = RescalerType::New();

m_RescaleFilter->SetInput(m_ThresholdFilter->GetOutput());

m_RescaleFilter->SetOutputMinimum(

NumericTraits<PixelType>::NonpositiveMin());

m_RescaleFilter->SetOutputMaximum(NumericTraits<PixelType>::max());

}

The GenerateData() is where the composite magic happens.

First, connect the first component filter to the inputs of the composite filter (the actual input, supplied

by the upstream stage). At a filter’s GenerateData() stage, the input image’s information and

pixel buffer content have been updated by the pipeline. To prevent the mini-pipeline update from

propagating upstream, the input image is disconnected from the pipeline by grafting its contents to

a new itk::Image pointer.

This implies that the composite filter must implement pipeline methods that indicate the

itk::ImageRegion’s it requires and generates, like GenerateInputRequestedRegion(),

GenerateOutputRequestedRegion(), GenerateOutputInformation() and

EnlargeOutputRequestedRegion(), according to the behavior of its component filters.

Next, graft the output of the last stage onto the output of the composite, which ensures the requested

region is updated and the last stage populates the output buffer allocated by the composite filter. We

force the composite pipeline to be processed by calling Update() on the final stage. Then, graft the

output back onto the output of the enclosing filter, so it has the result available to the downstream

filter.

template <typename TImage>

void

CompositeExampleImageFilter<TImage>::GenerateData()

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

208 Chapter 8. How To Write A Filter

{

auto input = ImageType::New();

input->Graft(const_cast<ImageType *>(this->GetInput()));

m_GradientFilter->SetInput(input);

m_ThresholdFilter->ThresholdBelow(this->m_Threshold);

m_RescaleFilter->GraftOutput(this->GetOutput());

m_RescaleFilter->Update();

this->GraftOutput(m_RescaleFilter->GetOutput());

}

Finally we define the PrintSelf method, which (by convention) prints the filter parameters. Note

how it invokes the superclass to print itself first, and also how the indentation prefixes each line.

template <typename TImage>

void

CompositeExampleImageFilter<TImage>::PrintSelf(std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "Threshold: " << m_Threshold << std::endl;

}

} // end namespace itk

It is important to note that in the above example, none of the internal details of the pipeline were

exposed to users of the class. The interface consisted of the Threshold parameter (which happened

to change the value in the component filter) and the regular ImageToImageFilter interface. This

example pipeline is illustrated in Figure 8.5.

CHAPTER

NINE

HOW TO CREATE A MODULE

The Insight Toolkit is organized into logical units of coherent functionality called modules. These

modules are self-contained in a directory, whose components are organized into subdirectories with

standardized names. A module usually has dependencies on other modules, which it declares. A

module is defined with CMake scripts that inform the build system of its contents and dependencies.

The modularization effort significantly improves the extensibility of the toolkit and lowers the barrier

to contribution.

Modules are organized into:

• The top level directory.

• The include directory.

• The src directory.

• The test directory.

• The wrapping directory.

This chapter describes how to create a new module. The following sections are organized by the

different directory components of the module. The chapter concludes with a section on how to add

a third-party library dependency to a module.

Note that the Insight Toolkit community has adopted a Coding Style guideline for the sake of con-

sistentcy and readability of the code. Such guideline is described in Chapter C.

9.1 Name and dependencies

The top level directory of a module is used to define a module’s name and its dependencies. Two

files are required:

210 Chapter 9. How To Create A Module

1. CMakeLists.txt

2. itk-module.cmake

The information described in these files is used to populate <ModuleName>.cmake

files in the ITK module registry. The module registry is located at <ITK build

directory>/lib/cmake/5.4/Modules/ in a build tree or <CMAKE INSTALL -

PREFIX>/lib/cmake/5.4/Modules/ in an install tree. These module files declare information

about the module and what is required to use it. This includes its module dependencies, C++ include

directories required to build against it, the libraries to link against, and CMake code required to use

it in a CMake configured project.

9.1.1 CMakeLists.txt

When CMake starts processing a module, it begins with the top level CMakeLists.txt file. At a

minimum, the CMakeLists.txt should contain

cmake_minimum_required(VERSION 3.10.2 FATAL_ERROR)

cmake_policy(VERSION 3.10.2)

project(MyModule)

set(MyModule_LIBRARIES MyModule)

if(NOT ITK_SOURCE_DIR)

find_package(ITK REQUIRED)

list(APPEND CMAKE_MODULE_PATH ${ITK_CMAKE_DIR})

include(ITKModuleExternal)

else()

itk_module_impl()

endif()

where MyModule is the name of the module.

The CMake variable <module-name> LIBRARIES should be set to the names of the libraries, if any,

that clients of the module need to link. This will be the same name as the library generated with

the add library command in a module’s src directory, described in further detail in the Libraries

Section 9.3.

The path if(NOT ITK SOURCE DIR) is used when developing a module outside of the ITK source

tree, i.e. an External module. An External module can be made available to the community by

adding it to Modules/Remote/*.remote.cmake Remote module index in the ITK repository per

Section 10.1.

The CMake macro itk module impl is defined in the file CMake/ITKModuleMacros.cmake.

It will initiate processing of the remainder of a module’s CMake scripts. The script

ITKModuleExternal calls itk module impl internally.

9.1. Name and dependencies 211

9.1.2 itk-module.cmake

The itk-module.cmake is also a required CMake script at the top level of a module, but this file is

used to declare

1. The module name.

2. Dependencies on other modules.

3. Modules properties.

4. A description of the module.

In this file, first set a CMake variable with the module’s description followed by a call to the

itk module macro, which is already defined by the time the script is read. For example,

itk-module.cmake for the ITKCommon module is

set(DOCUMENTATION "This module contains the central classes of the ITK

toolkit. They include, basic data structures \(such as Points, Vectors,

Images, Regions\) the core of the process objects \(such as base

classes for image filters\) the pipeline infrastructure classes, the support

for multi-threading, and a collection of classes that isolate ITK from

platform specific features. It is anticipated that most other ITK modules will

depend on this one.")

itk_module(ITKCommon

ENABLE_SHARED

PRIVATE_DEPENDS

ITKDoubleConversion

COMPILE_DEPENDS

ITKKWSys

ITKVNLInstantiation

TEST_DEPENDS

ITKTestKernel

ITKMesh

ITKImageIntensity

ITKIOImageBase

DESCRIPTION

"${DOCUMENTATION}"

)

The description for the module should be escaped as a CMake string, and it should be formatted

with Doxygen markup. This description is added to ITK’s generated Doxygen documentation when

the module is added to the Remote module index. The description should describe the purpose and

content of the module and reference an Insight Journal article for further information.

A module name is the only required positional argument to the itk module macro. Named options

that take one or argument are:

212 Chapter 9. How To Create A Module

DEPENDS Modules that will be publicly linked to this module. The header’s used are added to

include/*.{h,hxx} files.

PRIVATE DEPENDS Modules that will be privately linked to this module. The header’s used are

only added to src/*.cxx files.

COMPILE DEPENDS Modules that are needed at compile time by this module. The header’s

used are added to include/*{h,hxx} files but there is not a library to link against.

TEST DEPENDS Modules that are needed by this modules testing executables. The header’s

used are added to test/*.cxx files.

DESCRIPTION Free text description of the module.

Public dependencies are added to the module’s INTERFACE LINK LIBRARIES, which is a list of

transitive link dependencies. When this module is linked to by another target, the libraries listed (and

recursively, their link interface libraries) will be provided to the target also. Private dependencies

are linked to by this module, but not added to INTERFACE LINK LIBRARIES.

Compile Dependencies are added to CMake’s list of dependencies for the current module, ensuring

that they are built before the current module, but they will not be linked either publicly or privately.

They are only used to support the building of the current module.

The following additional options take no arguments:

EXCLUDE FROM DEFAULT Exclude this module from collection of modules enabled with

the ITK BUILD DEFAULT MODULES CMake option.

ENABLE SHARED Build this module as a shared library if the BUILD SHARED LIBS CMake

option is set.

All External and Remote modules should set the EXCLUDE FROM DEFAULT option.

9.2 Headers

Headers for the module, both *.h declaration headers and *.hxx template definition headers, should

be added to the include directory. No other explicit CMake configuration is required.

This path will automatically be added to the build include directory paths for libraries (9.3) and tests

(9.4) in the module and when another module declares this module as a dependency.

When a module is installed, headers are installed into a single directory common to all ITK header

files.

When BUILD TESTING is enabled, a header test is automatically created. This test simply builds

a simple executable that #includes all header files in the include directory. This ensures that all

included headers can be found, which tests the module’s dependency specification per Section 9.1.

9.3. Libraries 213

9.3 Libraries

Libraries generated by a module are created from source files with the .cxx extension in a module’s

src directory. Some modules are header-only, and they will not generate any libraries; in this case,

the src directory is omitted. When present, the src directory should contain a CMakeLists.txt

file that describes how to build the library. A minimal CMakeLists.txt file is as follows.

set(AModuleName_SRCS

itkFooClass.cxx

itkBarClass.cxx

)

itk_module_add_library(AModuleName ${AModuleName_SRCS})

The itk module add library macro will create a library with the given sources. The macro will

also link the library to the libraries defined by the module dependency specification per Section 9.1.

Additionally, the macro will set CMake target properties associated with the current module to the

given target.

If the ENABLE SHARED option is set on a module, a shared library will be generated when the CMake

option BUILD SHARED LIBS is enabled. A library symbol export specification header is also gener-

ated for the module. For a module with the name AModuleName, the generated header will have the

name AModuleNameExport.h. Include the export header in the module source headers, and add the

export specification macro to the contained classes. The macro name in this case would be called

AModuleName EXPORT. For example, the file itkFooClass.h would contain

#include "AModuleNameExport.h"

namespace itk

{

class AModuleName_EXPORT FooClass

{

...

Modules that do not build a library in their src directory or do not have export specifications on

their class declarations should not set ENABLE SHARED.

9.4 Tests

Regression tests for a module are placed in the test directory. This directory will contain a

CMakeLists.txt with the CMake configuration, test sources, and optional Input and Baseline

directories, which contain test input and baseline image datasets, respectively. Placement of the

input and baseline image datasets within a given module directory is preferred over placement in

214 Chapter 9. How To Create A Module

the general Testing/Data directory; this ensures that a module’s data is only downloaded when

the module is enabled. An exception to this rule may be widely used input datasets, such as the

cthead1.png image.

An example CMake configuration for a test directory is shown below.

itk_module_test()

set(ModuleTemplateTests

itkMinimalStandardRandomVariateGeneratorTest.cxx

itkLogNormalDistributionImageSourceTest.cxx

)

CreateTestDriver(ModuleTemplate "${ModuleTemplate-Test_LIBRARIES}" "${ModuleTemplateTests}")

itk_add_test(NAME itkMinimalStandardRandomVariateGeneratorTest

COMMAND ModuleTemplateTestDriver itkMinimalStandardRandomVariateGeneratorTest

)

itk_add_test(NAME itkLogNormalDistributionImageSourceTest

COMMAND ModuleTemplateTestDriver --without-threads

--compare

${ITK_TEST_OUTPUT_DIR}/itkLogNormalDistributionImageSourceTestOutput.mha

DATA{Baseline/itkLogNormalDistributionImageSourceTestOutput.mha}

itkLogNormalDistributionImageSourceTest

${ITK_TEST_OUTPUT_DIR}/itkLogNormalDistributionImageSourceTestOutput.mha

)

The CMakeLists.txt file should start with a call to the itk module test macro. Next, the test

sources are listed. The naming convention for unit test files is itk<ClassName>Test.cxx. Each

test file should be written like a command line executable, but the name of the main function should

be replaced with the name of the test. The function should accept int argc, char * argv[] as

arguments. To reduce the time required for linking and to provide baseline comparison function-

ality, all tests are linked to into a single test driver executable. To generate the executable, call the

CreateTestDriver macro.

Tests are defined with the itk add test macro. This is a wrapper around the CMake add test

command that will resolve content links in the DATA macro. Testing data paths are given inside the

DATA macro. Content link files, stored in the source code directory, are replaced by actual content

files in the build directory when CMake downloads the ITKData target at build time. A content

link file has the same name as its target, but a .sha512 extension is added, and the .sha512 file’s

contents are only the SHA512 hash of its target. Content links for data files in a Git distributed

version control repository prevent repository bloat. To obtain content links, register an account at

https://data.kitware.com. Upload images to your account’s My folders/Public folder. Once

the image has been uploaded, click on the item’s link, then click the Show info icon. A Download

key file icon will be available to download the content link. Place this file in the repository tree

where referenced by the DATA macro.

When a test requires a new (or modified) input or baseline image dataset, the corresponding content

https://data.kitware.com

9.4. Tests 215

link files have to be provided as well. Image datasets provided should be kept as small as possible.

As a rule of thumb, their size should be under 50 kB.

Test commands should call the test driver executable, followed by options for the test, followed by

the test function name, followed by arguments that are passed to the test. The test driver accepts

options like --compare (or --compare-MD5 when using the MD5SUM hash) to compare output

images to baselines or options that modify tolerances on comparisons. An exhaustive list of options

is displayed in itkTestDriverInclude.h.

A few rules must be acknowledged to actually write a units test file itk<ClassName>Test.cxx for

a given ITK class:

1. All class methods must be exercised.

2. Test cases with values for member variables different from the default ones should be pro-

vided. The usefulness of this rule is especially manifest for boolean members, whose value

usually determines whether a large portion of code is exercised or not.

3. Test cases to reach the exception cases within the class should be provided.

4. Regression tests must be included for methods returning a value.

5. When a test detects a failure condition it must return the EXIT FAILURE value; if a test exits

normally, it must return the EXIT SUCCESS value.

In any case, ITK provides with a number of classes and macros that ease the process of writing tests

and checking the expected results. The following is an exhaustive list of such tools:

• itkTestingMacros.h: it contains a number of macros that allow testing of basic object

properties:

– ITK EXERCISE BASIC OBJECT METHODS(): verifies whether the class and superclass

names provided match the RTTI, and exercises the PrintSelf() method. Since the

PrintSelf() method prints all class member variables, this macro, when exercised,

can identify uninitialized member variables.

– ITK TEST SET GET VALUE(): once a member variable value has been set using the

corresponding Set macro, this macro verifies that the value provided to the Set()

method was effectively assigned to the member variable by comparing it to the value

returned by the Get() value.

– ITK TEST SET GET BOOLEAN(): exercises the Set()/Get(), and On()/Off() meth-

ods of class applied to a boolean member variable.

• ITK TRY EXPECT NO EXCEPTION(): exercises a method which is expected to return with

no errors. It is only required for methods that are known to throw exceptions, such as I/O

operations, filter updates, etc.

216 Chapter 9. How To Create A Module

• ITK TRY EXPECT EXCEPTION(): exercises a method in the hope of detecting an exception.

This macro allows a test to continue its execution when setting test cases bound to hit a class’

exception cases. It is only required for methods that are known to throw exceptions, such as

I/O operations, filter updates, etc.

• itkMath.h: contains a series of static methods used for basic type compari-

son. Methods are available to perform fuzzy floating point equality comparison, e.g.

itk::Math::FloatAlmostEquals(), to handle expected cross-platform differences.

A test may have some input arguments. When a test does not need any input argu-

ment (e.g., it generates a synthetic input image), the main argument names may either

be omitted (int itk<ClassName>Test(int, char* [])), or the itkNotUsed macro can

be used (int itk<ClassName>Test(int itkNotUsed(argc), char *itkNotUsed(argv

) [])), to avoid compiler warnings about unused variables.

The number of input arguments provided must be checked at the beginning of the test. If a test

requires a fixed number of input arguments, then the argument number check should verify the exact

number of arguments.

It is essential that a test is made quantitative, i.e., the methods’ returned values and the test’s output

must be compared to a known ground-truth. As mentioned, ITK contains a series of methods to

compare basic types. ITK also provide a powerful regression tool for a test that checks the validity

of a process over an image, which is the most common case in ITK. To this end, the test is expected

to write its output to a file. The first time the test is run, the output is expected to be manually placed

within the test module’s Baseline folder. Hence, when CTest is executed, the distance between

the test’s output and the expected output (i.e., the baseline) is computed. If the distance is below a

configurable tolerance, the regression test is marked as a success.

9.5 Wrapping

Wrapping for programming languages like Python can be added to a module through a simple con-

figuration in the module’s wrapping directory. While wrapping is almost entirely automatic, con-

figuration is necessary to add two pieces of information,

1. The types with which to instantiate templated classes.

2. Class dependencies which must be wrapped before a given class.

When wrapping a class, dependencies, like the base class and other types used in the wrapped class’s

interface, should also be wrapped. The wrapping system will emit a warning when a base class

or other required type is not already wrapped to ensure proper wrapping coverage. Since module

dependencies are wrapped by the build system before the current module, class wrapping build order

is already correct module-wise. However, it may be required to wrap classes within a module in a

specific order; this order can be specified in the wrapping/CMakeLists.txt file.

9.5. Wrapping 217

Many ITK classes are templated, which allows an algorithm to be written once yet compiled into

optimized binary code for numerous pixel types and spatial dimensions. When wrapping these

templated classes, the template instantiations to wrap must be chosen at build time. The template

that should be used are configured in a module’s *.wrap files. Wrapping is configured by calling

CMake macros defined in the ITK/Wrapping/TypedefMacros.cmake file.

9.5.1 CMakeLists.txt

The wrapping/CMakeLists.txt file calls three macros, and optionally set a variable, WRAPPER -

SUBMODULE ORDER. The following example is from the ITKImageFilterBase module:

itk_wrap_module(ITKImageFilterBase)

set(WRAPPER_SUBMODULE_ORDER

itkRecursiveSeparableImageFilter

itkFlatStructuringElement

itkKernelImageFilter

itkMovingHistogramImageFilterBase

)

itk_auto_load_submodules()

itk_end_wrap_module()

The itk wrap module macro takes the current module name as an argument. In some cases,

classes defined in the *.wrap files within a module may depend each other. The WRAPPER -

SUBMODULE ORDER variable is used to declare which submodules should be wrapped first and the

order they should be wrapped.

9.5.2 Class wrap files

Wrapping specification for classes is written in the module’s *.wrap CMake script files. These

files call wrapping CMake macros, and they specify which classes to wrap, whether smart pointer’s

should be wrapped for the the class, and which template instantiations to wrap for a class.

Overall toolkit class template instantiations are parameterized by the CMake build configuration

variables shown in Table 9.1. The wrapping configuration refers to these settings with the shorthand

values listed in the second column.

Class wrap files call sets of wrapping macros for the class to be wrapped. The macros are

often called in loops over the wrapping variables to instatiate the desired types. The fol-

lowing example demonstates wrapping the itk::ImportImageFilter class, taken from the

ITK/Modules/Core/Common/wrapping/itkImportImageFilter.wrap file.

itk_wrap_class("itk::ImportImageFilter" POINTER)

foreach(d ${ITK_WRAP_IMAGE_DIMS})

https://www.itk.org/Doxygen/html/classitk_1_1ImportImageFilter.html

218 Chapter 9. How To Create A Module

CMake variable Wrapping shorthand value

ITK WRAP IMAGE DIMS List of unsigned integers

ITK WRAP VECTOR COMPONENTS List of unsigned integers

ITK WRAP double D

ITK WRAP float F

ITK WRAP complex double CD

ITK WRAP complex float CF

ITK WRAP vector double VD

ITK WRAP vector float VF

ITK WRAP covariate vector double CVD

ITK WRAP covariate vector float CVF

ITK WRAP signed char SC

ITK WRAP signed short SS

ITK WRAP signed long SL

ITK WRAP unsigned char UC

ITK WRAP unsigned short US

ITK WRAP unsigned long UL

ITK WRAP rgb unsigned char RGBUC

ITK WRAP rgb unsigned short RGBUS

ITK WRAP rgba unsigned char RGBAUC

ITK WRAP rgba unsigned short RGBAUS

Table 9.1: CMake wrapping type configuration variables and their shorthand value in the wrapping configura-

tion.

9.5. Wrapping 219

foreach(t ${WRAP_ITK_SCALAR})

itk_wrap_template("${ITKM_${t}}${d}" "${ITKT_${t}},${d}")

endforeach()

endforeach()

itk_end_wrap_class()

Wrapping Variables

Instantiations for classes are determined by looping over CMake lists that collect sets of shorthand

wrapping values, namely,

• ITK WRAP IMAGE DIMS

• ITK WRAP IMAGE DIMS INCREMENTED

• ITK WRAP IMAGE VECTOR COMPONENTS

• ITK WRAP IMAGE VECTOR COMPONENTS INCREMENTED

• WRAP ITK USIGN INT

• WRAP ITK SIGN INT

• WRAP ITK INT

• WRAP ITK REAL

• WRAP ITK COMPLEX REAL

• WRAP ITK SCALAR

• WRAP ITK VECTOR REAL

• WRAP ITK COV VECTOR REAL

• WRAP ITK VECTOR

• WRAP ITK RGB

• WRAP ITK RGBA

220 Chapter 9. How To Create A Module

• WRAP ITK COLOR

• WRAP ITK ALL TYPES

Templated classes are wrapped as type aliases for particular instantiations. The type aliases are

named with a name mangling scheme for the template parameter types. The mangling of common

types are stored in CMake variables listed in Table 9.2, Table 9.3, and Table 9.4. Mangling variables

start with the prefix ITKM and their corresponding C++ type variables start with the prefix ITKT .

Wrapping Enumerations

Enumeration classes need to be wrapped through the class they are declared in using the itk -

wrap simple class, e.g.:

itk_wrap_simple_class("itk::MathematicalMorphologyEnums")

which results in access to the class in Python as itk.MathematicalMorphologyEnum, its

Algorithm enumeration class being accesible as itk.MathematicalMorphologyEnums.Algorithm,

and its enum-list being accessed as itk.MathematicalMorphologyEnums.Algorithm BASIC,

itk.MathematicalMorphologyEnums.Algorithm HISTO, etc.

Wrapping Macros

There are a number of a wrapping macros called in the wrapping/*.wrap files. Macros are special-

ized for classes that use itk::SmartPointers and templated classes.

For non-templated classes, the itk wrap simple class is used. This macro takes fully quali-

fied name of the class as an argument. Lastly, the macro takes an optional argument that can

have the values POINTER, POINTER WITH CONST POINTER, or POINTER WITH SUPERCLASS. If

this argument is passed, then the type alias classname::Pointer, classname::Pointer and

classname::ConstPointer, or classname::Pointer and classname::Superclass::Pointer

are wrapped. Thus, the wrapping configuration for itk::Object is

itk_wrap_simple_class("itk::Object" POINTER)

When wrapping templated classes, three or more macro calls are required. First, itk wrap -

class is called. Again, its arguments are the fully qualified followed by an option argu-

ment that can have the value POINTER, POINTER WITH CONST POINTER, POINTER WITH -

SUPERCLASS, POINTER WITH 2 SUPERCLASSES, EXPLICIT SPECIALIZATION, POINTER WITH -

EXPLICIT SPECIALIZATION, ENUM, or AUTOPOINTER. Next, a series of calls are made to macros that

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Object.html

9.5. Wrapping 221

CMake Variable Value

Mangling ITKM B B

C++ Type ITKT B bool

Mangling ITKM UC UC

C++ Type ITKT UC unsigned char

Mangling ITKM US US

C++ Type ITKT US unsigned short

Mangling ITKM UI UI

C++ Type ITKT UI unsigned integer

Mangling ITKM UL UL

C++ Type ITKT UL unsigned long

Mangling ITKM ULL ULL

C++ Type ITKT ULL unsigned long long

Mangling ITKM SC SC

C++ Type ITKT SC signed char

Mangling ITKM SS SS

C++ Type ITKT SS signed short

Mangling ITKM SI SI

C++ Type ITKT SI signed integer

Mangling ITKM SL SL

C++ Type ITKT SL signed long

Mangling ITKM SLL SLL

C++ Type ITKT SLL signed long long

Mangling ITKM F F

C++ Type ITKT F float

Mangling ITKM D D

C++ Type ITKT D double

Table 9.2: CMake wrapping mangling variables, their values, and the corresponding CMake C++ type variables

and their values for plain old datatypes (PODS).

222 Chapter 9. How To Create A Module

CMake Variable Value

Mangling ITKM C${type} C${type}

C++ Type ITKT C${type} std::complex<${type} >

Mangling ITKM A${type} A${type}

C++ Type ITKT A${type} itk::Array<${type} >

Mangling ITKM FA${ITKM -

${type}}${dim}
FA${ITKM ${type}}${dim}

C++ Type ITKT FA${ITKM -

${type}}${dim}
itk::FixedArray<${ITKT ${type}}, ${dim} >

Mangling ITKM RGB${dim} RGB${dim}

C++ Type ITKT RGB${dim} itk::RGBPixel<${dim}>

Mangling ITKM RGBA${dim} RGBA${dim}

C++ Type ITKT RGBA${dim} itk::RGBAPixel<${dim} >

Mangling ITKM V${ITKM -

${type}}${dim}
V${ITKM ${type}}${dim}

C++ Type ITKT V${ITKM -

${type}}${dim}
itk::Vector<${ITKT ${type}}, ${dim} >

Mangling ITKM CV${ITKM -

${type}}${dim}
CV${ITKM ${type}}${dim}

C++ Type ITKT CV${ITKM -

${type}}${dim}
itk::CovariantVector<${ITKT ${type}}, ${dim} >

Mangling ITKM VLV${ITKM -

${type}}${dim}
VLV${ITKM ${type}}${dim}

C++ Type ITKT VLV${ITKM -

${type}}${dim}
itk::VariableLengthVector<${ITKT ${type}},

${dim} >

Mangling ITKM SSRT${ITKM -

${type}}${dim}
SSRT${ITKM ${type}}${dim}

C++ Type ITKT SSRT${ITKM -

${type}}${dim}
itk::SymmetricSecondRankTensor<${ITKT -

${type}}, ${dim} >

Table 9.3: CMake wrapping mangling variables, their values, and the corresponding CMake C++ type variables

and their values for other ITK pixel types.

9.5. Wrapping 223

CMake Variable Value

Mangling ITKM O${dim} O${dim}

C++ Type ITKT O${dim} itk::Offset<${dim} >

Mangling ITKM CI${ITKM -

${type}}${dim}
CI${ITKM ${type}}${dim}

C++ Type ITKT CI${ITKM -

${type}}${dim}
itk::ContinuousIndex<${ITKT ${type}}, ${dim} >

Mangling ITKM P${ITKM -

${type}}${dim}
P${ITKM ${type}}${dim}

C++ Type ITKT P${ITKM -

${type}}${dim}
itk::Point<${ITKT ${type}}, ${dim} >

Mangling ITKM I${ITKM -

${type}}${dim}
I${ITKM ${type}}${dim}

C++ Type ITKT I${ITKM -

${type}}${dim}
itk::Image<${ITKT ${type}}, ${dim} >

Mangling ITKM VI${ITKM -

${type}}${dim}
VI${ITKM ${type}}${dim}

C++ Type ITKT VI${ITKM -

${type}}${dim}
itk::VectorImage<${ITKT ${type}}, ${dim} >

Mangling ITKM SO${dim} SO${dim}

C++ Type ITKT SO${dim} itk::SpatialObject<${dim} >

Mangling ITKM SE${dim} SE${dim}

C++ Type ITKT SE${dim} itk::FlatStructuringElement<${dim} >

Mangling ITKM H${ITKM ${type}} H${ITKM ${type}}

C++ Type ITKT H${ITKM ${type}} itk::Statistics::Histogram<${ITKT${type}} >

Mangling ITKM ST Depends on platform

C++ Type ITKT ST itk::SizeValueType

Mangling ITKM IT Depends on platform

C++ Type ITKM IT itk::IdentifierType

Mangling ITKM OT Depends on platform

C++ Type ITKT OT itk::OffsetValueType

Table 9.4: CMake wrapping mangling variables, their values, and the corresponding CMake C++ type variables

and their values for basic ITK types.

224 Chapter 9. How To Create A Module

declare which templates to instantiate. Finally, the itk end wrap class macro is called, which has

no arguments.

The most general template wrapping macro is itk wrap template. Two arguments are required.

The first argument is a mangled suffix to be added to the class name, which uniquely identi-

fies the instantiation. This argument is usually specified at least partially with ITKM mangling

variables. The second argument is the is template instantiation in C++ form. This argument is

usually specified at least partially with ITKT C++ type variables. For example, wrapping for

itk::ImageSpatialObject, which templated a dimension and pixel type, is configured as

itk_wrap_class("itk::ImageSpatialObject" POINTER)

unsigned char required for the ImageMaskSpatialObject

UNIQUE(types "UC;${WRAP_ITK_SCALAR}")

foreach(d ${ITK_WRAP_IMAGE_DIMS})

foreach(t ${types})

itk_wrap_template("${d}${ITKM_${t}}" "${d},${ITKT_${t}}")

endforeach()

endforeach()

itk_end_wrap_class()

In addition to itk wrap template, there are template wrapping macros specialized for wrapping

image filters. The highest level macro is itk wrap image filter, which is used for wrapping

image filters that need one or more image parameters of the same type. This macro has two re-

quired arguments. The first argument is a semicolon delimited CMake list of pixel types. The

second argument is the number of image template arguments for the filter. An optional third ar-

gument is a dimensionality condition to restrict the dimensions that the filter can be instantiated.

The dimensionality condition can be a number indicating the dimension allowed, a semicolon

delimited CMake list of dimensions, or a string of the form n+, where n is a number, to indi-

cate that instantiations are allowed for dimension n and above. The wrapping specification for

itk::ThresholdMaximumConnectedComponentsImageFilter is

itk_wrap_class("itk::ThresholdMaximumConnectedComponentsImageFilter" POINTER)

itk_wrap_image_filter("${WRAP_ITK_INT}" 1 2+)

itk_end_wrap_class()

If it is desirable or required to instantiate an image filter with different image types, the itk wrap -

image filter combinations macro is applicable. This macro takes a variable number of param-

eters, where each parameter is a list of the possible image pixel types for the corresponding filter

template parameters. A condition to restrict dimensionality may again be optionally passed as the

last argument. For example, wrapping for itk::VectorMagnitudeImageFilter is specified with

itk_wrap_class("itk::VectorMagnitudeImageFilter" POINTER_WITH_SUPERCLASS)

itk_wrap_image_filter_combinations("${WRAP_ITK_COV_VECTOR_REAL}" "${WRAP_ITK_SCALAR}")

itk_end_wrap_class()

https://www.itk.org/Doxygen/html/classitk_1_1ImageSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ThresholdMaximumConnectedComponentsImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorMagnitudeImageFilter.html

9.5. Wrapping 225

The final template wrapping macro is itk wrap image filter types. This macro takes a variable

number of arguments that should correspond to the image pixel types in the filter’s template param-

eter list. Again, an optional dimensionality condition can be specified as the last argument. For

example, wrapping for itk::RGBToLuminanceImageFilter is specified with

itk_wrap_class("itk::RGBToLuminanceImageFilter" POINTER_WITH_SUPERCLASS)

if(ITK_WRAP_rgb_unsigned_char AND ITK_WRAP_unsigned_char)

itk_wrap_image_filter_types(RGBUC UC)

endif(ITK_WRAP_rgb_unsigned_char AND ITK_WRAP_unsigned_char)

if(ITK_WRAP_rgb_unsigned_short AND ITK_WRAP_unsigned_short)

itk_wrap_image_filter_types(RGBUS US)

endif(ITK_WRAP_rgb_unsigned_short AND ITK_WRAP_unsigned_short)

if(ITK_WRAP_rgba_unsigned_char AND ITK_WRAP_unsigned_char)

itk_wrap_image_filter_types(RGBAUC UC)

endif(ITK_WRAP_rgba_unsigned_char AND ITK_WRAP_unsigned_char)

if(ITK_WRAP_rgba_unsigned_short AND ITK_WRAP_unsigned_short)

itk_wrap_image_filter_types(RGBAUS US)

endif(ITK_WRAP_rgba_unsigned_short AND ITK_WRAP_unsigned_short)

itk_end_wrap_class()

In some cases, it necessary to specify the headers required to build wrapping sources for a class. To

specify additional headers to included in the generated wrapping C++ source, use the itk wrap -

include macro. This macro takes the name of the header to include, and it can be called multiple

times.

By default, the class wrapping macros include a header whose filename corresponds to the name of

the class to be wrapped according to ITK naming conventions. To override the default behavior, set

the CMake variable WRAPPER AUTO INCLUDE HEADERS to OFF before calling itk wrap class.

For example,

set(WRAPPER_AUTO_INCLUDE_HEADERS OFF)

itk_wrap_include("itkTransformFileReader.h")

itk_wrap_class("itk::TransformFileReaderTemplate" POINTER)

foreach(t ${WRAP_ITK_REAL})

itk_wrap_template("${ITKM_${t}}" "${ITKT_${t}}")

endforeach()

itk_end_wrap_class()

There are a number of convenience CMake macros available to manipulate lists of template parame-

ters. These macros take the variable name to populate with their output as the first argument followed

by input arguments. The itk wrap filter dims macro will process the dimensionality condition

previously described for the filter template wrapping macros. DECREMENT, INCREMENT are

macros that operate on dimensions. The INTERSECTION macro finds the intersection of two list

arguments. Finally, the UNIQUE macro removes duplicates from the given list.

https://www.itk.org/Doxygen/html/classitk_1_1RGBToLuminanceImageFilter.html

226 Chapter 9. How To Create A Module

Wrapping Tests

Wrapped classes need to be accompanied with their own test files to ensure that the classes

can be instantiated correctly. Similar to regular C++ tests, the tests for wrapped classes

dwell in a CMakeLists.txt file inside the wrapping/test directory of the module of inter-

est, e.g. Modules/<ModuleName>/<SubModuleName>/wrapping/test/CMakeLists.txt. The

following is an example of how such file would look like for the wrapping corresponding to

the itk::ExtrapolateImageFunction and itk::WindowedSincInterpolateImageFunction

classes:

itk_python_expression_add_test(NAME itkExtrapolateImageFunctionPythonTest

EXPRESSION "instance = itk.ExtrapolateImageFunction.New()")

itk_python_expression_add_test(NAME itkWindowedSincInterpolateImageFunctionPythonTest

EXPRESSION "instance = itk.WindowedSincInterpolateImageFunction.New()")

9.5.3 Debugging Strategies

ITK wrappings allow users to make use of ITK classes in other languages for various purposes,

such as relying on ITK Python wrappings to sidestep C++ compilation steps for rapid prototyping.

However, this often introduces additional complexity in the process of identifying and localizing

issues in C++ classes or even in the wrapping process itself. Fortunately, language-specific tools are

available to assist in the debugging process. In this section we focus on strategies for investigating

ITK Python code generated with SWIG.

Swig Python Architecture

ITK 5.x uses SWIG (Simplified Wrapper and Interface Generator) to distill ITK C++ classes into

Python modules. This largely takes place in four distinct stages:

• .wrap CMake files, included in the ITK source tree in the Wrapping folder for each module

to define class template instantiations to be wrapped. These are discussed in Section 9.5.2.

• SWIG .cpp source files generated at compile time at Wrapping/Modules under the ITK build

tree. These C++ files explicitly implement the class and template instantiations defined in the

class .wrap files in the source tree. Debug symbols will be generated for these files.

• SWIG compiled code. For Python wrappings these are generated as Python

.pyd (Windows) or .so (Linux or macOS) binaries and Python .py modules at

Wrapping/Generators/Python/itk in the ITK build tree.

• Additional Python configuration files are generated in the Wrapping/Generators/Python

directory and its subdirectories. WrapITK.pth provides the path for a Python environment to

https://www.itk.org/Doxygen/html/classitk_1_1ExtrapolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

9.5. Wrapping 227

find the ITK module, while init .py allows the module under development to be loaded

correctly at runtime. <module name>Config.py defines module dependencies and class tem-

plate definitions, while <module name> snake case.py maps C++-style filter pipeline ex-

ecutions to Pythonic snake case functions.

ITK Python pre-compiled wheels may be obtained from the PyPI package index and contain pre-

compiled binaries without debugging symbols. To debug the native binaries a local build must be

created as in Section 2.2 with a Debug or RelWithDebInfo CMake build configuration as described

below.

python -m pip install itk

Python Runtime Tracing

ITK Python contains glue behavior to make ITK classes behave in a Pythonic manner, such as

querying object attributes, joining class names to template instantiations, and more. Python-specific

behavior in ITK Python may be investigated with the Python Debugger module, pdb.

Tracing can be performed on a function call with pdb.run, or by editing ITK Python files to add

a pdb.set trace() statement inline. In the following code snippet an image is loaded and the

debugger is set up to trace through an image cast operation.

(venv-itk) > python

>>> import itk

>>> import pdb

>>> image = itk.imread(r'myimage.mha',pixel_type=itk.F)

>>> pdb.runeval('itk.cast_image_filter(image,ttype=[type(image),itk.Image[itk.UC,2]])')

> <string>(1)<module>()

(Pdb)

At this point the debugger can step into and through Python code for translating ITK type names

and getting the correct template instantiations to run the cast operation. More information on Python

debugger commands can be found at https://docs.python.org/3/library/pdb.html.

While the Python debugger is useful, it does not allow us to examine implementation details of ITK

classes in the native binary. A deeper investigation may be necessary for localizing errors in ITK

classes.

C++ Runtime Tracing

As discussed in Section 9.5.3, SWIG wrapping generates C++ source files and manages the interface

and ownership semantics between Python objects and C++ objects during ITK compilation. When

https://docs.python.org/3/library/pdb.html

228 Chapter 9. How To Create A Module

binary debug symbols are available, a running Python process may be attached to step through ITK

or ITK SWIG sources at runtime. Several steps are required to set up and execute debugging:

1. The ITK build must be configured so that debug symbols are generated. Python wrapping

must also be enabled. This is accomplished by setting the CMake variables

CMAKE BUILD TYPE:STRING="RelWithDebInfo" and ITK WRAP PYTHON:BOOL="On".

Note that the ”RelWithDebInfo” build type is strongly encouraged over a ”Debug” build as

the former will build against a standard Python distribution. See Section 2.2 for a detailed

explanation of how to build ITK locally with CMake.

2. A Python virtual environment must be appropriately configured with WrapITK.pth so that the

ITK debug build can be imported. See Section 3.7 for further explanation.

3. The ITK modules to be debugged must be loaded in a new Python session initialized from the

given virtual environment. Given that ITK Python uses lazy loading, it is pragmatic to use

itk.force load() to ensure that all possible debug symbols are made available. The os

module can be used to identify the PID of the given session.

(venv-itk) > python

>>> import itk

>>> itk.force_load()

>>> import os

>>> os.getpid()

99999

4. The Python session may be attached to a debugger using the returned PID.

• On a Windows operating system, Microsoft Visual Studio 2019 or a similar platform can

be used for attaching to a running process for debugging. Select ”Attach To Process”

from the Debug menu, choose ”Native” code, and then search for the process PID. If

debug symbols were generated correctly then ITK modules will appear under the list of

loaded modules.

In Visual Studio, debugging can be enabled right from the start if the Python script is

loaded into Visual Studio as part of a ”Python Project”. Mixed mode debugging needs to

be enabled, as per Visual Studio documentation1. Starting a project like this is an order

of magnitude slower, as many debug symbols need to be loaded and examined.

• On a Linux operating system the GNU Project Debugger gdb can be used for attaching to

a running Python process, reading symbol files, and setting breakpoints. The following

example attaches to a running process and sets a breakpoint inside an itk.Image Python

object. It may be necessary to elevate user permissions to allow gdb to attach to the

running process.

1https://docs.microsoft.com/en-us/visualstudio/python/debugging-mixed-mode-c-cpp-python-in-visual-studio

https://docs.microsoft.com/en-us/visualstudio/python/debugging-mixed-mode-c-cpp-python-in-visual-studio

9.5. Wrapping 229

(venv-itk) > gdb

(gdb) > attach 99999

Reading symbols from

/path/to/ITK-build/Wrapping/Generators/Python/itk/_ITKPyBasePython.so...

Reading symbols from

/path/to/ITK-build/Wrapping/Generators/Python/itk/_ITKCommonPython.so...

(gdb) > break /path/to/ITK-build/Wrapping/Modules/ITKCommon/itkImagePython.cpp:<ln>

Breakpoint 1 at ...:

file /path/to/ITK-build/Wrapping/Modules/ITKCommon/itkImagePython.cpp, line <ln>.

(gdb) > break /path/to/ITK-source/Core/Common/include/itkImage.hxx:<ln>

Breakpoint 2 at ...:

/path/to/ITK-source/Modules/Core/Common/include/itkImage.hxx:<ln>

(gdb) > c

... continue in Python session until breakpoint is hit ...

• On a macOS operating system the LLDB debugger can be used for attaching to a Python

process in much the same way as GDB on Linux, with a few extra security requirements

and slightly different command syntax. The following example attaches to a running

process and sets a breakpoint inside an itk.Image Python object.

(venv-itk) > lldb

(lldb) process attach -- pid 99999

Process 99999 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP

frame #0: 0x00007fff203ec656 libsystem_kernel.dylib`__select + 10

libsystem_kernel.dylib`__select:

-> 0x7fff203ec656 <+10>: jae 0x7fff203ec660 ; <+20>

0x7fff203ec658 <+12>: movq %rax, %rdi

0x7fff203ec65b <+15>: jmp 0x7fff203e56bd ; cerror

0x7fff203ec660 <+20>: retq

Target 0: (Python) stopped.

Executable module set to

"/Library/Frameworks/Python.framework/Versions/3.9/

Resources/Python.app/Contents/MacOS/Python".

Architecture set to: x86_64h-apple-macosx-.

(lldb) breakpoint set

-f /path/to/ITK/Modules/Core/Common/include/itkImage.hxx

--line <ln>

Breakpoint 1: 172 locations.

(lldb) continue

... continue in Python session until breakpoint is hit ...

LLDB command syntax is documented at https://lldb.llvm.org/index.html .

Developers may find it necessary to examine the follow security concepts and require-

ments in order to permit lldb to attach to Python:

– The Python process must be authorized for debugging. MacOS relies on the process

of ”hardened” runtimes to mitigate security concerns, which reduces the ability of

https://lldb.llvm.org/index.html

230 Chapter 9. How To Create A Module

debuggers such as lldb and other processes to attach to and intercept the functions

of other programs. Python distributions are intentionally ”hardened” in this way,

but additional settings can be enabled to allow just-in-time debugging.

– It may be necessary to enter developer mode to allow Python debugging. This is

accomplished with the following command in the developer console:

DevToolsSecurity -enable

– It may be necessary to add entitlements to the Python executable so that lldb can

attach to the hardened process. This may be accomplished by updating a .plist

entitlements file and setting the executable entitlements.

codesign -d --entitlements :-

"/path/to/python" >> "/tmp/path/to/python_entitlements.plist"

/usr/libexec/PlistBuddy -c

"Add :com.apple.security.get-task-allow bool true"

"/tmp/path/to/python_entitlements.plist"

/usr/libexec/PlistBuddy -c

"Add :com.apple.security.cs.allow-jit bool true"

"/tmp/path/to/python_entitlements.plist"

codesign --force --options runtime --sign -

--entitlements "/tmp/path/to/python_entitlements.plist"

"/path/to/python"

– If attaching to the process continues to fail, log files can be dumped with log

collect and opened in the Console application. lldb error messages will be listed

as debugserver entries.

With these steps completed the respective debugger can be used to set breakpoints and step through

C++ source code for a respective ITK Python execution.

The debugger can also be used for examining runtime failures and crashes either at the time the error

occurs or posthumously with a dump file.

• On Windows, Microsoft Visual Studio will catch process aborts to allow the attached process

to be examined before exit. Stacks, threads, and variables are made available to the user for

backtracing via the Debug toolbar menu. Dump files in the minidump format may also be

manually saved and reloaded later for investigation2.

• On Linux, gdb will catch process aborts at runtime to allow a developer to examine the pro-

gram state before it exits. If allowed, core dumps can also be generated on program failures to

allow posthumous debugging. The following sample configures a Linux system to remove the

default limit of 0 for allowable coredump size and to write out coredump files to the /tmp/

directory.

2https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022

https://docs.microsoft.com/en-us/visualstudio/debugger/using-dump-files?view=vs-2022

9.6. Third-Party Dependencies 231

> ulimit -c unlimited

> sudo bash -c 'echo "/tmp/coredump-%e.%p" > /proc/sys/kernel/core_pattern'

More information is available in Python documentation3.

• On MacOS, lldb will catch process aborts at runtime and may also be used to examine core

dumps. The following sample configures a MacOS system to write out core dump files to the

/cores/ directory and then runs lldb to inspect a core dump.

(venv-itk) > ulimit -c unlimited

... Run process and generate a core dump ...

(venv-itk) > lldb

(lldb) target create "python3" --core "/cores/core.1007"

Core file '/cores/core.1007' (x86_64) was loaded.

9.6 Third-Party Dependencies

When an ITK module depends on another ITK module, it simply lists its dependencies as described

in Section 9.1. A module can also depend on non-ITK third-party libraries. This third-party library

can be encapsulated in an ITK module – see examples in the ITK/Modules/ThirdParty directory.

Or, the dependency can be built or installed on the system and found with CMake. This section

describes how to add the CMake configuration to a module for it to find and use a third-party library

dependency.

9.6.1 itk-module-init.cmake

The itk-module-init.cmake file, if present, is found in the top level directory of the module next

to the itk-module.cmake file. This file informs CMake of the build configuration and location of

the third-party dependency. To inform CMake about the OpenCV library, use the find package

command,

find_package(OpenCV REQUIRED)

9.6.2 CMakeList.txt

A few additions are required to the top level CMakeLists.txt of the module.

3https://pythondev.readthedocs.io/debug_tools.html#create-a-core-dump-file

https://pythondev.readthedocs.io/debug_tools.html#create-a-core-dump-file

232 Chapter 9. How To Create A Module

First, the itk-module-init.cmake file should be explicitly included when building the module

externally against an existing ITK build tree.

if(NOT ITK_SOURCE_DIR)

include(itk-module-init.cmake)

endif()

project(ITKVideoBridgeOpenCV)

Optionally, the dependency libraries are added to the <module-name> LIBRARIES variable. Alter-

natively, if the module creates a library, publically link to the dependency libraries. Our ITKVideo-

BridgeOpenCV module example creates its own library, named ITKVideoBridgeOpenCV, and pub-

lically links to the OpenCV libraries.

CMakeLists.txt:

set(ITKVideoBridgeOpenCV_LIBRARIES ITKVideoBridgeOpenCV)

src/CMakeLists.txt:

target_link_libraries(ITKVideoBridgeOpenCV LINK_PUBLIC ${OpenCV_LIBS})

Next, CMake export code is created. This code is loaded by CMake when another project uses this

module. The export code stores where the dependency was located when the module was built, and

how CMake should find it. Two versions are required for the build tree and for the install tree.

When this module is loaded by an app, load OpenCV too.

set(ITKVideoBridgeOpenCV_EXPORT_CODE_INSTALL "

set(OpenCV_DIR \"${OpenCV_DIR}\")

find_package(OpenCV REQUIRED)

")

set(ITKVideoBridgeOpenCV_EXPORT_CODE_BUILD "

if(NOT ITK_BINARY_DIR)

set(OpenCV_DIR \"${OpenCV_DIR}\")

find_package(OpenCV REQUIRED)

endif()

")

Finally, set the <module-name> SYSTEM INCLUDE DIRS and <module-name> SYSTEM -

LIBRARY DIRS, if required, to append compilation header directories and library linking directories

for this module.

set(ITKVideoBridgeOpenCV_SYSTEM_INCLUDE_DIRS ${OpenCV_INCLUDE_DIRS})

set(ITKVideoBridgeOpenCV_SYSTEM_LIBRARY_DIRS ${OpenCV_LIB_DIR})

9.7. Contributing with a Remote Module 233

9.7 Contributing with a Remote Module

For most ITK community members, the modularization of the toolkit is relatively transparent. The

default configuration includes all the (default) modules into the ITK library, which is used to build

their own ITK applications.

For ITK developers and code contributors, the modular structure imposes rules for organizing the

source code, building the library and contributing to the ITK source code repository.

A Module may be developed outside the main ITK repository, but it may be made available in the

ITK repository as a Remote Module. The Remote Module infrastructure enables fast dissemina-

tion of research code through ITK without increasing the size of the main repository. The Insight

Journal (https://www.insight-journal.org/) adds support for ITK module submissions with

automatic dashboard testing (see Section 10.2 on page 236 for further details).

The source code of a Remote Module can be downloaded by CMake (with a CMake variable switch)

at ITK CMake configuration time, making it a convenient way to distribute modular source code.

9.7.1 Policy for Adding and Removing Remote Modules

A module can be added to the list of remotes if it satisfies the following criteria:

• There is a peer-reviewed article in an online, open access journal (such as the Insight Journal)

describing the theory behind and usage of the module.

• There is a nightly build against ITK master on the CDash dashboard that builds and passes

tests successfully.

• A name and contact email exists for the dashboard build. The maintainer of the dashboard

build does not necessarily need to be the original author of the Insight Journal article.

• The license should be compatible with the rest of the toolkit. That is it should be an Open

Source Initiative-approved license4 without copyleft or non-commercial restrictions. Ideally,

it should be an Apache 2.0 license assigned to NumFOCUS as found in the rest of the toolkit.

Note that the module should contain neither patented code, nor algorithms, nor methods.

At the beginning of the release candidate phase of a release, maintainers of failing module dash-

board builds will be contacted. If a module’s dashboard submission is still failing at the last release

candidate tagging, it will be removed before the final release.

Module names must be unique.

At no time in the future should a module in the main repository depend on a Remote Module.

4https://opensource.org/licenses

https://www.insight-journal.org/
https://opensource.org/licenses

234 Chapter 9. How To Create A Module

9.7.2 Procedure for Adding a Remote Module

The repository

https://github.com/InsightSoftwareConsortium/ITKModuleTemplate

provides a useful template to be used as a starting point for a new ITK module.

The procedure to publish a new module in ITK is summarized as follows:

1. Publish an open access article describing the module in an online, open access journal like

The Insight Journal.

2. Push a topic to the ITK GitHub repository (see Section 10.1 on page 235 that adds a file named

Modules/Remote/<module name>.remote.cmake. This file must have the following:

(a) Dashboard maintainer name and email in the comments.

(b) A call to the itk fetch module CMake function (documented in

CMake/ITKModuleRemote.cmake) whose arguments are:

i. The name of the remote module. Note that in each <remote module

name>.remote.cmake, the first argument of the function itk fetch module()

is the name of the remote module, and it has to be consistent with the module name

defined in the corresponding <remote module name>.remote.cmake. To better

distinguish the remote modules from the internal ITK modules, the names of the

remote modules should NOT contain the “ITK” string prefix.

ii. A short description of the module with the handle to the open access article.

iii. URLs describing the location and version of the code to download. The version

should be a specific hash.

After the Remote Module has experienced sufficient testing, and community members express broad

interest in the contribution, the submitter can then move the contribution into the ITK repository via

GitHub code review.

It is possible but not recommended to directly push a module to GitHub for review without submit-

ting to Insight Journal first.

https://github.com/InsightSoftwareConsortium/ITKModuleTemplate

CHAPTER

TEN

SOFTWARE PROCESS

An outstanding feature of ITK is the software process used to develop, maintain and test the toolkit.

The Insight Toolkit software continues to evolve rapidly due to the efforts of developers and users

located around the world, so the software process is essential to maintaining its quality. If you are

planning to contribute to ITK, or use the Git source code repository, you need to know something

about this process (see 2.1 on page 10 to learn more about obtaining ITK using Git). This infor-

mation will help you know when and how to update and work with the software as it changes. The

following sections describe key elements of the process.

10.1 Git Source Code Repository

Git1https://git-scm.com/ is a tool for version control. It is a valuable resource for software projects

involving multiple developers. The primary purpose of Git is to keep track of changes to software.

Git date and version stamps every addition to files in the repository. Additionally, a user may set a tag

to mark a particular of the whole software. Thus, it is possible to return to a particular state or point

of time whenever desired. The differences between any two points is represented by a “diff” file, that

is a compact, incremental representation of change. Git supports concurrent development so that two

developers can edit the same file at the same time, that are then (usually) merged together without

incident (and marked if there is a conflict). In addition, branches off of the main development trunk

provide parallel development of software.

Developers and users can check out the software from the Git repository. When developers introduce

changes in the system, Git facilitates to update the local copies of other developers and users by

downloading only the differences between their local copy and the version on the repository. This is

an important advantage for those who are interested in keeping up to date with the leading edge of

the toolkit. Bug fixes can be obtained in this way as soon as they have been checked into the system.

ITK source code, data, and examples are maintained in a Git repository. The principal advantage of

a system like Git is that it frees developers to try new ideas and introduce changes without fear of

1\unskip\protect\penalty\@M\vrulewidth\z@height\z@depth\dpff

\unskip \protect \penalty \@M \vrule width\z@ height\z@ depth\dp

236 Chapter 10. Software Process

losing a previous working version of the software. It also provides a simple way to incrementally

update code as new features are added to the repository.

The ITK community use Git, and the social coding web platform, GitHub

(https://github.com/InsightSoftwareConsortium), to facilitate a structured, orderly

method for developers to contribute new code and bug fixes to ITK. The GitHub review process al-

lows anyone to submit a proposed change to ITK, after which it will be reviewed by other developers

before being approved and merged into ITK. For more information on how to contribute, please visit

https://github.com/InsightSoftwareConsortium/ITK/blob/master/CONTRIBUTING.md.

For information about the Git-based development workflow adopted by ITK, see the Appendix B

on page 267.

10.2 CDash Regression Testing System

One of the unique features of the ITK software process is its use of the CDash regression testing

system (https://www.cdash.org). In a nutshell, what CDash does is to provide quantifiable feed-

back to developers as they check in new code and make changes. The feedback consists of the

results of a variety of tests, and the results are posted on a publicly-accessible Web page (to which

we refer as a dashboard) as shown in Figure 10.1. The most recent dashboard is accessible from

https://www.itk.org/ITK/resources/testing.html). Since all users and developers of ITK

can view the Web page, the CDash dashboard serves as a vehicle for developer communication, es-

pecially when new additions to the software is found to be faulty. The dashboard should be consulted

before considering updating software via Git.

Note that CDash is independent of ITK and can be used to manage quality control for any software

project. It is itself an open-source package and can be obtained from

https://www.cdash.org

CDash supports a variety of test types. These include the following.

Compilation. All source and test code is compiled and linked. Any resulting errors and warnings

are reported on the dashboard.

Regression. Some ITK tests produce images as output. Testing requires comparing each test’s out-

put against a valid baseline image. If the images match then the test passes. The comparison

must be performed carefully since many 3D graphics systems (e.g., OpenGL) produce slightly

different results on different platforms.

Memory. Problems relating to memory such as leaks, uninitialized memory reads, and reads/ writes

beyond allocated space can cause unexpected results and program crashes. ITK checks run-

time memory access and management using Purify, a commercial package produced by Ra-

tional. (Other memory checking programs will be added in the future.)

https://github.com/InsightSoftwareConsortium
https://github.com/InsightSoftwareConsortium/ITK/blob/master/CONTRIBUTING.md
https://www.cdash.org
https://www.itk.org/ITK/resources/testing.html
https://www.cdash.org

10.2. CDash Regression Testing System 237

Figure 10.1: On-line presentation of the quality dashboard generated by CDash.

PrintSelf. All classes in ITK are expected to print out all their instance (i.e., those with associated

Set and Get methods) and their internal variables correctly. This test checks to make sure that

this is the case.

Unit. Each class in ITK should have a corresponding unit test where the class functionalities are

exercised and quantitatively compared against expected results. These tests are typically writ-

ten by the class developer and should endeavor to cover all lines of code including Set/Get

methods and error handling.

Coverage. There is a saying among ITK developers: If it isn’t covered, then it’s broke. What this

means is that code that is not executed during testing is likely to be wrong. The coverage tests

identify lines that are not executed in the Insight Toolkit test suite, reporting a total percentage

covered at the end of the test. While it is nearly impossible to bring the coverage to 100%

because of error handling code and similar constructs that are rarely encountered in practice,

the coverage numbers should be 75% or higher. Code that is not covered well enough requires

additional tests.

Figure 10.1 shows the top-level dashboard web page. Each row in the dashboard corresponds to a

particular platform (hardware + operating system + compiler). The data on the row indicates the

number of compile errors and warnings as well as the results of running hundreds of small test

programs. In this way the toolkit is tested both at compile time and run time.

When a user or developer decides to update ITK source code from Git it is important to first verify

that the current dashboard is in good shape. This can be rapidly judged by the general coloration of

the dashboard. A green state means that the software is building correctly and it is a good day to

238 Chapter 10. Software Process

start with ITK or to get an upgrade. A red state, on the other hand, is an indication of instability on

the system and hence users should refrain from checking out or upgrading the source code.

Another nice feature of CDash is that it maintains a history of changes to the source code (by

coordinating with Git) and summarizes the changes as part of the dashboard. This is useful for

tracking problems and keeping up to date with new additions to ITK.

10.2.1 Developing tests

As highlighted, testing is an essential part of ITK. Regression testing on a regular basis allows ITK

to meet high code quality standards, and to enable reproducible research. Code coverage reported

daily in CDash allows us to systematically measure the degree to which the ITK source code is

reliable. Therefore, writing tests, and improving current tests and the testing infrastructure is crucial

to ITK.

There are a number of scenarios when writing tests:

• Modifying existing classes. When modifying an existing class (either due to a bug or a perfor-

mance improvement), it must be checked that existing tests exercise the new code. Otherwise,

either the existing tests should be modified to include the appropriate cases for the new code

to be exercised (without harm to existing cases), or a new test file may be required.

• Contributing new classes. When contributing a new class, a unit test or a few unit tests

should be provided to check that the class is working as expected. The unit tests are expected

to exercise all of the members of the new class.

In either case, the tips and tools described in Section 9.4 were developed to improve and facilitate

the process.

10.3 Working The Process

The ITK software process functions across three cycles—the continuous cycle, the daily cycle, and

the release cycle.

The continuous cycle revolves around the actions of developers as they check code into Git. When

changed or new code is checked into Git, the CDash continuous testing process kicks in. A small

number of tests are performed (including compilation), and if something breaks, email is sent to all

developers who checked code in during the continuous cycle. Developers are expected to fix the

problem immediately.

The daily cycle occurs over a 24-hour period. Changes to the source base made during the day are

extensively tested by the nightly CDash regression testing sequence. These tests occur on different

combinations of computers and operating systems located around the world, and the results are

10.4. The Effectiveness of the Process 239

posted every day to the CDash dashboard. Developers who checked in code are expected to visit

the dashboard and ensure their changes are acceptable—that is, they do not introduce compilation

errors or warnings, or break any other tests including regression, memory, PrintSelf, and Set/Get.

Again, developers are expected to fix problems immediately.

The release cycle occurs a small number of times a year. This requires tagging and branching the

Git repository, updating documentation, and producing new release packages. Although additional

testing is performed to insure the consistency of the package, keeping the daily Git build error free

minimizes the work required to cut a release.

ITK users typically work with releases, since they are the most stable. Developers work with the Git

repository, or sometimes with periodic release snapshots, in order to take advantage of newly-added

features. It is extremely important that developers watch the dashboard carefully, and update their

software only when the dashboard is in good condition (i.e., is “green”). Failure to do so can cause

significant disruption if a particular day’s software release is unstable.

10.4 The Effectiveness of the Process

The effectiveness of this process is profound. By providing immediate feedback to developers

through email and Web pages (e.g., the dashboard), the quality of ITK is exceptionally high, es-

pecially considering the complexity of the algorithms and system. Errors, when accidentally intro-

duced, are caught quickly, as compared to catching them at the point of release. To wait to the point

of release is to wait too long, since the causal relationship between a code change or addition and a

bug is lost. The process is so powerful that it routinely catches errors in vendor’s graphics drivers

(e.g., OpenGL drivers) or changes to external subsystems such as the VXL/VNL numerics library.

All of these tools that make up the process (CMake, Git, and CDash) are open-source. Many large

and small systems such as VTK (The Visualization Toolkit https://www.vtk.org) use the same

process with similar results. We encourage the adoption of the process in your environment.

https://www.vtk.org

Appendices

APPENDIX

ONE

LICENSES

A.1 Insight Toolkit License

Apache License

Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,

and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by

the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all

other entities that control, are controlled by, or are under common

control with that entity. For the purposes of this definition,

"control" means (i) the power, direct or indirect, to cause the

direction or management of such entity, whether by contract or

otherwise, or (ii) ownership of fifty percent (50%) or more of the

outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity

exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,

including but not limited to software source code, documentation

244 Appendix A. Licenses

source, and configuration files.

"Object" form shall mean any form resulting from mechanical

transformation or translation of a Source form, including but

not limited to compiled object code, generated documentation,

and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or

Object form, made available under the License, as indicated by a

copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object

form, that is based on (or derived from) the Work and for which the

editorial revisions, annotations, elaborations, or other modifications

represent, as a whole, an original work of authorship. For the purposes

of this License, Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the interfaces of,

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally

submitted to Licensor for inclusion in the Work by the copyright owner

or by an individual or Legal Entity authorized to submit on behalf of

the copyright owner. For the purposes of this definition, "submitted"

means any form of electronic, verbal, or written communication sent

to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems,

and issue tracking systems that are managed by, or on behalf of, the

Licensor for the purpose of discussing and improving the Work, but

excluding communication that is conspicuously marked or otherwise

designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity

on behalf of whom a Contribution has been received by Licensor and

subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the

A.1. Insight Toolkit License 245

Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,

worldwide, non-exclusive, no-charge, royalty-free, irrevocable

(except as stated in this section) patent license to make, have made,

use, offer to sell, sell, import, and otherwise transfer the Work,

where such license applies only to those patent claims licensable

by such Contributor that are necessarily infringed by their

Contribution(s) alone or by combination of their Contribution(s)

with the Work to which such Contribution(s) was submitted. If You

institute patent litigation against any entity (including a

cross-claim or counterclaim in a lawsuit) alleging that the Work

or a Contribution incorporated within the Work constitutes direct

or contributory patent infringement, then any patent licenses

granted to You under this License for that Work shall terminate

as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without

modifications, and in Source or Object form, provided that You

meet the following conditions:

(a) You must give any other recipients of the Work or

Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices

stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works

that You distribute, all copyright, patent, trademark, and

attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of

the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its

distribution, then any Derivative Works that You distribute must

include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not

pertain to any part of the Derivative Works, in at least one

of the following places: within a NOTICE text file distributed

as part of the Derivative Works; within the Source form or

documentation, if provided along with the Derivative Works; or,

246 Appendix A. Licenses

within a display generated by the Derivative Works, if and

wherever such third-party notices normally appear. The contents

of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution

notices within Derivative Works that You distribute, alongside

or as an addendum to the NOTICE text from the Work, provided

that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and

may provide additional or different license terms and conditions

for use, reproduction, or distribution of Your modifications, or

for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with

the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work

by You to the Licensor shall be under the terms and conditions of

this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify

the terms of any separate license agreement you may have executed

with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor,

except as required for reasonable and customary use in describing the

origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each

Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions

of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

PARTICULAR PURPOSE. You are solely responsible for determining the

appropriateness of using or redistributing the Work and assume any

risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise,

unless required by applicable law (such as deliberate and grossly

negligent acts) or agreed to in writing, shall any Contributor be

A.1. Insight Toolkit License 247

liable to You for damages, including any direct, indirect, special,

incidental, or consequential damages of any character arising as a

result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill,

work stoppage, computer failure or malfunction, or any and all

other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,

or other liability obligations and/or rights consistent with this

License. However, in accepting such obligations, You may act only

on Your own behalf and on Your sole responsibility, not on behalf

of any other Contributor, and only if You agree to indemnify,

defend, and hold each Contributor harmless for any liability

incurred by, or claims asserted against, such Contributor by reason

of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following

boilerplate notice, with the fields enclosed by brackets "[]"

replaced with your own identifying information. (Don't include

the brackets!) The text should be enclosed in the appropriate

comment syntax for the file format. We also recommend that a

file or class name and description of purpose be included on the

same "printed page" as the copyright notice for easier

identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");

you may not use this file except in compliance with the License.

You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

248 Appendix A. Licenses

See the License for the specific language governing permissions and

limitations under the License.

A.2 Third Party Licenses

The Insight Toolkit bundles a number of third party libraries that are used internally. The licenses of

these libraries are as follows.

A.2.1 DICOM Parser

/*===

Program: DICOMParser

Module: Copyright.txt

Language: C++

Copyright (c) 2003 Matt Turek

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

* The name of Matt Turek nor the names of any contributors may be used to

endorse or promote products derived from this software without specific

prior written permission.

* Modified source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR

A.2. Third Party Licenses 249

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===*/

A.2.2 Double Conversion

Copyright 2006-2011, the V8 project authors. All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of Google Inc. nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.2.3 Expat

Copyright (c) 1998-2000 Thai Open Source Software Center Ltd and Clark Cooper

Copyright (c) 2001-2019 Expat maintainers

250 Appendix A. Licenses

Permission is hereby granted, free of charge, to any person obtaining

a copy of this software and associated documentation files (the

"Software"), to deal in the Software without restriction, including

without limitation the rights to use, copy, modify, merge, publish,

distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to

the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY

CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE

SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

A.2.4 GDCM

/*===

Program: GDCM (Grassroots DICOM). A DICOM library

Copyright (c) 2006-2016 Mathieu Malaterre

Copyright (c) 1993-2005 CREATIS

(CREATIS = Centre de Recherche et d'Applications en Traitement de l'Image)

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

* Neither name of Mathieu Malaterre, or CREATIS, nor the names of any

contributors (CNRS, INSERM, UCB, Universite Lyon I), may be used to

A.2. Third Party Licenses 251

endorse or promote products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===*/

A.2.5 GIFTI

The gifticlib code is released into the public domain. Developers are

encouraged to incorporate the library into their application, and to

contribute changes or enhancements to gifticlib.

Author: Richard Reynolds, SSCC, DIRP, NIMH, National Institutes of Health

May 13, 2008 (release version 1.0.0)

http://www.nitrc.org/projects/gifti

A.2.6 HDF5

Copyright Notice and License Terms for

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 2006 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 1998-2006 by The Board of Trustees of the University of Illinois.

All rights reserved.

Redistribution and use in source and binary forms, with or without

252 Appendix A. Licenses

modification, are permitted for any purpose (including commercial purposes)

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,

this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions, and the following disclaimer in the documentation

and/or materials provided with the distribution.

3. Neither the name of The HDF Group, the name of the University, nor the

name of any Contributor may be used to endorse or promote products derived

from this software without specific prior written permission from

The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER:

THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS

"AS IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. IN NO

EVENT SHALL THE HDF GROUP OR THE CONTRIBUTORS BE LIABLE FOR ANY DAMAGES

SUFFERED BY THE USERS ARISING OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or

upgrades to the features, functionality or performance of the source code

("Enhancements") to anyone; however, if you choose to make your Enhancements

available either publicly, or directly to The HDF Group, without imposing a

separate written license agreement for such Enhancements, then you hereby

grant the following license: a non-exclusive, royalty-free perpetual license

to install, use, modify, prepare derivative works, incorporate into other

computer software, distribute, and sublicense such enhancements or derivative

works thereof, in binary and source code form.

Limited portions of HDF5 were developed by Lawrence Berkeley National

Laboratory (LBNL). LBNL's Copyright Notice and Licensing Terms can be

found here: COPYING_LBNL_HDF5 file in this directory or at

http://support.hdfgroup.org/ftp/HDF5/releases/COPYING_LBNL_HDF5.

A.2. Third Party Licenses 253

Contributors: National Center for Supercomputing Applications (NCSA) at

the University of Illinois, Fortner Software, Unidata Program Center

(netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler

(gzip), and Digital Equipment Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley

National Laboratory (LBNL) and the United States Department of Energy

under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from Lawrence Livermore

National Laboratory and the United States Department of Energy under

Prime Contract No. DE-AC52-07NA27344.

Portions of HDF5 were developed with support from the University of

California, Lawrence Livermore National Laboratory (UC LLNL).

The following statement applies to those portions of the product and must

be retained in any redistribution of source code, binaries, documentation,

and/or accompanying materials:

This work was partially produced at the University of California,

Lawrence Livermore National Laboratory (UC LLNL) under contract

no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy

(DOE) and The Regents of the University of California (University)

for the operation of UC LLNL.

DISCLAIMER:

THIS WORK WAS PREPARED AS AN ACCOUNT OF WORK SPONSORED BY AN AGENCY OF

THE UNITED STATES GOVERNMENT. NEITHER THE UNITED STATES GOVERNMENT NOR

THE UNIVERSITY OF CALIFORNIA NOR ANY OF THEIR EMPLOYEES, MAKES ANY

WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY OR RESPONSIBILITY

FOR THE ACCURACY, COMPLETENESS, OR USEFULNESS OF ANY INFORMATION,

APPARATUS, PRODUCT, OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE

WOULD NOT INFRINGE PRIVATELY- OWNED RIGHTS. REFERENCE HEREIN TO ANY

SPECIFIC COMMERCIAL PRODUCTS, PROCESS, OR SERVICE BY TRADE NAME,

TRADEMARK, MANUFACTURER, OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE

OR IMPLY ITS ENDORSEMENT, RECOMMENDATION, OR FAVORING BY THE UNITED

STATES GOVERNMENT OR THE UNIVERSITY OF CALIFORNIA. THE VIEWS AND

254 Appendix A. Licenses

OPINIONS OF AUTHORS EXPRESSED HEREIN DO NOT NECESSARILY STATE OR REFLECT

THOSE OF THE UNITED STATES GOVERNMENT OR THE UNIVERSITY OF CALIFORNIA,

AND SHALL NOT BE USED FOR ADVERTISING OR PRODUCT ENDORSEMENT PURPOSES.

A.2.7 JPEG

The authors make NO WARRANTY or representation, either express or implied,

with respect to this software, its quality, accuracy, merchantability, or

fitness for a particular purpose. This software is provided "AS IS", and you,

its user, assume the entire risk as to its quality and accuracy.

This software is copyright (C) 1991-2010, Thomas G. Lane, Guido Vollbeding.

All Rights Reserved except as specified below.

Permission is hereby granted to use, copy, modify, and distribute this

software (or portions thereof) for any purpose, without fee, subject to these

conditions:

(1) If any part of the source code for this software is distributed, then this

README file must be included, with this copyright and no-warranty notice

unaltered; and any additions, deletions, or changes to the original files

must be clearly indicated in accompanying documentation.

(2) If only executable code is distributed, then the accompanying

documentation must state that "this software is based in part on the work of

the Independent JPEG Group".

(3) Permission for use of this software is granted only if the user accepts

full responsibility for any undesirable consequences; the authors accept

NO LIABILITY for damages of any kind.

These conditions apply to any software derived from or based on the IJG code,

not just to the unmodified library. If you use our work, you ought to

acknowledge us.

Permission is NOT granted for the use of any IJG author's name or company name

in advertising or publicity relating to this software or products derived from

it. This software may be referred to only as "the Independent JPEG Group's

software".

We specifically permit and encourage the use of this software as the basis of

commercial products, provided that all warranty or liability claims are

A.2. Third Party Licenses 255

assumed by the product vendor.

ansi2knr.c is included in this distribution by permission of L. Peter Deutsch,

sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA.

ansi2knr.c is NOT covered by the above copyright and conditions, but instead

by the usual distribution terms of the Free Software Foundation; principally,

that you must include source code if you redistribute it. (See the file

ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part

of any program generated from the IJG code, this does not limit you more than

the foregoing paragraphs do.

The Unix configuration script "configure" was produced with GNU Autoconf.

It is copyright by the Free Software Foundation but is freely distributable.

The same holds for its supporting scripts (config.guess, config.sub,

ltmain.sh). Another support script, install-sh, is copyright by X Consortium

but is also freely distributable.

The IJG distribution formerly included code to read and write GIF files.

To avoid entanglement with the Unisys LZW patent, GIF reading support has

been removed altogether, and the GIF writer has been simplified to produce

"uncompressed GIFs". This technique does not use the LZW algorithm; the

resulting GIF files are larger than usual, but are readable by all standard

GIF decoders.

We are required to state that

"The Graphics Interchange Format(c) is the Copyright property of

CompuServe Incorporated. GIF(sm) is a Service Mark property of

CompuServe Incorporated."

A.2.8 KWSys

KWSys - Kitware System Library

Copyright 2000-2016 Kitware, Inc. and Contributors

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

256 Appendix A. Licenses

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of Kitware, Inc. nor the names of Contributors

may be used to endorse or promote products derived from this

software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

--

The following individuals and institutions are among the Contributors:

* Insight Software Consortium <insightsoftwareconsortium.org>

See version control history for details of individual contributions.

A.2.9 MetaIO

MetaIO - Medical Image I/O

The following license applies to all code, without exception,

in the MetaIO library.

/*===

Copyright 2000-2014 Insight Software Consortium

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

A.2. Third Party Licenses 257

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

* Neither the name of the Insight Software Consortium nor the names of

its contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===*/

/*===

Copyright (c) 1999-2007 Insight Software Consortium

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

* The name of the Insight Software Consortium, nor the names of any

consortium members, nor of any contributors, may be used to endorse or

promote products derived from this software without specific prior written

258 Appendix A. Licenses

permission.

* Modified source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

===*/

A.2.10 Netlib’s SLATEC

This code is in the public domain. From https://www.netlib.org/slatec/guide:

SECTION 4. OBTAINING THE LIBRARY

The Library is in the public domain and distributed by the Energy Science

and Technology Software Center.

Energy Science and Technology Software Center

P.O. Box 1020

Oak Ridge, TN 37831

Telephone 615-576-2606

E-mail estsc%a1.adonis.mrouter@zeus.osti.gov

A.2.11 NIFTI

Niftilib has been developed by members of the NIFTI DFWG and volunteers in the

neuroimaging community and serves as a reference implementation of the nifti-1

file format.

http://nifti.nimh.nih.gov/

https://www.netlib.org/slatec/guide

A.2. Third Party Licenses 259

Nifticlib code is released into the public domain, developers are encouraged to

incorporate niftilib code into their applications, and, to contribute changes

and enhancements to niftilib.

A.2.12 NrrdIO

License ---

NrrdIO: stand-alone code for basic nrrd functionality

Copyright (C) 2013, 2012, 2011, 2010, 2009 University of Chicago

Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann

Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any

damages arising from the use of this software.

Permission is granted to anyone to use this software for any

purpose, including commercial applications, and to alter it and

redistribute it freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must

not claim that you wrote the original software. If you use this

software in a product, an acknowledgment in the product

documentation would be appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must

not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

General information ---

** NOTE: These source files have been copied and/or modified from Teem,

** <http://teem.sf.net>. Teem is licensed under a weakened GNU Lesser Public

** License (the weakening is to remove burdens on those releasing binaries

** that statically link against Teem) . The non-reciprocal licensing defined

** above applies to only the source files in the NrrdIO distribution, and not

** to Teem.

260 Appendix A. Licenses

NrrdIO is a modified and highly abbreviated version of the Teem. NrrdIO

contains only the source files (or portions thereof) required for

creating and destroying nrrds, and for getting them into and out of

files. The NrrdIO sources are created from the Teem sources by using

GNU Make (pre-GNUmakefile in the NrrdIO distribution).

NrrdIO makes it very easy to add support for the NRRD file format to your

program, which is a good thing considering and design and flexibility of the

NRRD file format, and the existence of the "unu" command-line tool for

operating on nrrds. Using NrrdIO requires exactly one header file,

"NrrdIO.h", and exactly one library, libNrrdIO.

Currently, the API presented by NrrdIO is a strict subset of the Teem API.

There is no additional encapsulation or abstraction. This could be annoying

in the sense that you still have to deal with the biff (for error messages)

and the air (for utilities) library function calls. Or it could be good and

sane in the sense that code which uses NrrdIO can be painlessly "upgraded" to

use more of Teem. Also, the API documentation for the same functionality in

Teem will apply directly to NrrdIO.

NrrdIO was originally created with the help of Josh Cates in order to add

support for the NRRD file format to the Insight Toolkit (ITK).

NrrdIO API crash course ---

Please read <http://teem.sourceforge.net/nrrd/lib.html>. The functions that

are explained in detail are all present in NrrdIO. Be aware, however, that

NrrdIO currently supports ONLY the NRRD file format, and not: PNG, PNM, VTK,

or EPS.

The functionality in Teem's nrrd library which is NOT in NrrdIO is basically

all those non-trivial manipulations of the values in the nrrd, or their

ordering in memory. Still, NrrdIO can do a fair amount, namely all the

functions listed in these sections of the "Overview of rest of API" in the

above web page:

- Basic "methods"

- Manipulation of per-axis meta-information

- Utility functions

- Comments in nrrd

A.2. Third Party Licenses 261

- Key/value pairs

- Endianness (byte ordering)

- Getting/Setting values (crude!)

- Input from, Output to files

Files comprising NrrdIO ---

NrrdIO.h: The single header file that declares all the functions and variables

that NrrdIO provides.

sampleIO.c: Tiny little command-line program demonstrating the basic NrrdIO

API. Read this for examples of how NrrdIO is used to read and write NRRD

files.

CMakeLists.txt: to build NrrdIO with CMake

pre-GNUmakefile: how NrrdIO sources are created from the Teem

sources. Requires that TEEM_SRC_ROOT be set, and uses the following two files.

tail.pl, unteem.pl: used to make small modifications to the source files to

convert them from Teem to NrrdIO sources

mangle.pl: used to generate a #include file for name-mangling the external

symbols in the NrrdIO library, to avoid possible problems with programs

that link with both NrrdIO and the rest of Teem.

preamble.c: the preamble describing the non-copyleft licensing of NrrdIO.

qnanhibit.c: discover a variable which, like endianness, is architecture

dependent and which is required for building NrrdIO (as well as Teem), but

unlike endianness, is completely obscure and unheard of.

encodingBzip2.c, formatEPS.c, formatPNG.c, formatPNM.c, formatText.c,

formatVTK.c: These files create stubs for functionality which is fully present

in Teem, but which has been removed from NrrdIO in the interest of simplicity.

The filenames are in fact unfortunately misleading, but they should be

understood as listing the functionality that is MISSING in NrrdIO.

All other files: copied/modified from the air, biff, and nrrd libraries of

Teem.

262 Appendix A. Licenses

A.2.13 OpenJPEG

/*

* Copyright (c) 2002-2012, Communications and Remote Sensing Laboratory,

* Universite catholique de Louvain (UCL), Belgium

* Copyright (c) 2002-2012, Professor Benoit Macq

* Copyright (c) 2003-2012, Antonin Descampe

* Copyright (c) 2003-2009, Francois-Olivier Devaux

* Copyright (c) 2005, Herve Drolon, FreeImage Team

* Copyright (c) 2002-2003, Yannick Verschueren

* Copyright (c) 2001-2003, David Janssens

* Copyright (c) 2011-2012, Centre National d'Etudes Spatiales (CNES), France

* Copyright (c) 2012, CS Systemes d'Information, France

*

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'

* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

* POSSIBILITY OF SUCH DAMAGE.

*/

A.2. Third Party Licenses 263

A.2.14 PNG

A.2.15 TIFF

Copyright (c) 1988-1997 Sam Leffler

Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and

its documentation for any purpose is hereby granted without fee, provided

that (i) the above copyright notices and this permission notice appear in

all copies of the software and related documentation, and (ii) the names of

Sam Leffler and Silicon Graphics may not be used in any advertising or

publicity relating to the software without the specific, prior written

permission of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,

EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY

WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR

ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,

OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF

LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE

OF THIS SOFTWARE.

A.2.16 VNL

#ifndef vxl_copyright_h_

#define vxl_copyright_h_

// Copyright 2000-2013 VXL Contributors

// All rights reserved.

//

// Redistribution and use in source and binary forms, with or without

// modification, are permitted provided that the following conditions

// are met:

//

// * Redistributions of source code must retain the above copyright

// notice, this list of conditions and the following disclaimer.

//

// * Redistributions in binary form must reproduce the above copyright

264 Appendix A. Licenses

// notice, this list of conditions and the following disclaimer in the

// documentation and/or other materials provided with the distribution.

//

// * Neither the names of the copyright holders nor the names of their

// contributors may be used to endorse or promote products derived

// from this software without specific prior written permission.

//

// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

// COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

// INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

// OF THE POSSIBILITY OF SUCH DAMAGE.

#endif // vxl_copyright_h_

A.2.17 ZLIB

Acknowledgments:

The deflate format used by zlib was defined by Phil Katz. The deflate

and zlib specifications were written by L. Peter Deutsch. Thanks to all the

people who reported problems and suggested various improvements in zlib;

they are too numerous to cite here.

Copyright notice:

(C) 1995-2004 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied

warranty. In no event will the authors be held liable for any damages

arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,

including commercial applications, and to alter it and redistribute it

freely, subject to the following restrictions:

A.2. Third Party Licenses 265

1. The origin of this software must not be misrepresented; you must not

claim that you wrote the original software. If you use this software

in a product, an acknowledgment in the product documentation would be

appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be

misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler

jloup@gzip.org madler@alumni.caltech.edu

If you use the zlib library in a product, we would appreciate *not*

receiving lengthy legal documents to sign. The sources are provided

for free but without warranty of any kind. The library has been

entirely written by Jean-loup Gailly and Mark Adler; it does not

include third-party code.

If you redistribute modified sources, we would appreciate that you include

in the file ChangeLog history information documenting your changes. Please

read the FAQ for more information on the distribution of modified source

versions.

APPENDIX

TWO

ITK GIT WORKFLOW

This chapter describes the workflow adopted by the ITK community to develop the software. The

adopted Git-based branchy workflow is an efficient and flexible model to develop modern software.

B.1 Git Setup

Visit the main Git download site, and depending on your operating system, follow the guidelines.

B.1.1 Windows

Git comes in two flavors on Windows:

• A Windows native application installer

• A Cygwin package

Choose one and stick with it. They do not get along well in a given work tree on disk (the repository

formats are compatible but the “stat cache” of the work tree is not unless core.filemode is false).

Git for Windows

Download the “git for windows” executable from the git for windows site. You want to download

the file that is named something like

Git-2.14.2.2-64-bit.exe

Note that the filename changes as new versions are released.

https://www.git-scm.com/download
https://git-for-windows.github.io/

268 Appendix B. ITK Git Workflow

Run the installer. When prompted, choose to not modify the PATH and choose the

core.autocrlf=true option. Launch the Git Bash tool to get a command line shell with Git.

Cygwin

Install the following packages:

• git: Git command-line tool

• gitk: Graphical history browser

• git-completion: Bash shell completion rules

Launch a Cygwin command prompt to get a command line shell with Git.

B.1.2 macOS

Xcode 4

If you have Xcode 4 installed, you already have git installed.

Verify with:

which git

/usr/bin/git

git --version

git version 1.7.4.4

OS X Installer

Download an installer from code.google.com.

MacPorts

Enter these commands:

sudo port selfupdate

sudo port install git-core +doc

https://code.google.com/archive/p/git-osx-installer/

B.2. Workflow 269

B.1.3 Linux

Popular Linux distributions already come with packages for Git. Typically the packages are called:

• git-core: Git command-line tool

• git-doc: Git documentation

• gitk: Graphical history browser

B.2 Workflow

B.2.1 A Primer

This primer details a possible workflow for using Git and ITK. There are many ways to use Git and

it is a very flexible tool. This page details my particular way of working with Git, and is certainly

not the last word. It is also rambling collection of tips and experiences that I’ve picked up in the last

few years of using Git.

It is worth trying to explain some high-level Git concepts. A feature (or a bug) that sets Git apart from

Subversion is its distributed nature. In practice, that means that ITK needs to “bless” a repository

for it to be the “official” source of ITK. This has already been done at the ITK GitHub repository.

Another Git concept is that of a commit. Git uses a SHA1 hash to uniquely identify a change

set. The hash is (almost) guaranteed to be unique across your project, and even across all projects

everywhere and for all time.

Quoting from the excellent Pro Git book1:

A lot of people become concerned at some point that they will, by random happen-

stance, have two objects in their repository that hash to the same SHA-1 value. What

then?

If you do happen to commit an object that hashes to the same SHA-1 value as a previous

object in your repository, Git will see the previous object already in your Git database

and assume it was already written. If you try to check out that object again at some

point, you’ll always get the data of the first object.

However, you should be aware of how ridiculously unlikely this scenario is. The SHA-

1 digest is 20 bytes or 160 bits. The number of randomly hashed objects needed to

ensure a 50% probability of a single collision is about 280 (the formula for determining

collision probability is p = (n(n− 1)/2) ∗ (1/2160)). 280 is 1.2× 1024 or 1 million

billion billion. That’s 1,200 times the number of grains of sand on the earth.

1https://git-scm.com/book/en/v2

https://carthik.net/blog/vault/2007/08/21/its-a-feature-not-a-bug/
https://blog.codinghorror.com/thats-not-a-bug-its-a-feature-request/
https://github.com/InsightSoftwareConsortium/ITK
https://en.wikipedia.org/wiki/SHA-1
https://git-scm.com/book/en/v2

270 Appendix B. ITK Git Workflow

Here’s an example to give you an idea of what it would take to get a SHA-1 collision.

If all 6.5 billion humans on Earth were programming, and every second, each one was

producing code that was the equivalent of the entire Linux kernel history (1 million Git

objects) and pushing it into one enormous Git repository, it would take 5 years until

that repository contained enough objects to have a 50% probability of a single SHA-1

object collision. A higher probability exists that every member of your programming

team will be attacked and killed by wolves in unrelated incidents on the same night.

B.2.2 A Topic

This workflow is based on the branchy development workflow documented by Git help workflows.

Motivation

The primary goal of this workflow is to make release preparation and maintenance easier. We set

the following requirements, of which some are themselves worthwhile goals:

• Amortize the effort of release preparation throughout development.

• Support granular selection of features for release.

• Allow immature features to be published without delaying release.

• Keep unrelated development paths (topics) independent of one another.

• Maintain a clean shape of history (see Section B.2.2 on page 282).

Design

The design of this workflow is based on the observation that meeting the highlighted goal makes

the other goals easy. It is based on branchy development in which each branch has a well-defined

purpose.

We define two branch types:

• Topic Branch

– Commits represent changes (real work)

– Distinguished by feature (one topic per feature or fix)

– Named locally by each developer (describe purpose of work)

– Heads not published (no named branch on server)

• Integration Branch

https://git-scm.com/docs/gitworkflows

B.2. Workflow 271

Meaning Symbol

Branch name master

Current branch *master

Commit with parent in same

branch
... C1

Commit with two parents

(merge)

... C1

C2

Table B.1: Git graphs notation.

C1

C2 C3 C4 C5

master

topic

Figure B.1: Topic branch.

– Commits represent merges (merge topics together)

– Distinguished by stability (release maintenance, release preparation, development edge)

– Named everywhere

– Heads published on server

Notation

This chapter uses Git Directed Acyclic Graphs (DAG) to depict commit history:

Topic branches generally consist of a linear sequence of commits forked off an integration branch:

Integration branches generally consist of a sequence of merge commits:

Published Branches

We publish an integration branch for each stage of development:

• release: Release maintenance (high stability). Only bug fixes should be published here. Only

the release manager can push here.

272 Appendix B. ITK Git Workflow

C6 C7

C1 C2 C3 C4 C5

C8 C9

master

Figure B.2: Merge commits into the master branch.

C1 master

Figure B.3: Locate at master.

• master: Release preparation (medium stability). Only mature features and bug fixes should

be published here.

Topic branches are not published directly; their names exist only in each developer’s local reposito-

ries.

Development

We cover below the steps to take during each phase of development.

Initial Setup These instructions generally provide all arguments to git push commands. Some

people prefer to use git push with no additional arguments to push the current tracking branch.

Run the command

git config --global push.default tracking

to establish this behavior. See the git config man-page for details.

New Topic Create a new topic branch for each separate feature or bug fix. Always start the topic

from a stable integration branch, usually master. If the topic fixes a bug in the current release, use

release. In the following section we review the steps and commands to create, develop, and publish

a topic branch based on master.

Update master to base work on the most recently integrated features.

git checkout master

https://git-scm.com/docs/git-config

B.2. Workflow 273

C1 C2 master

Figure B.4: Bring most recent changes to master.

C1 C2

master

topic

Figure B.5: Create a local topic branch.

git pull

Create the local topic branch. Use a meaningful name for topic (see Section B.2.2 on page 283).

git checkout -b topic

This is where the real work happens. Edit, stage, and commit files repeatedly as needed for your

work.

During this step, avoid the B.2.2 from an integration branch. Keep your commits focused on the

topic at hand.

edit files

git add -- files

git commit

edit files

git add -- files

git commit

C1 C2

C3

master

topic

Figure B.6: Commit changes.

274 Appendix B. ITK Git Workflow

C1 C2

C3 C4

master

topic

Figure B.7: Commit last changes.

C1 C2

C3 C4

master

topic

Figure B.8: Checkout master and pull changes.

When the topic is ready for publication it must be merged into master. It should be the current local

branch when you merge.

Switch to master and update it.

git checkout master

git pull

Merge the topic and test it.

git merge topic

See Section B.2.2 on page 295 to resolve any conflict that may arise when merging.

Finally, publish the change.

git push origin master

See Section B.2.2 on page 285 and Section B.2.2 on page 286 to resolve any conflict that may arise

when publishing the change.

Mature Topic When a topic is ready for inclusion in the next release, we merge it into master.

C1 C2

C3 C4

C5 master

topic

Figure B.9: Merge topic branch into master.

B.2. Workflow 275

C1 C2

C3 C4

C5

origin/master

mastertopic

Figure B.10: Publish the change.

C1 C2

C3 C4

master

topic

Figure B.11: Checkout master.

Update master to get the latest work by others. We will merge the topic branch into it.

git checkout master

git pull

Merge the topic and test it.

git merge topic

See Section B.2.2 on page 295 to resolve any conflict that may arise when merging the branch.

Delete the local branch.

C5

C1 C2

C3 C4

C6 master

topic

Figure B.12: Pull latest changes into master.

276 Appendix B. ITK Git Workflow

C5

C1 C2

C3 C4

C6 C7 master

topic

Figure B.13: Merge the topic branch into master.

C5

C1 C2

C3 C4

C6 C7 master

Figure B.14: Delete the local topic branch.

git branch -d topic

Finally, publish the change.

git push origin master

See Section B.2.2 on page 285 and Section B.2.2 on page 286 to resolve any conflict that may arise

when publishing the change.

Old Topic Sometimes we need to continue work on an old topic that has already been merged to

an integration branch and for which we no longer have a local topic branch. To revive an old topic,

we create a local branch based on the last commit from the topic (this is not one of the merges into

C5

C1 C2

C3 C4

C6 C7

origin/master

master

Figure B.15: Publish the change.

B.2. Workflow 277

C5

C1 C2 C6

C3 C4

C7 master

topic b235725

Figure B.16: Local topic branch started from a given commit and switch to it.

an integration branch).

First we need to identify the commit by its hash. It is an ancestor of the integration branch into

which it was once merged, say master. Run git log with the --first-parent option to view the

integration history:

git log --first-parent master

commit 9057863...

Merge: 2948732 a348901

...

Merge branch topicA

commit 2948732...

Merge: 1094687 b235725

...

Merge branch topicB

commit 1094687...

Merge: 8267263 c715789

...

Merge branch topicC

Locate the merge commit for the topic of interest, say topicB. Its second parent is the commit from

which we will restart work (b235725 in this example).

Create a local topic branch starting from the commit identified above.

git checkout -b topic b235725

Continue development on the topic.

edit files

git add -- files

git commit

278 Appendix B. ITK Git Workflow

C5

C1 C2 C6 C7

C3 C4 C8

master

topic

Figure B.17: Commit files to topic.

C5

C1 C2 C6 C7

C3 C4 C8 C9

master

topic

Figure B.18: Further continue developing and commit files to topic.

edit files

git add -- files

git commit

When the new portion of the topic is ready, merge it into master and test.

git checkout master

git pull

git merge topic

Publish master.

git push origin master

C5

C1 C2 C6 C7 C10

C3 C4 C8 C9

master

topic

Figure B.19: Merge into master.

B.2. Workflow 279

C5 C6

C1 C2 C7 C8

C3 C4

C9 C10

extra-topic

origin/master

0a398e5

topic

Figure B.20: Fetch the upstream integration branch other-topic.

C5 C6

C1 C2 C7 C8

C3 C4

C9 C10

extra-topic

origin/master

other-topic

topic

Figure B.21: Create a local branch other-topic from commit 0a398e5.

Dependent Topic Occasionally you may realize that you need the work from another topic to com-

plete work on your topic. In this case your topic depends on the other topic, so merging the other

topics into yours is legitimate (see Section B.2.2 on page 285). Do not merge an integration branch

that has the other-topic branch name. Use the instructions below to merge only the other-topic

branch without getting everything else.

Fetch the upstream integration branch that has the other-topic branch, say master.

git fetch origin

Use git log --first-parent origin/master to find the commit that merges other-topic. The

commit message gives you the name of the other topic branch (we use other-topic here as a place-

holder). The second parent of the commit (0a398e5 in this example) is the end of the other-topic

branch. Create a local branch from that commit.

git branch other-topic 0a398e5

Merge the other-topic branch into your topic.

280 Appendix B. ITK Git Workflow

C5 C6

C1 C2 C7 C8

C3 C4

C9 C10 C11

extra-topic

origin/master

topic

Figure B.22: Merge other-branch into topic branch.

C5

C1 C2

C3 C4

C9 C10 C11 topic

Figure B.23: topic branch shape.

git merge other-topic

git branch -d other-topic

(It is also possible to run git merge 0a398e5 and then use git commit --amend to write a nice

commit message.)

The topic branch now looks like this:

Note that after the merge, the other-topic is reachable from your topic but the extra-topic has not

been included. By not merging from the integration branch we avoided bringing in an unnecessary

dependency on the extra-topic. Furthermore, the message “Merge branch ’other-topic’ into topic” is

very informative about the purpose of the merge. Merging the whole integration branch would not

be so clear.

Merge Integration Branches Each published integration branch (see Section B.2.2 on page 271)

has a defined level of stability. Express this relationship by merging more-stable branches into less-

stable branches to ensure that they do not diverge. After merging a mature topic to master, we

merge master into release:

B.2. Workflow 281

C5

C1 C2 C6 C7

C3 C4

C8 C9

master

release

Figure B.24: Update master and release.

C5

C1 C2 C6 C7

C3 C4

C8 C9 C10

master

release

Figure B.25: Merge master into release.

Update master and then release:

git checkout master

git pull

git checkout release

git pull

Merge master into release:

git merge master

Finally, publish the change.

git push origin release

See Section B.2.2 on page 285 and Section B.2.2 on page 286 to resolve any conflict that may arise

when publishing the change.

282 Appendix B. ITK Git Workflow

C5

C1 C2 C6 C7

C3 C4

C8 C9 C10

master

release

origin/release

Figure B.26: Publish to release.

C5

C1 C2 C6 C7 C15

C3 C4 C8 C14

C9 C11 C13 C16

C10 C12

master

topic

release

Figure B.27: Complex history graph in Git.

Discussion

History Shape The history graphs produced by this workflow may look complex compared to the

fully linear history produced by a rebase workflow (used by CVS and Subversion):

However, consider the shape of history along each branch. We can view it using Git’s –first-parent

option. It traverses history by following only the first parent of each merge. The first parent is

the commit that was currently checked out when the git merge command was invoked to create the

merge commit. By following only the first parent, we see commits that logically belong to a specific

branch.

git log --first-parent topic

B.2. Workflow 283

C2

C3 C4 C8 C14 topic

Figure B.28: Parent commit in topic branch.

C5

C1 C2 C6 C7 C15

C4 C14

master

Figure B.29: Parent commit in master branch.

git log --first-parent master

git log --first-parent release

Each branch by itself looks linear and has only commits with a specific purpose. The history behind

each commit is unique to that purpose. Topic branches are independent, containing only commits

for their specific feature or fix. Integration branches consist of merge commits that integrate topics

together.

Note that achieving the nice separation of branches requires understanding of the above development

procedure and strict adherence to it.

Naming Topics This section uses the placeholder topic in place of a real topic name. In practice,

substitute for a meaningful name. Name topics like you might name functions: concise but precise.

A reader should have a general idea of the feature or fix to be developed given just the branch name.

C4 C14

C9 C11 C13 C16

C10 C12

release

Figure B.30: Parent commit in release branch.

284 Appendix B. ITK Git Workflow

Note that topic names are not published as branch heads on the server, so no one will ever see a

branch by your topic name unless they create it themselves. However, the names do appear in the

default merge commit message:

git checkout master

git merge topic

git show

...

Merge branch 'topic' into master

...

These merge commits appear on the integration branches and should therefore describe the changes

they integrate. Running git log --first-parent as described in Section B.2.2 will show only

these merge commits, so their messages should be descriptive of the changes made on their topics.

If you did not choose a good branch name, or feel that the merge needs more explanation than the

branch name provides, amend the commit to update the message by hand:

git commit --amend

Merge branch 'topic' into master

(edit the message)

Urge to Merge Avoid the “urge to merge” from an integration branch into your topic. Keep com-

mits on your topic focused on the feature or fix under development.

Habitual Merges Merge your work with others when you are finished with it by merging into an

integration branch as documented above. Avoid habitual merges from an integration branch; doing

so introduces unnecessary dependencies and complicates the shape of history (see Section B.2.2 on

page 282).

Many developers coming from centralized version control systems have trained themselves to reg-

ularly update their work tree from the central repository (e.g. “cvs update”). With those version

control systems this was a good habit because they did not allow you to commit without first inte-

grating your work with the latest from the server. When integrating the local and remote changes

resulted in conflicts, developers were forced to resolve the conflicts before they could commit. A

mistake during conflict resolution could result in loss of work because the local changes might have

been lost. By regularly updating from the server, developers hoped to avoid this loss of work by

resolving conflicts incrementally.

Developers using Git do not face this problem. Instead, one should follow a simple motto: “commit

first, integrate later”. There is no risk that your work will be lost during conflict resolution because

all your changes have been safely committed before attempting to merge. If you make a mistake

while merging, you always have the option to throw away the merge attempt and start over with a

clean tree.

B.2. Workflow 285

Legitimate Merges One reason to merge other work into your topic is when you realize that your

topic depends on it. See Section B.2.2 on page 279 for help with this case.

Occasionally one may merge directly from master if there is a good reason. This is rare, so bring

up the reason on your project discussion forum first. Never merge release into a topic under any

circumstances!!!

Troubleshooting

Here we document problems one might encounter while following the workflow instructions above.

This is not a general Git troubleshooting page.

Trouble Merging

Trouble Pushing

Remote End Hung up Unexpectedly Pushing may fail with this error:

git push

fatal: The remote end hung up unexpectedly

This likely means that you have set a push URL for the remote repository. You can see the URL to

which it tries to push using -v:

git push -v

Pushing to git://public.kitware.com/Project.git

fatal: The remote end hung up unexpectedly

The git:// repository URL may not be used for pushing; it is meant for efficient read-only anony-

mous access only. Instead you need to configure a SSH-protocol URL for pushing:

git config remote.origin.pushurl git@public.kitware.com:Project.git

(Note that pushurl requires Git ¿= 1.6.4. Use just url for Git ¡ 1.6.4.). The URL in the above

example is a placeholder. In practice, use th push URL documented for your repository.

The above assumes that you want to push to the same repository that you originally cloned. To push

elsewhere, see help for git push and git remote.

https://git-scm.com/docs/git-push
https://git-scm.com/docs/git-remote

286 Appendix B. ITK Git Workflow

C1 C2

C3 C4

C5

C6 C8

C7

master

topic

release

origin/release

other-topic

Figure B.31: Unreachable origin/release branch.

Non-Fast-Forward When trying to publish new merge commits on an integration branch, perhaps

release, the final push may fail:

git push origin release

To ...

! [rejected] release -> release (non-fast-forward)

error: failed to push some refs to '...'

To prevent you from losing history, non-fast-forward updates were rejected

Merge the remote changes before pushing again. See the 'Note about

fast-forwards' section of 'git push --help' for details.

This means that the server’s release refers to a commit that is not reachable from the release you

are trying to push:

This is the Git equivalent to when cvs commit complains that your file is not up-to-date, but now it

applies to the whole project and not just one file. Git is telling you that it cannot update release on

the server to point at your merge commit because that would throw away someone else’s work (such

as other-topic). There are a few possible causes, all of which mean you have not yet integrated your

work with the latest from upstream:

• You forgot to run git pull before git merge so you did not have everything from upstream.

• Someone else managed to merge and push something into release since you last ran git

pull.

Some Git guides may tell you to just git pull again to merge upstream work into yours. That

approach is not compatible with the goals of this workflow. We want to preserve a clean shape of

history (see Section B.2.2 on page 282).

The solution is to throw away your previous merge and try again, but this time start from the latest

upstream work:

B.2. Workflow 287

C1 C2

C3 C4

C6 C8

C7

master

topic

origin/release

release

other-topic

Figure B.32: Start from latest upstream commit.

C1 C2

C3 C4

C6 C8 C9

C7

master

topic

release

other-topic

Figure B.33: Merge the topic branch into the local release branch.

git reset --hard origin/release

git merge topic

Now your release can reach the upstream work as well as yours. Publish it.

git push origin release

See git rerere to help avoid resolving the same conflicts on each merge attempt.

First-Parent Sequence Not Preserved One goal of this workflow is to preserve a clean shape of

history (see Section B.2.2 on page 282). This means that a --first-parent traversal of an inte-

gration branch, such as master, should see only the merge commits that integrate topics into the

branch:

https://git-scm.com/docs/git-rerere

288 Appendix B. ITK Git Workflow

C1 C2

C3 C4

C6 C8 C9

C7

master

topic

origin/release

release

other-topic

Figure B.34: Publish the release branch.

C1 C5

... C2 C4 C6 C8

C3 C7

master

Figure B.35: Traversal of the master integration branch.

B.2. Workflow 289

F G

... E D C B A M

H J U T

master

master@1

topic

Figure B.36: Server’s integration branch history shape.

F G K

... E D C B A

H J

master@1

Figure B.37: First parent traversal of master before update.

The commits on the individual topic branches are not included in the traversal. This provides a

medium-level overview of the development of the project.

We enforce the shape of history on the server’s integration branches using an update hook at push-

time. Each update must point its branch at a new commit from which a first-parent traversal

reaches the old head of the branch:

A first-parent traversal of master from before the update (master@1) sees A B C D:

A first-parent traversal of master from after the update sees M A B C D:

The above assumes correct history shape. Now, consider what happens if merge M is incorrectly

made on the topic branch:

Now a first-parent traversal of master from after the update sees M’ T U B C D:

This not only shows details of the topic branch, but skips over A altogether! Our update hooks will

F G K

... E D C B A M

H J T

master

Figure B.38: First parent traversal of master after update.

290 Appendix B. ITK Git Workflow

F G K

... E D C B A

H J U T M’

master@1

master

topic

Figure B.39: Incorrect merge of M on branch topic.

F G

... E D C B

H J U T M’ master

topic

Figure B.40: First-parent traversal of master branch.

B.2. Workflow 291

F G

... E D C B

H J

origin/master

master

Figure B.41: Checkout master.

F G

... E D C B

H J U

origin/master

master

Figure B.42: Commit on master branch.

reject the push in this case because the new master cannot see the old one in a first-parent traversal.

There are a few possible causes and solutions to the above problem, but all involve non-strict com-

pliance with the workflow instructions. A likely cause is that you did not create a local topic branch

but instead committed directly on master and then pulled from upstream before pushing:

wrong$ git checkout master

wrong$ edit files

wrong$ git add files

wrong$ git commit

wrong$ edit files

wrong$ git add files

wrong$ git commit

wrong$ git push origin master

Rejected as non-fast-forward (see Section B.2.2 on page 286).

wrong$ git pull

292 Appendix B. ITK Git Workflow

F G

... E D C B A M

H J U T

origin/master

master

Figure B.43: Additional commit on master branch.

F G

... E D C B A

H J U T M’

origin/master

master

Figure B.44: Pull from upstream.

wrong$ git push origin master

Rejected with the first parent sequence not preserved error (see Section B.2.2 on page 287).

The solution in this case is to recreate the merge on the proper branch.

First, create a nicely-named topic branch starting from the first-parent of the incorrect merge.

git branch topic 'masterˆ1'

Then reset your local master to that from upstream.

F G

... E D C B A

H J U T M’

origin/master

master

topic

Figure B.45: Create a topic branch starting from the first-parent of the incorrect merge.

B.2. Workflow 293

F G

... E D C B A

H J U T

origin/master

mastertopic

Figure B.46: Reset the local master branch to upstream master.

F G

... E D C B A M

H J U T

master

topic

Figure B.47: Merge the topic branch.

git reset --hard origin/master

Now create the correct merge commit as described in the workflow instructions above.

git merge topic

git push origin master

git branch -d topic

Topics Must Be Merged

F G

... E D C B A M

H J U T

origin/master

master

Figure B.48: Delete the local topic branch.

294 Appendix B. ITK Git Workflow

C1 C2 C3

C4 C5

C6 C7

master

other-topic

topic

Figure B.49: Conflicting topic branches.

C1 C2 C3 C8

C4 C5

C6 C7

master

other-topic

topic

Figure B.50: Topic-to-single branch resolution approach.

Conflicts

This section documents conflict resolution in a topic-based branchy workflow.

Whenever two paths of development make different changes to the same initial content conflicts

may occur when merging the branches.

Single Integration Branch Consider two conflicting topic branches, topic and other-topic, with the

latter already merged to master:

An attempt to merge topic into master will fail with conflicts. One may use the following approaches

to resolve the situation:

• Merge the topic to the branch

• Merge the branch to the topic

Topic-to-Single-Branch If one performs the merge in a local work tree it is possible to simply

resolve the conflicts and complete the merge:

Branch-to-Topic Since a developer works on a topic branch locally one may simply merge the

conflicting integration branch into the topic and resolve the conflicts:

In order to maintain a good shape of history one may then merge the topic into the integration branch

without allowing a fast-forward (merge --no-ff):

B.2. Workflow 295

C1 C2 C7

C3 C4

C5 C6 C8

master

other-topic

topic

Figure B.51: Branch-to-Topic resolution approach.

C1 C2 C7 C9

C3 C4

C5 C6 C8

master

other-topic

topic

Figure B.52: Merge disallowing fast-forward (--no-ff).

Multiple Integration Branches In a workflow using multiple integration branches one must deal

differently with conflicting topics. Consider two conflicting topic branches, topic and other-topic,

with the latter already merged to release:

An attempt to merge topic into release will fail with conflicts. One may use the following approaches

to resolve the situation:

• Merge the topic to the branch (see Section B.2.2).

• Merge one topic into the other (see Section B.2.2).

• Merge both topics into a resolution topic (see Section B.2.2).

C1 C2

C3 C4

C5 C6

... C7

master

topic

other-topic

release

Figure B.53: Conflicting topic branches.

296 Appendix B. ITK Git Workflow

C1 C2

C3 C4

C5 C6

... C7 C8

master

topic

other-topic

release

Figure B.54: Merge locally.

C1 C2 C9

C3 C4

C5 C6

... C7 C8

master

topic

other-topic

release

Figure B.55: Merge topic.

Note that one may not merge the branch into the topic as in the single-integration-branch case be-

cause release may never be merged into a topic.

Topic-to-Branch If one performs the merge in a local work tree it is possible to simply resolve the

conflicts and complete the merge:

However, the topics eventually must be merged to master. Assume topic is merged first:

An attempt to merge other-topic into master will fail with the same conflicts!

The only branch that contains a resolution to these conflicts is release, but that may not be merged

to master. Therefore one must resolve the conflicts a second time.

If the second resolution is not byte-for-byte identical to the first then the new master will not merge

cleanly into release:

Then one must resolve conflicts a third time!

This approach works with manual merging but requires care.

B.2. Workflow 297

C1 C2 C9 ?

C3 C4

C5 C6

... C7 C8

master

topic

other-topic

release

Figure B.56: Merge conflict when attempting to merge other-topic into master.

C1 C2 C9 C10

C3 C4

C5 C6

... C7 C8 ?

master

topic

other-topic

release

Figure B.57: master not merging cleanly into release if conflicts have not been resolved.

298 Appendix B. ITK Git Workflow

C1 C2

C3 C4 C5

C6 C7

... C8

master

topic

other-topic

release

Figure B.58: Manually merge other-topic into topic.

C1 C2

C3 C4 C5

C6 C7

... C8 C9

master

topic

other-topic

release

Figure B.59: Merge into release.

Topic-to-Topic The design (see Section B.2.2 on page 270) of our topic-based workflow guarantees

that work is always committed on topic branches and never directly on an integration branch. If

conflicts occur while merging a topic into an integration branch it means that the topic conflicts with

another topic that has already been merged.

One may manually merge the conflicting other-topic into one’s own topic and resolve the conflicts:

Then topic will merge cleanly into release:

Later, topic may be merged cleanly into master to bring in both topics (or just topic if other-topic

has already been merged):

Finally, master may be merged cleanly into release:

Note that this produces an artificial topic dependency (see Section B.2.2 on page 279) introduced by

the conflict resolution commit. See the B.2.2 approach to avoid this problem.

Resolution Topic The B.2.2 approach introduces an artificial topic dependency because it asym-

metrically favors one topic over another. Instead one may use a third topic to resolve the conflicts.

One may start a new resolve/topic/other-topic branch from topic, merge other-topic into it, and

resolve the conflicts:

B.2. Workflow 299

C1 C2

C3 C4 C5

C10

C6 C7

... C8 C9

master

topic

other-topic

release

Figure B.60: Merge into master.

C1 C2

C3 C4 C5

C10

C6 C7

... C8 C9 C11

master

topic

other-topic

release

Figure B.61: Merge master into release.

C1 C2

C3 C4

C7

C5 C6

... C8

master

topic

resolve topic/other-topic

other-topic

release

Figure B.62: Start conflict resolution branch.

300 Appendix B. ITK Git Workflow

C1 C2

C3 C4

C7

C5 C6

... C8 C9

master

topic1

resolve topic/other-topic

other-topic

release

Figure B.63: Merge into release.

C1 C2

C3 C4

C7

C10

C5 C6

... C8 C9

master

topic

resolve topic/other-topic

other-topic

release

Figure B.64: Merge topic branch.

The resolution topic will merge cleanly into release to bring in the changes from topic through the

conflict resolution commit:

Since topic and other-topic are still independent either may be merged to master first. Assume topic

is merged first:

As in the B.2.2 approach, an attempt to merge other-topic directly into master will fail with the

original conflicts but now we have a topic containing the resolution commit independent of next.

One may merge the resolution topic to master to bring in the changes from other-topic and the

conflict resolution:

Finally, master may be merged cleanly into release:

B.2. Workflow 301

C1 C2

C3 C4

C7

C10 C11

C5 C6

... C8 C9

master

topic

resolve topic/other-topic

other-topic

release

Figure B.65: Merge conflict resolution branch into master.

C1 C2

C3 C4

C7

C10 C11

C5 C6

... C8 C9 C12

master

topic

resolve topic/other-topic

other-topic

release

Figure B.66: Merge into release.

302 Appendix B. ITK Git Workflow

B.2.3 Publish

Push Access

Authorized developers may publish work directly to a repository using Git’s SSH protocol.

Note that we may not grant all contributors push access to any given repository. The distributed

nature of Git allows contributors to retain authorship credit even if they do not publish changes

directly.

Authentication All publishers share the git@public.kitware.com account but each uses a unique

SSH key for authentication. If you do not have a public/private SSH key pair, generate one:

ssh-keygen -C 'you@yourdomain.com'

Generating public/private rsa key pair.

Enter file in which to save the key (\$HOME/.ssh/id_rsa):

Enter passphrase (empty for no passphrase): (use-a-passphrase!!)

Enter same passphrase again: (use-same-passphrase!!)

Your identification has been saved in \$HOME/.ssh/id_rsa.

Your public key has been saved in \$HOME/.ssh/id_rsa.pub.

To request access, fill out the Kitware Password form. Include your SSH public key, id rsa.pub,

and a reference to someone our administrators may contact to verify your privileges.

SSH on Windows If you are familiar with generating an SSH key on Linux or macOS, you can

follow the same procedure on Windows in a Git Bash prompt. There is an ssh-keygen program

installed with Git for Windows to help you set up an SSH identity on a Windows machine. By

default it puts the .ssh directory in the HOME directory, which is typically C:

Users

Username.

Alternatively, you can also set up a “normal” Windows command prompt shell such that it will work

with Git for Windows (see Section B.1.1) on page 267, without ever invoking the Git Bash prompt

if you like. If you install Git for Windows and accept all its default options, “git” will not be in

the PATH. However, if you add C:

Program Files (x86)

Git

cmd to your PATH, then only the two commands git and gitk are available to use via *.cmd script

wrappers installed by Git for Windows. Or, if you add C:

Program Files (x86)

Git

bin to your PATH, then all of the command line tools that git installs are available.

public.kitware.com
https://www.kitware.com/Admin/SendPassword.cgi

B.2. Workflow 303

The full PuTTY2 suite of tools includes an application called PuTTYgen. If you already have a

private key created with PuTTYgen, you may export it to an OpenSSH identity file. Open the key

using PuTTYgen and choose Conversions ¿ Export OpenSSH key from the menu bar. That will allow

you to save an id rsa file for use in the .ssh directory. You can also copy and paste the public

key portion of the key from the PuTTYgen text field to save into an id rsa.pub file if you like. Or

email it to whoever needs the public side of your key pair.

If you routinely set up your own command prompt environment on Windows, using Git for

Windows from that environment is a cinch: just add the full path to either Git

cmd or Git

bin to your PATH. (Or, write your own git.cmd wrapper that is in your PATH that simply calls the

git.cmd installed with msysGit.) And make sure you have a HOME environment variable that points

to the place where the .ssh directory is.

AuthenticationTest When your SSH public key has been installed for git@public.kitware.com,

you may test your SSH key setup by running

ssh git@public.kitware.com info

If your key is correctly configured you should see a message reporting your email address followed

by a list of access permissions. If you get something like Permission denied then add -v options to

your ssh command line to diagnose the problem:

ssh -v git@public.kitware.com info

Do not attempt to git push until the ssh-only test succeeds.

Pushing Git automatically configures a new clone to refer to its origin through a remote called

origin. Initially one may fetch or pull changes from origin, but may not push changes to it.

In order to publish new commits in a repository, developers must configure a push URL for the

origin. Use git config to specify an SSH-protocol URL:

git config remote.origin.pushurl git@public.kitware.com:repo.git

The actual URL will vary from project to project. (Note that pushurl requires Git ¿= 1.6.4. Use

just url for Git ¡ 1.6.4.)

Failing to do so with result in the error message fatal: The remote end hung up unexpectedly.

2https://www.chiark.greenend.org.uk/˜sgtatham/putty/

public.kitware.com
https://www.chiark.greenend.org.uk/~sgtatham/putty/

304 Appendix B. ITK Git Workflow

Once your push URL is configured and your key is installed for git@public.kitware.com then

you can try pushing changes. Note that many repositories use an update hook to check commit as

documented in Section B.2.4 on page 306.

Patches

Git allows anyone to be a first-class developer on any published project. One can clone a pub-

lic repository, commit locally, and publish these commits for inclusion upstream. One method of

sending commits upstream is to supply them as patches.

See these links for more help:

• Pro Git Book, Chapter 5: Distributed Git3

• Everyday Git: Integrator4

Creating Patches Construct your commits on a local topic branch, typically started from the up-

stream master:

git checkout -b my-cool-feature origin/master

edit files

git add -- files

git commit

Begin each commit message with a short one-line summary of its change, suitable for use as an

email subject line. Then leave a blank line and describe the change in detail as one might write in

an email body.

When the patch(es) are ready for publication to upstream developers, use the git format-patch

command to construct the patch files:

git format-patch -M origin/master

Git will write out one patch file per commit. Each patch file is formatted like a raw email message

and includes enough information to reconstruct the commit message and author.

Sending Patches The patch files created in the preceding step will be named with the form

NNNN-Subject-line-of-commit-message.patch

3https://git-scm.com/book/en/v2
4https://git-scm.com/docs/giteveryday

https://git-scm.com/book/en/v2
https://git-scm.com/docs/giteveryday

B.2. Workflow 305

where NNNN is an index for the patch within the series. These files may be attached in bug trackers

or attached to email messages.

A patch series may also be sent directly as email. Use git config --global to set sendemail.*

configuration entries that tell Git how to send email from your computer (one-time setup per user

per machine). Then use the git send-email command:

git send-email *.patch --to='Some One <someone@somewhere.com>' --cc='Someone Else <someoneelse@somewhereelse.com>'

Applying Patches One may receive patches as attachments in a bug tracker or as attachments to

email messages. Save these files to your local disk. One may also receive patches inlined in email

messages. In this case, save the whole message to your local disk (typically as .eml files). (If your

local mail client uses maildir format mailboxes each message is already its own file.)

Create a local topic branch on which to replay the patch series:

git checkout -b cool-feature origin/master

Now use git am to apply the patch series as local commits:

git am --whitespace=fix /path/to/*.patch

Review the changes using

git log -p origin/master..

or the method of your choice. Note that the author of each commit is the contributor rather than

yourself. Build, test, and publish the changes normally.

If the git am command fails with a message like

Patch format detection failed.

this means that the patch was not generated with git format-patch and transmitted correctly.

Either ask the contributor to try again using the above patch creation instructions, or apply each

patch separately using git apply:

git apply --whitespace=fix /path/to/0001-First-change.patch

git commit --author='Contributor Name <contributor@theirdomain.com>'

306 Appendix B. ITK Git Workflow

B.2.4 Hooks

Setup

The git commit command creates local commits. A separate git push step is needed to publish

commits to a repository. The server enforces some rules (see Section B.2.4 on page 309) on the

commits it accepts and will reject non-conforming commits. In order to push rejected commits, one

must edit history locally to repair them before publishing.

Since it is possible to create many commits locally and push them all at once, we provide local Git

hooks to help developers keep their individual commits clean. Git provides no way to enable such

hooks by default, giving developers maximum control over their local repositories. We recommend

enabling our hooks manually in all clones.

Git looks for hooks in the .git/hooks directory within the work tree of a local repository. Create a

new local repository in this directory to manage the hooks:

cd .git/hooks

git init

cd ../..

Choose one of the following methods to install or update the hooks. The hooks will then run in the

outer repository to enforce some rules on commits.

Local Pull Many repositories provide a hooks branch. It will have already been fetched into your

local clone. Pull it from there:

git fetch origin

cd .git/hooks

git pull .. remotes/origin/hooks

cd ../..

Direct Pull If you did not clone from a repository you may not have a hooks branch. Pull it from :

cd .git/hooks

git pull git://public.kitware.com/<repo>.git hooks

cd ../..

where <repo>.git is the name of your project repository.

public.kitware.com
public.kitware.com
public.kitware.com
public.kitware.com
public.kitware.com

B.2. Workflow 307

Local

The above sequences maintain the following local hooks in your repository. See Git help on

https://git-scm.com/docs/githooks for more details.

pre-commit This runs during git commit. It checks identity and content of changes:

• Git user.name and user.email are set to something reasonable.

• Git’s standard whitespace checks (see help on git diff --check).

• The staged changes do not introduce any leading tabs in source files (we i.ndent with spaces)

• File modes look reasonable (no executable .cxx files, scripts with shebang lines are exe-

cutable).

• File size is not too large (do not commit big data files; prints limit and instructions on rejec-

tion).

• Submodule updates are staged alone or explicitly allowed (prints instructions on rejection).

One of Git’s standard whitespace checks is to reject trailing whitespace on lines that were added or

modified. Many people consider extra space characters at the end of a line to be an unprofessional

style (including Git’s own developers), but some don ot care. Text editors typically have a mode to

highlight trailing whitespace:

• Emacs

(custom-set-variables '(show-trailing-whitespace t))

• Vim

:highlight ExtraWhitespace ctermbg=red guibg=red

:match ExtraWhitespace /\s\+\$/

• Microsoft Visual Studio To toggle viewing of white space characters, with a source file

document active, choose the menu item:

Edit > Advanced > View White Space

(2-stroke keyboard shortcut: Ctrl+R, Ctrl+W)

• Notepad++ (v7.5.1) To eliminate trailing white space, choose the menu item:

308 Appendix B. ITK Git Workflow

Edit > Blank Operations > Trim Trailing Space

To toggle viewing of white space characters, choose from the menu items:

View > Show Symbol > (multiple items, choose one...)

If you really don’t want to keep your code clean of trailing whitespace, you can disable this part of

Git’s checks locally:

git config core.whitespace "-blank-at-eol"

commit-msg This runs during git commit. It checks the commit message format:

• The first line must be between 8 and 78 characters long. If you were writing an email to

describe the change, this would be the Subject line. Use the pre-defined prefixes (e.g. ENH: or

BUG:); they are valuable to allow the user get a fast understanding of the change.

• The first line must not have leading or trailing whitespace.

• The second line must be blank, if present.

• The third line and below may be free-form. Usually, a summary of the commit changes is

written. Try to keep paragraph text formatted in 72 columns (this is not enforced).

GUI and text-based tools that help view history typically use the first line (Subject line) from the

commit message to give a one-line summary of each commit. This allows a medium-level view of

history, but works well only if developers write good Subject lines for their commits.

Examples of improper commit messages:

Fixed

This is too short and not informative at all.

I did a really complicated change and I am trying to describe the entire thing

with a big message entered on the command line.

Some good tips on why good commit messages matter can be found in the post How to Write a Git

Commit Message5.

5https://chris.beams.io/posts/git-commit/

https://chris.beams.io/posts/git-commit/

B.2. Workflow 309

Many CVS users develop the habit of using the -m commit option to specify the whole message on

the command line. This is probably because in CVS it is hard to abort a commit if it already brought

up the message editor. In Git this is trivial. Just leave the message blank and the whole commit

will be aborted. Furthermore, since commits are not published automatically it is easy to allow the

commit to complete and then fix it with git commit --amend.

Server

Many public.kitware.com repositories have server-side hooks.

Update The update hook runs when someone tries to update a ref on the server by pushing. The

hook checks all commits included in the push:

• Commit author and committer must have valid email address domains (DNS lookup suc-

ceeds).

• Commit message does not start with WIP:. (Use the prefix locally for work-in-progress that

must be rewritten before publishing.)

• Changes to paths updated by robots (such as Utilities/kwsys) are not allowed.

• No “large” blobs may be pushed. The limit is set on a per-repository basis and is typically 1

MB or so.

• No CRLF newlines may be added in the repository (see core.autocrlf in git help

config).

• Submodules (if any) must be pushed before the references to them are pushed.

B.2.5 TipsAndTricks

Editor support

Emacs users: if you put this line in your .emacs file:

(setq auto-mode-alist (cons '("COMMIT_EDITMSG\$" . auto-fill-mode) auto-mode-alist))

Git will automatically wrap your commit messages, which is what good Git etiquette requires.

public.kitware.com

310 Appendix B. ITK Git Workflow

Shell Customization

Bash Completion Bash users: Git comes with a set of completion options that are very useful. The

location of the file varies depending on your system:

Mac with git installed by Mac Ports

source /opt/local/share/doc/git-core/contrib/completion/git-completion.bash

Linux

source /usr/share/bash-completion/git

Linux debian/gentoo

source /etc/bash_completion.d/git

Bash Prompt If you are using the bash shell, you can customize the prompt to show which Git

branch is active. Here are the commands for your /.bashrc file:

Use the appropriate path from the above section

source /etc/bash_completion.d/git

export GIT_PS1_SHOWDIRTYSTATE=1

export GIT_PS1_SHOWUNTRACKEDFILES=1

export GIT_PS1_SHOWUPSTREAM="verbose"

export PS1="[\[\e[01;34m\]\W\[\e[31m\]\$(__git_ps1 " (%s)")\[\e[00m\]]\[\e[00m\]

For more information on the options, see the comments in the top of the bash completion script.

Renaming Git does not explicitly track renames. The command

git mv old new

is equivalent to

mv old new

git add new

git rm old

Neither approach records the rename outright. However, Git’s philosophy is “dumb add, smart

view”. It uses heuristics to detect renames when viewing history after-the-fact. It even works when

the content of a renamed file changes slightly.

In order to help Git efficiently detect the rename, it is important to remove the old file and add the

new one in one commit, perhaps by using git mv or the above 3-step procedure. If the new file

were added in one commit and the old file removed in the next, Git would report this as a copy

followed by a removal. Its copy-detection heuristics are more computationally intensive and must

be explicitly enabled with the -C option to relevant operations (such as git blame).

APPENDIX

THREE

CODING STYLE GUIDE

This chapter describes the ITK Coding Style. Developers must follow these conventions when

submitting contributions to the toolkit.

The following coding-style guidelines have been adopted by the ITK community. To a large extent

these guidelines are a result of the fundamental architectural and implementation decisions made

early in the project. For example, the decision was made to implement ITK with a C++ core using

principles of generic programming, so the rules are oriented towards this style of implementation.

All guidelines are strictly enforced, including whitespace indentation levels and style. Careful con-

sideration and considerable discussion occurred in an attempt to find coding styles consistent with

accepted practices in the active community. The primary goal is to adhere to a common style to

assist community members of the future to learn, use, maintain, and extend ITK. Given the fact that

code is read many more times than it is written, a strong emphasis is placed on generating a common

style that improves readability.

Please do your best to be an outstanding member of the ITK community. The rules described here

have been developed with the community as a whole in mind. Any contributor’s code is subject to

style review, and it will likely not be accepted until it is consistent with these guidelines.

C.1 Purpose

The following document is a description of the accepted coding style for the NLM Insight Segmen-

tation and Registration Toolkit (ITK). Developers who wish to contribute code to ITK should read

and adhere to the standards described here.

C.2 Overview

This chapter is organized into the following sections:

312 Appendix C. Coding Style Guide

• System Overview & Philosophy: coding methodologies and motivation for the resulting

style.

• Copyright: the copyright header to be included in all files and other copyright issues.

• Citations: guidelines to be followed when citing others’ work in the documentation.

• Naming Conventions: patterns used to name classes, variables, template parameters, and

instance variables.

• Namespaces: the use of namespaces.

• Aliasing Template Parameter Typenames: guidelines on aliasing template parameter type-

names in a class.

• The auto Keyword: when and when not to use the auto keyword.

• Pipelines: useful tips when writing pipelines in ITK.

• Initialization and Assignment: accepted standards for variable initialization and assignment.

• Accessing Members: patterns to be used when accessing class members.

• Code Layout and Indentation: accepted standards for arranging code including indentation

style.

• Empty Arguments in Methods: guidelines for specifying empty argument lists.

• Ternary Operator: accepted standards for using the ternary operator.

• Using Standard Macros (itkMacro.h): use of standard macros in header files.

• Exception Handling: how to add exception handling to the system.

• Messages: accepted guidelines to output messages to the error and standard outputs.

• Concept Checking: specifics on the use of concept checking in ITK.

• Printing Variables: guidelines to print member variable values.

• Checking for Null: accepted standards for checking null values.

• Writing Tests: additional rules specific to writing tests in ITK.

• Doxygen Documentation System: basic Doxygen formatting instructions.

• CMake Style: guidelines to write CMake files.

• Documentation Style: a brief section describing the documentation philosophy adopted by

the Insight Software Consortium.

C.3. System Overview & Philosophy 313

This style guide is an evolving chapter.

Please discuss with the ITK community members if you wish to add, modify, or delete the rules

described in these guidelines.

See https://www.itk.org/ITK/help/mailing.html for more information about joining the ITK commu-

nity members discussion. This forum is one of the best venues in which to propose changes to these

style guidelines.

C.3 System Overview & Philosophy

The following implementation strategies have been adopted by the ITK community. These directly

and indirectly affect the resulting code style. Understanding these aspects motivates the reasons for

many of the style guidelines described in this chapter.

The principle is that code is read many more times than it is written, and readability is far more

important that writability.

• Readability: the code is intended to be read by humans. Most of the time of debugging code

is spent reading code.

• Consistency: systematically following these guidelines will make the code more robust, and

easier to read, which will at term save time to community members.

• Conciseness: class, method and variable names should be concise, but self-contained. Ex-

traordinarily long names and redundancies should be avoided.

• Language: proper English must be used when writing the code and the documentation.

• Documentation: document the code. Approximately one third of the code should be docu-

mentation.

Note as well that ITK follows American English spelling and norms.

C.3.1 Clang Style

ITK has adopted a .clang-format coding style configuration file so that a number of coding style

rules are applied to all C++ code with the clang-format binary. A consistent coding style is critical

for readability and collaborative development.

ITK has a pre-commit hook to automatically reformat any changed C++ ITK code to adhere to the

style defined in the .clang-format.

https://www.itk.org/ITK/help/mailing.html

314 Appendix C. Coding Style Guide

C.3.2 Kitware Style

Kitware Style (KWStyle) pre-commit hooks enforce a number of policies on any given patch set

submitted to ITK.

C.3.3 Implementation Language

The core implementation language is C++. C++ was chosen for its flexibility, performance, and

familiarity to consortium members. ITK uses the full spectrum of C++ features including const and

volatile correctness, namespaces, partial template specialization, operator overloading, traits, and

iterators.

Currently, C++11 and C++14 features are used in the code whenever they are available.

A growing number of ITK classes offer a Python wrapping. Note that these are wrappers on the

C++ counterparts. ITK’s Python wrappers can be easily installed. See Section 9.5 on page 216

for further details. Users requiring a Python interface for ITK classes may refer to SimpleITK

(https://www.simpleitk.org/).

Additionally, SimpleITK offers interpreted language bindings for Java, C#, R, Tcl, and Ruby.

C.3.4 Constants

ITK does not define constants with #define in header files, hence do not declare constants using

#define CONST_VALUE_NAME 3

Use instead

constexpr unsigned int ConstValueName = 3;

or

const typename OperatorType::ConstIterator opEnd = op.End();

Add the const qualifier to arguments which set the pipeline inputs and state functions, e.g.

/** Set the marker image */

void

SetMaskImage(const MaskImageType * input)

{

// Process object is not const-correct so the const casting is required.

this->SetNthInput(1, const_cast<TMaskImage *>(input));

}

https://kitware.github.io/KWStyle/
https://www.simpleitk.org/

C.3. System Overview & Philosophy 315

C.3.5 Generic Programming and the STL

Compile-time binding using methods of generic programming and template instantiation is the pre-

ferred implementation style. This approach has demonstrated its ability to create efficient, flexible

code. Use of the STL (Standard Template Library) is encouraged. STL is typically used by a class,

rather than as serving as a base class for derivation of ITK classes. Other STL influences are iterators

and traits. ITK defines a large set of iterators; however, the ITK iterator style differs in many cases

from STL because STL iterators follow a linear traversal model; ITK iterators are often designed for

2D, 3D, and even n-D traversal (see Section 6 on page 141 for further details on iterators).

Traits are used heavily by ITK. ITK naming conventions supersede STL naming conventions; this

difference is useful in that it indicates to the community member something of a boundary between

ITK and STL.

C.3.6 Portability

ITK is designed to build and is systematically tested on a set of target operating system/compiler

combinations and results are reported continuously to the dashboards using CDash. These combi-

nations include Linux, macOS, and Windows operating systems, and various versions of compilers

for each. This ensures that the code complies with the particular requirements on each of these

environments. See Section 10.2 on page 236 for further details.

When sufficient demand or need is detected, ITK maintainers add machines to the dashboard. Note

that since the dashboard is open to submissions from remote locations, other user configurations can

be tested dynamically. For a detailed and updated view, visit the ITK dashboard.

Since some of these compilers do not support all C++ features, the ITK community has had to back

off some important C++ features (such as partial specialization) because of limitations in compilers

(e.g., MSVC 6.0).

ITK’s open source philosophy, as well as its design, and heavy use of templates has made it possible

to improve the support of many of these compilers over time. Indeed, ITK has been incorporated to

the Microsoft Visual Studio and Intel C++ Compiler (ICC) build validation suites as of April 2017.

This means that ITK is being used by these teams in their benchmarks and validation cycles before

a version of their compiler is released to the market.

C.3.7 Multi-Layer Architecture

ITK is designed with a multi-layer architecture in mind. That is, three layers: a templated layer,

a run-time layer, and an application layer. The templated (or generic) layer is written in C++ and

requires significant programming skills and domain knowledge. The run-time layer is generated

automatically using the Swig-based wrapping system to produce language bindings to Python. The

interpreted layer is easier to use than the templated layer, and can be used for prototyping and

https://www.cdash.org/
https://open.cdash.org/index.php?project=Insight

316 Appendix C. Coding Style Guide

smaller-sized application development. Finally, the application layer is not directly addressed by

ITK other than providing simple examples of applications.

C.3.8 CMake Build Environment

The ITK build environment is CMake. CMake is an open-source, advanced cross-platform build

system that enables community members to write simple makefiles (named CMakeLists.txt) that

are processed to generated native build tools for a particular operating system/compiler combination.

See the CMake web pages at https://www.cmake.org for more information.

See Section 2.2 on page 11 for specifics about the use of CMake in ITK.

Section C.27 on page 384 provides a reference to the recommended style of makefiles in ITK.

C.3.9 Doxygen Documentation System

The Doxygen open-source system is used to generate on-line documentation. Doxygen requires the

embedding of simple comments in the code which is in turn extracted and formatted into documen-

tation.

Note that ITK prefers the backslash (\) style versus the at-sign (@) style to write the documentation

commands (e.g. \class).

For more information about Doxygen, please visit https://www.doxygen.nl/index.html.

C.3.10 vnl Math Library

ITK has adopted the vnl – visual numerics library. Vnl is a portion of the vxl image understanding

environment. See http://vxl.sourceforge.net/ for more information about vxl and vnl.

C.3.11 Reference Counting

ITK has adopted reference counting via so-called itk::SmartPointer to manage object refer-

ences. While alternative approaches such as automatic garbage collection were considered, their

overhead due to memory requirements, performance, and lack of control as to when to delete mem-

ory, precluded these methods. SmartPointers manage the reference to objects, automatically in-

crementing and deleting an instance’s reference count, deleting the object when the count goes to

zero.

An important note about SmarPointers refers to their destruction: the Delete() method on an ITK
smart pointer must never be called directly; if a SmartPointer object itkSmartPtr needs to be
deleted:

https://www.cmake.org
https://www.doxygen.nl/index.html
http://vxl.sourceforge.net/
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

C.4. Copyright 317

itkSmartPtr = nullptr;

must be done instead. The ITK smart pointer will determine whether the object should be destroyed.

See Section 3.2.4 on page 28 for further details.

C.4 Copyright

ITK has adopted a standard copyright. This copyright should be placed at the head of every source

code file. The current copyright header and license reads as follows:

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

See Chapter A.1 for further details on the ITK license.

C.5 Citations

Give credit to others’ work. If when writing some piece of code (whether it is a class, group of

classes or algorithm in a method) the theory, framework or implementation are based on some sci-

entific work, cite the work. In general, a citation to the peer-reviewed scientific publication, includ-

ing its Digital Object Identifier (DOI), is preferred. This helps avoiding issues with web links. In

absence of such a reference, it is recommended that the link to the URL is written as it is (i.e. even

if the maximum line width is exceeded). Do not use URL shortening services.

When documenting a class header, if citations are required, use the Doxygen \par References

command to list the references in a separate and clearly visible paragraph.

For instance,

318 Appendix C. Coding Style Guide

namespace itk

{

/** \class DiffusionTensor3DReconstructionImageFilter

* \brief This class takes as input one or more reference image (acquired in the

* absence of diffusion sensitizing gradients) and 'n' diffusion

* weighted images and their gradient directions and computes an image of

* tensors. (with DiffusionTensor3D as the pixel type). Once that is done, you

* can apply filters on this tensor image to compute FA, ADC, RGB weighted

* maps, etc.

*

* ...

*

* \par References

* \li[1]

*

* Carl-Fredrik Westin, Stephan E. Maier, Hatsuho Mamata, Arya Nabavi, Ferenc

* Andras Jolesz, and Ron Kikinis. "Processing and visualization for Diffusion

* tensor MRI. Medical Image Analysis, 6(2):93-108, 2002

* \li[2]

*

* Carl-Fredrik Westin, and Stephan E. Maier. A Dual Tensor Basis Solution to the

* Stejskal-Tanner Equations for DT-MRI. Proceedings of the 10th International

* Society of Magnetic Resonance In Medicine (ISMRM) Scientific Meeting \&

* Exhibition, Honolulu (HW, USA), 2002.

*

* ...

*

* \sa DiffusionTensor3D SymmetricSecondRankTensor

* \ingroup MultiThreaded TensorObjects

* \ingroup ITKDiffusionTensorImage

*/

template <typename TReferenceImagePixelType,

typename TGradientImagePixelType = TReferenceImagePixelType,

typename TTensorPixelType = double,

typename TMaskImageType = Image<unsigned char, 3>>

class ITK_TEMPLATE_EXPORT DiffusionTensor3DReconstructionImageFilter

: public ImageToImageFilter<Image<TReferenceImagePixelType, 3>,

Image<DiffusionTensor3D<TTensorPixelType>, 3>>

{

...

};

} // end namespace itk

The recommended bibliography style for citations is the LATEXplain style.

Or in a method body,

template <unsigned int VDimension>

void

Solver<VDimension>::ApplyBC(int dimension, unsigned int matrix)

C.6. Naming Conventions 319

{

...

// Store the appropriate value in bc correction vector (-K12*u2)

//

// See

// http://titan.colorado.edu/courses.d/IFEM.d/IFEM.Ch04.d/IFEM.Ch04.pdf

// chapter 4.1.3 (Matrix Forms of DBC Application Methods) for more

// info.

m_LinearSystem->AddVectorValue(*cc, -d * fixedvalue, 1);

}

C.6 Naming Conventions

In general, names are constructed by using case change to indicate separate words, as in TimeStamp.

Other general rules that must be followed in naming ITK constructs are:

• Underscores are not used (with the sole exception of enums and member variables).

• Variable names are chosen carefully with the intention to convey the meaning behind the code.

• Names are generally spelled out; use of abbreviations is discouraged. While this does result

in long names, it self-documents the code (e.g. use Dimension, point, size, or vector,

instead of D, pt, sz, or vec, respectively). Abbreviations are allowable when in common use,

and should be in uppercase as in RGB, or ID for “identifier”.)

The above general conventions must be followed in all cases. Depending on whether the name is a

• class

• file

• variable

• other name

variations on this theme result as explained in the following subsections.

C.6.1 ITK

The acronym for the NLM Insight Segmentation and Registration Toolkit must always be written in

capitals, i.e. ITK, when referring to it, e.g. in class documentation.

320 Appendix C. Coding Style Guide

C.6.2 Naming Namespaces

Namespaces must be written in lowercase, e.g.

namespace itk

{

...

} // end namespace itk

C.6.3 Naming Classes

Classes are:

• Named beginning with a capital letter.

• Placed in the appropriate namespace, typically itk:: (see Section C.7 on page 335).

• Named according to the following general rule:

class name = <algorithm><input><concept>

In this formula, the name of the algorithm or process (possibly with an associated adjective

or adverb) comes first, followed by an input type (if the class is a filter), and completed by a

concept name.

A concept is an informal classification describing what a class does. There are many concepts in

ITK, the more common or important being:

• Accessor: Access and convert between types.

• Adaptor: Provide access to a portion of a complex pixel type.

• Boundary: The boundary of a cell.

• Calculator: Compute information.

• Classifier: Classify a pixel.

• Container: A container of objects such as points or cells.

• Estimator: Estimate a value or condition.

• Factory: Object factories are used to create instances.

C.6. Naming Conventions 321

• Filter: A class that participates in the data processing pipeline. Filters typically take one or

more inputs and produce one or more outputs.

• Function: Evaluate a function at a given position.

• Identifier: A unique ID for accessing points, cells, or other entities.

• Interface: Classes that specify an abstract interface.

• Interpolator: Interpolate data values, for example at non-pixel values.

• Iterator: Traverse data in various ways (e.g., forward, backward, within a region, etc.)

• Mapper: Transform data from one form into another.

• Metric: Compute similarity between two objects.

• Operator: A class that applies a user-specified function to a region.

• Optimizer: A class that performs numerical optimization.

• Pointer: A itk::SmartPointer to an instance of a class. Almost all instances in ITK are

referred to via SmartPointers.

• Reader: A class that reads a single data object (e.g., image or mesh).

• Reference: A type that refers to another object.

• Region: A subset of a data object, such as an image region.

• Source: A filter that initiates the data processing pipeline such as a reader or a procedural data

generator.

• Threader: A class that manages multi-threading.

• Traits: A collection of template parameters used to control the instantiation of other classes.

• Transform: Various types of transformations including affine, procedural, and so on.

• Writer: A filter that terminates the data processing pipeline by writing data to disk or to a

communications port.

The naming of classes is an art form; please review existing names to catch the spirit of the naming

convention.

Conventions adopted in ITK for naming classes include:

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

322 Appendix C. Coding Style Guide

• The “To” convention (such as in itk::ImageToImageFilter) is generally used for base

classes, and when a filter converts from one data type to another. Derived classes do not

continue the “To” convention. Classes like itk::HistogramToTextureFeaturesFilter,

or itk::ImageToHistogram do not produce an image as outputs, but change the data type

or produce a set of features. The expectation of an ITK filter name is that it maintains the

same type (even when changing the dimensionality as when changing from an itk::Image

to a itk::VectorImage) unless it has the “To” naming conventions.

• Adding the Base appendix to a base class name is generally discouraged.

Example names include:

• ShrinkImageFilter

• TriangleCell

• ScalarImageRegionIterator

• NeighborhoodIterator

• MapContainer

• BackwardDifferenceOperator

C.6.4 Naming Files

Files should have the same name as the class, with an “itk” prepended.

Header files are named .h, while implementation files are named either .cxx or .hxx, depending

on whether they are implementations of templated classes.

For example, the class itk::Image

• is declared in the file itkImage.h and

• is defined in the file itkImage.hxx (because itk::Image is templated).

The class itk::Object

• is declared in the file itkObject.h and

• is defined in the file itkObject.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1HistogramToTextureFeaturesFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToHistogram.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorImage.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Object.html

C.6. Naming Conventions 323

Naming Tests

Following the TestDriver philosophy, see Section 9.4 on page 213, test files must be named with
the same name used to name the main method contained in the test file (.cxx). This name should
generally be indicative of the class tested, e.g.

int

itkTobogganImageFilterTest(int argc, char * argv[])

for a test that checks the itk::TobogganImageFilter class, and contained in the test file named

itkTobogganImageFilterTest.cxx.

Note that all test files should start with the lowercase itk prefix. Hence, the main method name

in a test is the sole exception to the method naming convention of starting all method names with

capitals (see C.6.6).

A test’s input argument number should always be named argc, and the input arguments argv for

the sake of consistency.

If due to some constraint (e.g. nature of input images, number of input images, dimensionality) a
class has multiple test files with minor changes in its content, the test files should be named following
the convention

test filename = <filename><variation>

In this formula, the filename comes first, and is completed by the variation tested, conveying the
meaning behind the test, e.g.

itkSimpleImageRegistrationTest.cxx

itkSimpleImageRegistrationTestWithMaskAndSampling.cxx

When the same test file is used by multiple tests in the correspondingCMakeLists.txt, for example,
with different parameters, these different tests should be named following the convention

test name = <filename><variation>

In this formula, the filename comes first, and is completed by the variation tested, conveying the
meaning behind the test, e.g.

itk_add_test(NAME itkHConcaveImageFilterTestFullyConnectedOff

COMMAND ITKMathematicalMorphologyTestDriver

--compare-MD5

${ITK_TEST_OUTPUT_DIR}/itkHConcaveImageFilterTestFullyConnectedOff.png

bd1b5ab47f54cd97b5c6b454bee130e2

itkHConcaveImageFilterTest DATA{${ITK_DATA_ROOT}/Input/Input-RA-Short.nrrd}

${ITK_TEST_OUTPUT_DIR}/itkHConcaveImageFilterTestFullyConnectedOff.png 2000

0)

https://www.itk.org/Doxygen/html/classitk_1_1TobogganImageFilter.html

324 Appendix C. Coding Style Guide

itk_add_test(NAME itkHConcaveImageFilterTestFullyConnectedOn

COMMAND ITKMathematicalMorphologyTestDriver

--compare-MD5

${ITK_TEST_OUTPUT_DIR}/itkHConcaveImageFilterTestFullyConnectedOn.png

c7116406ded975955965226f6a69e28d

itkHConcaveImageFilterTest DATA{${ITK_DATA_ROOT}/Input/Input-RA-Short.nrrd}

${ITK_TEST_OUTPUT_DIR}/itkHConcaveImageFilterTestFullyConnectedOn.png 2000 1)

If the test checks features that span multiple classes or other general features, the filename should
adhere to the general convention of conveying the meaning behind the code, e.g.

int

itkSingleLevelSetWhitakerImage2DWithCurvatureTest(int argc, char * argv[])

means that the itk::WhitakerSparseLevelSetImage class is tested on two dimensions, using

the itk::LevelSetEquationCurvatureTerm class to represent the curvature term in the level-set

evolution PDE.

However, in these last cases, readability of the test name is important, and too long test names are

discouraged.

See Section 9.4 on page 213 for further details about the ITK testing framework.

C.6.5 Examples

C.6.6 Naming Methods and Functions

Global functions and class methods, either static or class members, are named beginning with

a capital letter. The biggest challenge when naming methods and functions is to be consis-

tent with existing names. For example, given the choice between ComputeBoundingBox() and

CalculateBoundingBox(), the choice is ComputeBoundingBox() because “Compute” is used

elsewhere in the system in similar settings (i.e. the concepts described in Section C.6.3 should

be used whenever possible).

Note that in the above example CalcBoundingBox() is not allowed because it is not spelled out.

Method argument names should be included in their declaration.

When declaring class methods, it is generally recommended to follow a logical order, not alphabet-

ical, and group them by blocks separated by empty lines for the sake of readability.

The definition of the methods should follow this same order.

https://www.itk.org/Doxygen/html/classitk_1_1WhitakerSparseLevelSetImage.html
https://www.itk.org/Doxygen/html/classitk_1_1LevelSetEquationCurvatureTerm.html

C.6. Naming Conventions 325

C.6.7 Naming Class Data Members

Class data members are prepended with m as in m Size. This clearly indicates the origin of data
members, and differentiates them from all other variables. Furthermore, it is a key requirement for
the correct application of the ITK macros (such as the Get##name and Set##name methods).

RadiusType m_Radius;

When declaring class data members, it is generally recommended to follow a logical order, not

alphabetical, and group them by blocks separated by empty lines for the sake of readability.

C.6.8 Naming Enumerations

ITK uses strongly-typed enumerations through the enum class keyword. Enumerations in ITK

need to declared within a dedicated class and be declared as public. The class name must be ap-

pended with the Enums label (even when the class contains a single strongly-typed enumeration).

Enumeration classes must declare their identifier before the enum-list is specified, it must start with

capitals and be written with case change, and it shall not bear the Type appendix. The type of

the enumeration must be defined explicitly. The streaming operator << must be overloaded to de-

fine enumerations are printed. The enum-list must be specified in capitals. The documentation or

comments added for each enum-list entry, if necessary, need not to be aligned.

For example,

/**

* \class MathematicalMorphologyEnums

* \brief Mathematical Morphology enum classes.

* \ingroup ITKMathematicalMorphology

*/

class MathematicalMorphologyEnums

{

public:

/**\class Algorithm

* \brief Algorithm or implementation used in the dilation/erosion operations.

* \ingroup ITKMathematicalMorphology

*/

enum class Algorithm : uint8_t

{

BASIC = 0,

HISTO = 1,

ANCHOR = 2,

VHGW = 3

};

};

/** Define how to print enumeration values. */

extern ITKMathematicalMorphology_EXPORT std::ostream &

326 Appendix C. Coding Style Guide

operator<<(std::ostream & out,

const MathematicalMorphologyEnums::Algorithm value);

The enumeration streaming method needs to be defined the implementation file, e.g.:

std::ostream &

operator<<(std::ostream & out,

const MathematicalMorphologyEnums::Algorithm value)

{

return out << [value] {

switch (value)

{

case MathematicalMorphologyEnums::Algorithm::BASIC:

return "itk::MathematicalMorphologyEnums::Algorithm::BASIC";

case MathematicalMorphologyEnums::Algorithm::HISTO:

return "itk::MathematicalMorphologyEnums::Algorithm::HISTO";

case MathematicalMorphologyEnums::Algorithm::ANCHOR:

return "itk::MathematicalMorphologyEnums::Algorithm::ANCHOR";

case MathematicalMorphologyEnums::Algorithm::VHGW:

return "itk::MathematicalMorphologyEnums::Algorithm::VHGW";

default:

return "INVALID VALUE FOR "

"itk::MathematicalMorphologyEnums::Algorithm";

}

}();

}

Enumeration classes do not need to have their corresponding integral value specified, although it

may be allowed (i.e. BASIC = 0,).

For the sake of brevity aliases can be defined for an enum class. These shall be appended with the
Enum label, e.g.

using AlgorithmEnum = MathematicalMorphologyEnums::Algorithm;

When calling an enum class entry from within a class, it may not be called with the Self:: class
alias, e.g.

if (algo == AlgorithmEnum::BASIC)

{

m_BasicFilter->SetKernel(this->GetKernel());

}

else if (algo == AlgorithmEnum::HISTO)

{

m_HistogramFilter->SetKernel(this->GetKernel());

}

else if (flatKernel != nullptr && flatKernel->GetDecomposable() &&

algo == AlgorithmEnum::ANCHOR)

{

m_AnchorFilter->SetKernel(*flatKernel);

C.6. Naming Conventions 327

}

else if (flatKernel != nullptr && flatKernel->GetDecomposable() &&

algo == AlgorithmEnum::VHGW)

{

m_VHGWFilter->SetKernel(*flatKernel);

}

else

{

itkExceptionMacro(<< "Invalid algorithm");

}

C.6.9 Naming Local Variables

Local variables begin in lowercase. There is more flexibility in the naming of local variables, but

they should adhere to the general convention of conveying the meaning behind the code.

Please remember that others will review, maintain, fix, study and extend your code. Any bread

crumbs that you can drop in the way of explanatory variable names and comments will go a long

way towards helping other community members.

Temporary Variable Naming

Every effort should be made to properly name temporary variables of any type that may be used in
a reduced part of a method, such as in

...

// Resize the schedules

ScheduleType schedule(m_NumberOfLevels, ImageDimension);

schedule.Fill(0);

m_Schedule = schedule;

...

For such temporary variables whose naming would be overly wordy to express their meaning or may
be misleading, or may be re-used at multiple stages within a method (e.g. using the name output

for intermediate results), the name tmp can be used.

...

ValueType dimension = static_cast<ValueType>(ImageDimension);

NormalVectorFilterType normalVectorFilter = NormalVectorFilterType::New();

...

normalVectorFilter->SetIsoLevelLow(-m_CurvatureBandWidth - dimension);

normalVectorFilter->SetIsoLevelHigh(m_CurvatureBandWidth + dimension);

...

// Move the pixel container and image information of the image we are working

// on into a temporary image to use as the input to the mini-pipeline. This

328 Appendix C. Coding Style Guide

// avoids a complete copy of the image.

typename OutputImageType::Pointer output = this->GetOutput();

auto tmp = OutputImageType::New();

tmp->SetRequestedRegion(output->GetRequestedRegion());

tmp->SetBufferedRegion(output->GetBufferedRegion());

tmp->SetLargestPossibleRegion(output->GetLargestPossibleRegion());

tmp->SetPixelContainer(output->GetPixelContainer());

tmp->CopyInformation(output);

typename SparseImageType::Pointer sparseNormalImage =

normalVectorFilter->GetOutput();

this->ComputeCurvatureTarget(tmp, sparseNormalImage);

m_LevelSetFunction->SetSparseTargetImage(sparseNormalImage);

Variable Initialization

A basic type variable declared and not being assigned immediately within a method should be ini-

tialized to its zero value.

Note the weight variable in the following example:

template <typename TInputImage>

double

WarpHarmonicEnergyCalculator<TInputImage>::EvaluateAtNeighborhood(

ConstNeighborhoodIteratorType & it) const

{

vnl_matrix_fixed<double, ImageDimension, VectorDimension> J;

PixelType next, prev;

double weight = 0;

for (unsigned int i = 0; i < ImageDimension; ++i)

{

next = it.GetNext(i);

prev = it.GetPrevious(i);

weight = 0.5 * m_DerivativeWeights[i];

for (unsigned int j = 0; j < VectorDimension; ++j)

{

J[i][j] = weight *

(static_cast<double>(next[j]) - static_cast<double>(prev[j]));

}

}

const double norm = J.fro_norm();

return norm * norm;

}

C.6. Naming Conventions 329

Take into account that many ITK variables, such as itk::ImageRegion class instances initialize

themselves to zero, so they do not need to be initialized unless required. The following declaration

would create a matrix with all zero by default:

// Define the dimension of the images

constexpr unsigned int ImageDimension = 2;

...

// Declare the type of the size

using SizeType = itk::Size<ImageDimension>;

SizeType size;

size[0] = 100;

size[1] = 100;

// Declare the type of the index to access images

using IndexType = itk::Index<ImageDimension>;

IndexType start;

start[0] = 0;

start[1] = 0;

// Declare the type of the Region

using RegionType = itk::ImageRegion<ImageDimension>;

RegionType region;

region.SetIndex(start);

region.SetSize(size);

Control Statement Variable Naming

Control statement variables names should be clear and concise. For simple counters over arrays,

lists, maps elements or matrices, the i, j, k order is preferred, i.e. when requiring to walking over

multiple dimensions, over, for example ii.

If more than three nested control statements are required, there is probably a better design that can

be implemented.

For iterators, inIt and outIt are recommended if both input and output structures are involved.

Otherwise, it can be used.

Variable Scope

Control statement variables should have a local scope. Hence, instead of declaring a method-scope
variable and re-using it,

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

330 Appendix C. Coding Style Guide

unsigned int i;

for (i = 0; i < ImageDimension; ++i)

{

Something();

}

...

for (i = 0; i < ImageDimension; ++i)

{

SomethingElse();

}

it is recommended to limit the scope of the variables to the control statements in which they are

required:

unsigned int i = 0;

for (unsigned int i = 0; i < ImageDimension; ++i)

{

Something();

}

...

for (unsigned int i = 0; i < ImageDimension; ++i)

{

SomethingElse();

}

C.6.10 Naming Template Parameters

Template parameters follow the usual rules with naming except that they should start with either the

capital letter “T” or “V”. Type parameters (such as the pixel type) begin with the letter “T” while

value template parameters (such as the dimensionality) begin with the letter “V”.

template <typename TPixel, unsigned int VImageDimension = 2>

class ITK_TEMPLATE_EXPORT Image : public ImageBase<VImageDimension>

For template parameters the use of typename is preferred over class. Very early

C++ compilers did not have a typename keyword, and class was purposed for declar-

ing template parameters. It was later discovered that this lead to ambiguity in some

valid code constructs, and the typename key word was added. It is often agreed

(https://blogs.msdn.com/b/slippman/archive/2004/08/11/212768.aspx) that typename is marginally

more expressive in its intent and ITK should consistently use typename instead of class.

https://blogs.msdn.com/b/slippman/archive/2004/08/11/212768.aspx

C.6. Naming Conventions 331

C.6.11 Naming Typedefs

Type aliases are absolutely essential in generic programming. They significantly improve the read-

ability of code, and facilitate the declaration of complex syntactic combinations. Unfortunately, cre-

ation of type aliases is tantamount to creating another programming language. Hence type aliases

must be used in a consistent fashion. The general rule for type alias names is that they end in the

word “Type”. For example,

using PixelType = TPixel;

However, there are many exceptions to this rule that recognize that ITK has several important con-

cepts that are expressed partially in the names used to implement the concept. An iterator is a

concept, as is a container or pointer. These concepts are used in preference to Type at the end of a

type alias as appropriate. For example,

using PixelContainer = typename ImageTraits::PixelContainer;

Here “Container” is a concept used in place of “Type”. ITK currently identifies the following con-

cepts used when naming type aliases:

• Self as in

using Self = Image;

All classes should define this type alias.

• Superclass as in

using Superclass = ImageBase<VImageDimension>;

All classes should define the Superclass type alias.

• Pointer as in a smart pointer to an object as in

using Pointer = SmartPointer<Self>;

All classes should define the Pointer type alias.

• Container is a type of container class.

• Iterator an iterator over some container class.

• Identifier or id such as a point or cell identifier.

332 Appendix C. Coding Style Guide

C.6.12 Naming Constants

Constants must start with capital letters, e.g.

constexpr unsigned int CodeAxisField = 14;

C.6.13 Using Operators to Pointers

The indirection unary operator (*) must be placed next to the variable, e.g.

int

itkTransformFileReaderTest(int argc, char * argv[])

or

const InputImageType * inputPtr = this->GetInput();

The reference or address unary operator (&) must be placed next to the variable, e.g.

const typename FixedImageType::RegionType & fixedRegion =

m_FixedImage->GetLargestPossibleRegion();

or

::PrintSelf(std::ostream & os, Indent indent) const

C.6.14 Using Operators to Arrays

The subscript operator ([]) must be placed next to the variable, e.g.

int

itkGaborKernelFunctionTest(int argc, char * argv[])

or

unsigned int

GetSplitInternal(unsigned int dim,

unsigned int i,

unsigned int numberOfPieces,

IndexValueType regionIndex[],

SizeValueType regionSize[]) const override;

C.6. Naming Conventions 333

C.6.15 Using Underscores

Do not use undersocres. The only exception is when defining preprocessor variables and macros

(which are discouraged). In this case, underscores are allowed to separate words.

C.6.16 Include Guards

An include guard’s case must mimic the one used for a file, with the file extension separated by an

undersore

#ifndef itkImage_h

#define itkImage_h

// Class declaration code

#endif

and

#ifndef itkImage_hxx

#define itkImage_hxx

// Template class implementation code

#endif

Note that include guards in implementation files are to be used only for templated classes.

C.6.17 Preprocessor Directives

Some of the worst code contains many preprocessor directives and macros such as

#if defined(__APPLE__) && (__clang_major__ == 3) && \

(__clang_minor__ == 0) && defined(NDEBUG) && defined(__x86_64__)

cc = -1.0 * itk::Math::sqr(1.0 / (cc + itk::Math::eps));

#else

cc = -1.0 * itk::Math::sqr(1.0 / cc);

#endif

Do not use them except in a very limited sense (to support minor differences in compilers or op-

erating systems). If a class makes extensive use of preprocessor directives, it is a candidate for

separation into multiple sub-classes.

However, if such directives are to be used, they should start in column one, regardless of the required

indentation level of the code they contain.

334 Appendix C. Coding Style Guide

C.6.18 Header Includes

Headers in ITK must be included using quotes (“ ”)

#include "itkImageRegion.h"

Only the required headers should be included. If an included header already includes a header for a

class also used in the current file, the header for that class should not be included.

Header includes are preferred over forward declarations. Forward declarations are only used to

prevent circular dependencies.

C.6.19 Const Correctness

As a general rule, the const type qualifier must be used for:

• Arguments which set the pipeline inputs, e.g.

/** Set the marker image. */

void

SetMaskImage(const MaskImageType * input)

{

// Process object is not const-correct so the const casting is required.

this->SetNthInput(1, const_cast<TMaskImage *>(input));

}

/** Set the input image. */

void

SetInput1(const InputImageType * input)

{

this->SetInput(input);

}

/** Set the marker image. */

void

SetInput2(const MaskImageType * input)

{

this->SetMaskImage(input);

}

• Accessor / state functions, e.g.

bool

GetUseVectorBasedAlgorithm() const

{

return HistogramType::UseVectorBasedAlgorithm();

}

C.7. Namespaces 335

C.6.20 Integer Type Specifiers

Throughout the code base, the built-in type unsigned int is spelled exactly like that: “unsigned

int” (rather than just “unsigned”). Other built-in integer types should in general be specified by their

shortest form. For example, “short”, “long”, and “long long” are preferred to “signed short int”,

“signed long int”, and “signed long long int”.

Within the itk namespace, integer type aliases from C++ Standard headers for C library facilities

(like <cstdlib> and <cstdint>) should generally be used without a std:: prefix. For example,

“size t”, “int8 t”, and “uintmax t” are preferred to “std::size t”, “std::int8 t”, and “std::uintmax -

t”. When using any of those type aliases, the ITK header file “itkIntTypes.h” may need to be

#included, to ensure that those types are declared within the itk namespace.

C.7 Namespaces

All classes should be placed in the itk:: namespace. Additional sub-namespaces are being de-

signed to support special functionality, e.g.

namespace itk

{

namespace fem

{

...

} // end namespace fem

} // end namespace itk

Please see current documentation to determine if there is a sub-namespace relevant to a specific

situation. Normally sub-namespaces are used for helper ITK classes.

Code should not use using namespace. This is to avoid namespace conflicts, but, more importantly,

to improve readability.

When declaring or defining members of the itk:: namespace, for example, the itk:: namespace

prefix should not be added. That is, code within namespace itk {... }” should not use itk::.

The :: global namespace should be used when referring to a global function, e.g.

// Execute the filter

clock_t start = ::clock();

m_Filter->UpdateLargestPossibleRegion();

clock_t stop = ::clock();

It helps clarifying exactly which method is exactly being invoked and where it originates.

Note that itk:: should only be used outside the itk:: namespace.

336 Appendix C. Coding Style Guide

C.8 Aliasing Template Parameter Typenames

The public class typename’s should be limited to the types that are required to be available by other

classes. The typename’s can clutter a class API and can restrict future refactoring that changes the

types when unnecessary.

For instance,

template <typename TPixel, unsigned int VImageDimension = 2>

class ITK_TEMPLATE_EXPORT Image : public ImageBase<VImageDimension>

{

public:

ITK_DISALLOW_COPY_AND_MOVE(Image);

/** Standard class type alias. */

using Self = Image;

using Superclass = ImageBase<VImageDimension>;

using Pointer = SmartPointer<Self>;

using ConstPointer = SmartPointer<const Self>;

using ConstWeakPointer = WeakPointer<const Self>;

...

/** Pixel type alias support. Used to declare pixel type in filters

* or other operations. */

using PixelType = TPixel;

...

or

template <typename TImage>

class ITK_TEMPLATE_EXPORT ImageRegionIterator

: public ImageRegionConstIterator<TImage>

{

public:

/** Standard class type alias. */

using Self = ImageRegionIterator;

using Superclass = ImageRegionConstIterator<TImage>;

/** Types inherited from the Superclass */

using IndexType = typename Superclass::IndexType;

using SizeType = typename Superclass::SizeType;

...

C.9 Pipelines

The following is a set of useful tips that must be taken into account when developing ITK code:

C.10. The auto Keyword 337

• Do call Update() before using the pipeline output.

• Do call UpdateLargestPossibleRegion() when reusing a reader.

When reusing a reader you must call:

reader->UpdateLargestPossibleRegion()

instead of the usual:

reader->Update()

Otherwise the extent of the previous image is kept, and in some cases lead to Exceptions being

thrown if the second image is smaller than the first one.

• Do not assume inputImage->SetRequestedRegion(smallRegion) will make the filter

faster! The filter might run on the entire input image regardless. To make it run on a smaller

block, get a new itk::RegionOfInterestImageFilter, say ROIfilter, and do:

ROIfilter->SetInput(inputImage);

ROIfilter->SetRegionOfInterest(smallRegion);

CCfilter->SetInput(ROIfilter->GetOutput());

• On a newly-manually-created image, do initialize the pixel values if you expect them to be so!

ITK does not initialize the image buffer when you call Allocate(). It is your responsibility

to initialize the pixel values, either by calling Allocate(true) or filling the image buffer as

in:

image->FillBuffer(0); // Initialize it to all dark.

C.10 The auto Keyword

Available since C++11, the auto keyword specifies that a variable’s type is automatically deduced

from its initializer.

The auto keyword should be used to specify a type in the following cases:

• The type is duplicated on the left side of an initialization when it is mandated on the right side,

e.g. when there is an explicit cast or initializing with new or ITK’s ::New().

• When obtaining container elements, when the element type is obvious from the type of the

container.

338 Appendix C. Coding Style Guide

• When the type does not matter because it is not being used for anything other than equality

comparison.

• When declaring iterators in a for loop.

• When a trailing return type is used in a function declaration.

• When creating lambda functions.

All other cases should not use auto, but a semantic type name should be used that conveys meaning,

as described in Section C.6 and Section C.6.11 on page 331.

Application or example code that uses ITK, as opposed to the toolkit itself, may use auto more

liberally.

C.11 Initialization and Assignment

All member variables must be initialized when they are declared. For such purpose, brace initializ-

ers, e.g.

private:

double m_InnerRadius{ 1.0 };

double m_Thickness{ 1.0 };

bool m_Normalize{ false };

bool m_BrightCenter{ false };

PixelType m_InteriorValue{};

PixelType m_AnnulusValue{ NumericTraits<PixelType>::OneValue() };

PixelType m_ExteriorValue{};

SpacingType m_Spacing{ 1.0 };

and brace list initialization, e.g.

private:

IndexType m_Index = { { 0 } };

SizeType m_Size = { { 0 } };

are preferred over initialization lists in the method constructor, e.g.

template <typename TInputImage, typename TOutputImage>

SpecializedFilter<TInputImage, TOutputImage>::SpecializedFilter()

: m_BackgroundValue{}

, m_ForegroundValue(NumericTraits<OutputImagePixelType>::OneValue())

{

...

}

C.12. Accessing Members 339

or assignment:

template <typename TInputImage, typename TOutputImage>

SpecializedFilter<TInputImage, TOutputImage>::SpecializedFilter()

{

m_BackgroundValue = {};

m_ForegroundValue = NumericTraits<OutputImagePixelType>::OneValue();

...

}

Exceptions to this guideline:

Private data members that are just there to add padding bytes between other (member) variables

(typically to avoid false sharing in the context of multi-threading) should not be initialized. Such a

padding data member is typically declared as a C-style array of a (possibly unsigned) character type.

A data member that is declared as std::unique ptr<T> or itk::SmartPointer<T> should not

have an empty {} initializer at its declaration, at least for now, because of a GCC issue (prior to

GCC release 9.2), which would cause compilation errors when the type T is an incomplete (forward

declared) class type.

Another exception is made for low level utility classes for which data member initialization would

cause a significant performance penalty. This is why for example FixedArray::m InternalArray

and Index::m InternalArray do not have a default member initializer.

C.12 Accessing Members

The C++ keyword this must be used when calling a class’ own methods:

template <typename TInputImage, typename TOutputImage>

void

ExpandImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()

{

// Call the superclass' implementation of this method

Superclass::GenerateInputRequestedRegion();

// Get pointers to the input and output

InputImageType * inputPtr = const_cast<InputImageType *>(this->GetInput());

const OutputImageType * outputPtr = this->GetOutput();

...

}

The use of the explicit this-> pointer helps clarifying which method is exactly being invoked and

where it originates.

340 Appendix C. Coding Style Guide

The value of a member variables or data within a class must be retrieved calling the variable name

directly, i.e. the use of its getter method (i.e. GetMyVariable()) is discouraged for such purpose.

Similarly, the use of the this keyword when calling self data members is discouraged, i.e.

template <typename TInputImage, typename TOutputImage>

void

InterpolateImageFilter<InputImage, TOutputImage>::PrintSelf(

std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "Distance: " << m_Distance << std::endl;

...

}

is preferred over

template <typename TInputImage, typename TOutputImage>

void

InterpolateImageFilter<TInputImage, TOutputImage>::PrintSelf(

std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "Distance: " << m_Distance << std::endl;

...

}

C.13 Code Layout and Indentation

The following are the accepted ITK code layout rules and indentation style. After reading this

section, you may wish to visit many of the source files found in ITK. This will help crystallize the

rules described here.

C.13.1 General Layout

• Each line of code should take no more than 200 characters.

• Break the code across multiple lines as necessary.

• Use lots of white space to separate logical blocks of code, intermixed with comments.

• To a large extent the structure of code directly expresses its implementation.

C.13. Code Layout and Indentation 341

• The appropriate indentation level is two spaces for each level of indentation.

• Do not use tabs; set up your editor to insert spaces. Using tabs may look good in your editor

but will wreak havoc in others.

• The declaration of variables within classes, methods, and functions should be one declaration

per line:

int i = 0;

int j = 0;

char * stringName;

A short code snippet in ITK might look like:

if (condition)

{

unsigned int numberOfIterations = 100;

filter->SetNumberOfIterations(numberOfIterations);

filter->Update();

filter->Print(std::cout);

}

The body of a method must always be indented, starting with an indentation of two white spaces,

and indenting the rest of the body as described in this section.

C.13.2 Class Layout

Classes are declared (.h) using the following guidelines:

• Begin with the Copyright notice.

• Follow with include guards (e.g #ifndef itkBoxImageFilter h)).

• Follow with the necessary includes. Include only what is necessary to avoid dependency

problems.

• Place the class in the correct namespace.

• public methods come first.

• protected methods follow.

• private members come last.

• public data members are forbidden.

• End the namespaces.

342 Appendix C. Coding Style Guide

• Templated classes require a special preprocessor directive to control the manual instantiation

of templates. See the example below and look for ITK MANUAL INSTANTIATION.

• Close the include guards.

The class layout looks something like this:

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

#ifndef itkImage_h

#define itkImage_h

#include "itkImageRegion.h"

#include "itkImportImageContainer.h"

#include "itkDefaultPixelAccessor.h"

#include "itkDefaultPixelAccessorFunctor.h"

#include "itkPoint.h"

#include "itkFixedArray.h"

#include "itkWeakPointer.h"

#include "itkNeighborhoodAccessorFunctor.h"

#include <type_traits>

namespace itk

{

/** \class Image

* \brief Templated N-dimensional image class.

*

* Detailed documentation...

*/

template <typename TPixel, unsigned int VImageDimension = 2>

class ITK_TEMPLATE_EXPORT Image : public ImageBase<VImageDimension>

{

public:

...

C.13. Code Layout and Indentation 343

protected:

...

private:

...

};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION

include "itkImage.hxx"

#endif

#endif // itkImage_h

Many of the guidelines for the class declaration file are applied to the class definition (.hxx, .cxx)

file:

• Begin with the Copyright notice.

• Follow with include guards in case of templated classes (e.g #ifndef

itkBoxImageFilter hxx)).

• Follow with the necessary includes. Include only what is necessary to avoid dependency

problems.

• Place the class in the correct namespace.

• The constructor come first.

• The destructor follows.

• The PrintSelf member come last.

• End the namespaces.

• Close the include guards if present.

The class definition layout looks something like this:

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

344 Appendix C. Coding Style Guide

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

/*===

*

* Portions of this file are subject to the VTK Toolkit Version 3 copyright.

*

* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen

*

* For complete copyright, license and disclaimer of warranty information

* please refer to the NOTICE file at the top of the ITK source tree.

*

===/

#ifndef itkImage_hxx

#define itkImage_hxx

#include "itkProcessObject.h"

#include <algorithm>

namespace itk

{

template <typename TPixel, unsigned int VImageDimension>

Image<TPixel, VImageDimension>::Image()

{

m_Buffer = PixelContainer::New();

}

...

template <typename TPixel, unsigned int VImageDimension>

void

Image<TPixel, VImageDimension>::PrintSelf(std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "PixelContainer: " << std::endl;

m_Buffer->Print(os, indent.GetNextIndent());

}

} // end namespace itk

#endif

Note that ITK headers are included first, and system or third party libraries follow.

C.13. Code Layout and Indentation 345

C.13.3 Method Definition

Methods are defined across multiple lines. This is to accommodate the extremely long definitions

possible when using templates. The starting and ending brace should be in column one, and the

following order must be followed:

• The first line is the template declaration.

• The second line is the method return type.

• The third line is the class qualifier and the name of the method.

e.g.

template <typename TPixel, unsigned int VImageDimension>

unsigned int

Image<TPixel, VImageDimension>::GetNumberOfComponentsPerPixel() const

{

...

}

The same rules apply for non-templated classes:

void

Bruker2DSEQImageIO::PrintSelf(std::ostream & os, Indent indent) const

{

...

}

If the line length exceed the threshold set by the automatic style enforcement tool, they will be

automatically be formatted.

Due to different line length rules in this text book, the name of the method may be split into a

separate line.

C.13.4 Use of Braces

Braces in Control Sequences

Braces must be used to delimit the scope of an if, for, while, switch, or other control structure.

for (unsigned int i = 0; i < ImageDimension; ++i)

{

...

}

346 Appendix C. Coding Style Guide

or when using an if:

if (condition)

{

...

}

else if (otherCondition)

{

...

}

else

{

...

}

In switch statement cases, the constant-expression statement bodies should not be enclosed with

braces:

switch (m_OperationQ.front())

{

case Self::SET_PRIORITY_LEVEL:

m_PriorityLevel = m_LevelQ.front();

m_LevelQ.pop();

break;

case Self::SET_LEVEL_FOR_FLUSHING:

m_LevelForFlushing = m_LevelQ.front();

m_LevelQ.pop();

break;

...

default:

break;

}

In do-while statements the opening/closing braces must lie on a line of their own:

do

{

k += 1;

p *= rand->GetVariate();

} while (p > L);

Braces in Arrays

When initializing an array, no space shall be left between the first value and the opening brace, and

the last argument and closing brace:

C.13. Code Layout and Indentation 347

// Define the image size in image coordinates, and origin and spacing in

// physical coordinates.

SizeType size = { { 20, 20, 20 } };

double origin[3] = { 0.0, 0.0, 0.0 };

double spacing[3] = { 1, 1, 1 };

C.13.5 Indentation and Tabs

The ITK style bans the use of tabs. Contributors should configure their editors to use white spaces

instead of tabs. The size of the indent in ITK is fixed to two white spaces.

template <typename TInputImage, typename TOutputImage = TInputImage>

class ITK_TEMPLATE_EXPORT SpecializedFilter

: public ImageToImageFilter<TInputImage, TOutputImage>

{

public:

using Self = SpecializedFilter;

using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;

using Pointer = SmartPointer<Self>;

using ConstPointer = SmartPointer<const Self>;

/** Method for creation through the object factory. */

itkNewMacro(Self);

/** Run-time type information (and related methods) */

itkOverrideGetNameOfClassMacro(SpecializedFilter);

...

};

or for the implementation of a given method:

template <typename TInputImage, typename TOutputImage>

void

SpecializedFilter<TInputImage, TOutputImage>::GenerateData() const

{

// Allocate the outputs.

this->AllocateOutputs();

// Create a process accumulator for tracking the progress of this

// minipipeline.

auto progress = ProgressAccumulator::New();

progress->SetMiniPipelineFilter(this);

...

}

ITK uses the Allman indentation style, with the braces associated with a control statement on the

348 Appendix C. Coding Style Guide

next line, indented to the same level as the control statement. Thus, source code in the body of the

brackets must be indented.

while (x == y)

{

Something();

}

C.13.6 White Spaces

As a general rule, a single white space should be used to separate every word.

However, no white space shall be added between type names, keywords, and method names and the

following marks:

• An opening angle bracket (<) and the template keyword.

• An opening round bracket (() and its preceding word (e.g. in method declarations and defini-

tions).

• An opening/closing brace ({/}) and its subsequent/preceding word (e.g. when initializing an

array).

• An opening or closing square bracket ([,]) and its contents (e.g. when specifying the index

of an array).

• The constant expression termination colon in a switch statement (e.g. case Self::SET -

PRIORITY LEVEL:).

• Semicolons (;) and their preceding word (e.g. end of a statement, etc.).

To the contrary, a single white space should be added between

• An opening angle bracket (<) and the subsequent template, variable or keyword.

• A closing angle bracket (>) and the preceding and subsequent words (such as in type aliases).

• An opening/closing round bracket ((/)) and its subsequent/preceding word (e.g. in method

argument lists).

• Individual members in a list separated by commas (e.g. SizeType size = 20, 20, 20, or

data[i, j]). The comma must be always placed next to a given element, and be followed

by the single white space.

• Operators(i.e. +, -, =, ==, +=, <<, etc.) and the left-hand and right-hand arguments.

C.13. Code Layout and Indentation 349

• The ternary operators (?, :) and the left-hand condition, and right-hand values.

• Control statements (i.e. if, for, while, switch, etc.) and their conditional statements or

arguments.

• The different parts of a for control statement.

for (unsigned int i = 0; i < ImageDimension; ++i)

{

...

}

• A method call parentheses and its content

this->SomeMethod(param, a + b);

Thus, for a class declaration we would write

template <typename TInputImage, typename TOutputImage = TInputImage>

class ITK_TEMPLATE_EXPORT SpecializedFilter

: public ImageToImageFilter<TInputImage, TOutputImage>

{

public:

using Self = SpecializedFilter;

using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;

using Pointer = SmartPointer<Self>;

using ConstPointer = SmartPointer<const Self>;

/** Method for creation through the object factory. */

itkNewMacro(Self);

/** Run-time type information (and related methods) */

itkOverrideGetNameOfClassMacro(SpecializedFilter);

// ...

};

And for a class constructor we would write

template <typename TInputImage, typename TOutputImage>

SpecializedFilter<TInputImage, TOutputImage>::SpecializedFilter()

{

// The filter requires two inputs

this->SetNumberOfRequiredInputs(2);

}

Trailing white spaces are not allowed in ITK.

350 Appendix C. Coding Style Guide

C.13.7 Grouping

Unnecessary parentheses for grouping hinder reading the code. The C++ precedence and associativ-

ity (the order in which the operands are evaluated) of operators must be taken into account to avoid

using unnecessary parentheses.

As a general principle, these apply to condition expressions, and statements where mathematical,

logical or bitwise operations are performed.

Conditional Expressions

In conditional expressions contained in control statements (e.g. if, for, while, etc.) composed by

multiple operands (e.g. joined using the logical operators), assignments and other constructs where

such expressions are involved, the use of excessive parentheses is discouraged.

For example, the style below:

if (modelFile == "tri3-q.meta" && (s == 2 || s == 1))

{

...

}

else

{

...

}

is recommended over:

if ((modelFile == "tri3-q.meta") && ((s == 2) || (s == 1)))

{

...

}

else

{

...

}

Assignments

In assignments, the operator precedence and associativity rules apply to help keeping the code read-

able and void of operators in-excess. In assignments that do not involve long expressions that would

otherwise be hard and time-consuming to interpret, the use of parentheses should be avoided.

For example, in

C.13. Code Layout and Indentation 351

sum[dim] += (component * weight);

grouping is not necessary, as only a single operator exists in the right-hand operand. Hence, instead

of writing the above code, community members should rather write:

sum[dim] += component * weight;

Return Statements

In return statements, using parentheses should be avoided when they are not strictly necessary for

the evaluation of the returned term. For example, when returning variables or method calls, as in:

OutputType

Evaluate(const PointType & point) const override

{

ContinuousIndexType index;

this->GetInputImage()->TransformPhysicalPointToContinuousIndex(point,

index);

// No thread info passed in, so call method that doesn't need thread

// identifier.

return this->EvaluateDerivativeAtContinuousIndex(index);

}

The same principle applies when returning the result of an algebraic, logical or bitwise operation

that does not require using parentheses to specify evaluation preference, such as in:

template <typename TPoint>

double

SimpleSignedDistance(const TPoint & p)

{

...

return accum - radius;

}

instead of writing return (accum - radius);.

Or in:

bool

RealTimeStamp::operator>(const Self & other) const

{

if (this->m_Seconds > other.m_Seconds)

{

return true;

352 Appendix C. Coding Style Guide

}

if (this->m_Seconds < other.m_Seconds)

{

return false;

}

return this->m_MicroSeconds > other.m_MicroSeconds;

}

Or in:

IntegerType mixBits(const IntegerType & u, const IntegerType & v) const

{

return hiBit(u) | loBits(v);

}

C.13.8 Alignment

In every ITK file, the following code parts always start in column one:

• Copyright notice.

• Namespace opening/closing braces.

• Include guards.

The following specific parts of a class declaration always start in column one:

• Class documentation.

• Template declaration.

• Class declaration, including its opening/closing braces.

• Manual instantiation preprocessor directives.

• Access modifiers.

For instance,

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

C.13. Code Layout and Indentation 353

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

#ifndef itkImage_h

#define itkImage_h

#include "itkImageBase.h"

namespace itk

{

/** \class Image

* \brief Templated N-dimensional image class.

*

* Detailed documentation...

*/

template <typename TPixel, unsigned int VImageDimension = 2>

class ITK_TEMPLATE_EXPORT Image : public ImageBase<VImageDimension>

{

public:

...

protected:

...

private:

...

};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION

include "itkImage.hxx"

#endif

#endif // itkImage_h

In a class implementation, the following code parts always start in column one:

• Method definition,

• Method opening/closing braces.

354 Appendix C. Coding Style Guide

For instance,

template <typename TPixel, unsigned int VImageDimension>

unsigned int

Image<TPixel, VImageDimension>::GetNumberOfComponentsPerPixel() const

{

...

}

Member data declarations should also be aligned when they are declared in consecutive lines.

std::string m_FileName;

ConstTransformListType m_TransformList;

bool m_AppendMode{ false };

bool m_UseCompression{ false };

typename TransformIOType::Pointer m_TransformIO;

By virtue of the principles in Section , method calls on consecutive lines should not align their

parentheses, i.e. use:

normalVectorFilter->SetIsoLevelLow(-m_CurvatureBandWidth - dimension);

normalVectorFilter->SetIsoLevelHigh(m_CurvatureBandWidth + dimension);

normalVectorFilter->SetMaxIteration(m_MaxNormalIteration);

normalVectorFilter->SetUnsharpMaskingFlag(m_NormalProcessUnsharpFlag);

normalVectorFilter->SetUnsharpMaskingWeight(m_NormalProcessUnsharpWeight);

avoiding:

normalVectorFilter->SetIsoLevelLow (-m_CurvatureBandWidth - dimension);

normalVectorFilter->SetIsoLevelHigh (m_CurvatureBandWidth + dimension);

normalVectorFilter->SetMaxIteration (m_MaxNormalIteration);

normalVectorFilter->SetUnsharpMaskingFlag (m_NormalProcessUnsharpFlag);

normalVectorFilter->SetUnsharpMaskingWeight(m_NormalProcessUnsharpWeight);

The same principle applies to consecutive statements involving any type of operator. Prefer:

double weight = 0.;

double distance = 0.;

over

double weight = 0.;

double distance = 0.;

Lines exceeding the recommended line length in ITK that are split in several lines must be consec-

utive, and must be aligned with two-space indentation:

subsec:WhiteSpaces

C.13. Code Layout and Indentation 355

if (coeff.size() > m_MaximumKernelWidth)

{

itkWarningMacro(

"Kernel size has exceeded the specified maximum width of "

<< m_MaximumKernelWidth << " and has been truncated to "

<< static_cast<unsigned long>(coeff.size())

<< " elements. You can raise "

"the maximum width using the SetMaximumKernelWidth method.");

break;

}

is preferred over

if (coeff.size() > m_MaximumKernelWidth)

{

itkWarningMacro("Kernel size has exceeded the specified maximum width of "

<< m_MaximumKernelWidth << " and has been truncated to "

<< static_cast<unsigned long>(coeff.size()) << " elements. You can raise "

"the maximum width using the SetMaximumKernelWidth method.");

break;

}

The same principle applies to method declarations:

unsigned int

GetSplitInternal(unsigned int dim,

unsigned int i,

unsigned int numberOfPieces,

IndexValueType regionIndex[],

SizeValueType regionSize[]) const override;

is preferred over

unsigned int GetSplitInternal(unsigned int dim,

unsigned int i,

unsigned int numberOfPieces,

IndexValueType regionIndex[],

SizeValueType regionSize[]) const override;

C.13.9 Line Splitting Policy

Lines exceeding the recommended line length in ITK must be split in the necessary amount of lines.

This policy is enforced by the KWStyle pre-commit hooks (see Section C.3.2 on page 314).

If a line has to be split, the following preference order is established in ITK:

356 Appendix C. Coding Style Guide

• Split the right-hand operand in an assignment =, e.g.

const typename FixedImageType::RegionType & fixedRegion =

m_FixedImage->GetLargestPossibleRegion();

• Split after the comma separator (,) in a list, e.g.

using FilterType = AddImageFilter<BiasFieldControlPointLatticeType,

BiasFieldControlPointLatticeType,

BiasFieldControlPointLatticeType>

• Split before the math operator (+, *, ||, &&, etc.) in an arithmetic or logical operation:, e.g.

while (m_ElapsedIterations++ < m_MaximumNumberOfIterations[m_CurrentLevel]

&& m_CurrentConvergenceMeasurement > m_ConvergenceThreshold)

or

centerFixedIndex[k] =

static_cast<ContinuousIndexValueType>(fixedIndex[k])

+ static_cast<ContinuousIndexValueType>(fixedSize[k] - 1) / 2.0;

C.13.10 Empty Lines

As a general rule, empty lines should be used to separate code blocks that semantically belong to

separate operations, or when a portion of code is too long. In the latter case, adding documentation

lines contributes to the readability of the code.

However, no empty lines shall be added between:

• The accessor type (public, protected, private) and the declaration that immediately fol-

lows it.

• An opening/closing brace ({/}) and its subsequent/preceding line (e.g. nested namespace

braces, method definition and its body, control statements, etc).

However, an empty line should exist in a header file (.h)

• Between the Copyright notice and the include guards (e.g. #ifndef itkBoxImageFilter -

h).

• Between the pre-processor directives and the header includes.

• Between the header includes and the ITK namespace (i.e. namespace itk).

C.13. Code Layout and Indentation 357

• Between the ITK namespace brace and the class documentation.

• Between the class documentation and the class declaration.

• Between the access modifier and its preceding declaration, unless for the first declaration of

public.

• Between method declarations (including their corresponding documentation block).

• Between a member method declaration and any member variable declaration that immediately

follows.

• Between the ITK namespace end brace }// end namespace itk and further pre-processor

directives #ifndef ITK MANUAL INSTANTIATION.

• Between the closing pre-processor directives and include guards #endif.

For instance,

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

#ifndef itkBoxImageFilter_h

#define itkBoxImageFilter_h

#include "itkImageToImageFilter.h"

#include "itkCastImageFilter.h"

namespace itk

{

/** \class BoxImageFilter

* \brief A base class for all the filters working on a box neighborhood.

*

* This filter provides the code to store the radius information about the

* neighborhood used in the subclasses.

* It also conveniently reimplement the GenerateInputRequestedRegion() so

* that region is well defined for the provided radius.

358 Appendix C. Coding Style Guide

*

* \author Gaetan Lehmann. Biologie du Developpement et de la Reproduction,

* INRA de Jouy-en-Josas, France.

* \ingroup ITKImageFilterBase

*/

template <typename TInputImage, typename TOutputImage>

class ITK_TEMPLATE_EXPORT BoxImageFilter

: public ImageToImageFilter<TInputImage, TOutputImage>

{

public:

ITK_DISALLOW_COPY_AND_ASSIGN(BoxImageFilter);

/** Standard class type alias. */

using Self = BoxImageFilter;

using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;

...

protected:

BoxImageFilter();

˜BoxImageFilter() override = default;

void

GenerateInputRequestedRegion() override;

void

PrintSelf(std::ostream & os, Indent indent) const override;

private:

RadiusType m_Radius;

};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION

include "itkBoxImageFilter.hxx"

#endif

#endif // itkBoxImageFilter_h

An empty line should exist in an implementation file (.cxx, .hxx):

• Between the Copyright notice and the include guard (e.g. #ifndef itkBoxImageFilter -

hxx).

• Between the pre-processor directives and the header includes.

• Between the header includes and the class implementation.

• Between the ITK namespace end brace }// end namespace itk and closing include guard

#endif.

C.13. Code Layout and Indentation 359

Two empty lines are recommended between method definitions for the sake of readability. For

instance,

/*===

*

* Copyright NumFOCUS

*

* Licensed under the Apache License, Version 2.0 (the "License");

* you may not use this file except in compliance with the License.

* You may obtain a copy of the License at

*

* https://www.apache.org/licenses/LICENSE-2.0.txt

*

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

* limitations under the License.

*

===/

#ifndef itkSpecializedImageFilter_hxx

#define itkSpecializedImageFilter_hxx

#include "itkProgressAccumulator.h"

namespace itk

{

template <typename TInputImage, typename TOutputImage>

SpecializedImageFilter<TInputImage, TOutputImage>::SpecializedImageFilter()

{

this->DynamicMultiThreadingOn();

}

template <typename TInputImage, typename TOutputImage>

void

SpecializedImageFilter<TInputImage, TOutputImage>::SetRadius(

const RadiusType & radius)

{

if (m_Radius != radius)

{

m_Radius = radius;

this->Modified();

}

}

template <typename TInputImage, typename TOutputImage>

void

SpecializedImageFilter<TInputImage, TOutputImage>::PrintSelf(

std::ostream & os,

Indent indent) const

360 Appendix C. Coding Style Guide

{

Superclass::PrintSelf(os, indent);

os << indent << "Radius: " << m_Radius << std::endl;

}

} // end namespace itk

#endif // itkSpecializedImageFilter_hxx

Logical code blocks that must dwell in the same method but which may not be tightly related can be

separated by two empty lines at most, e.g.

int

itkHMinimaImageFilterTest(int argc, char * argv[])

{

...

hMinimaFilter->SetInput(reader->GetOutput());

// Run the filter

ITK_TRY_EXPECT_NO_EXCEPTION(hMinimaFilter->Update());

// Write the output

using WriterType = itk::ImageFileWriter<OutputImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(hMinimaFilter->GetOutput());

ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());

std::cout << "Test finished." << std::endl;

return EXIT_SUCCESS;

}

However, it is preferable to use a single empty line and use a comment block using the // character

to describe the part of the code at issue, as in:

int

itkHMinimaImageFilterTest(int argc, char * argv[])

{

if (argc != 5)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);

std::cerr << " inputImageFile"

<< " outputImageFile"

<< " height"

<< " fullyConnected" << std::endl;

C.13. Code Layout and Indentation 361

return EXIT_FAILURE;

}

// Define the input and output pixel types and their associated image types.

constexpr unsigned int Dimension = 2;

using InputPixelType = short;

using OutputPixelType = unsigned char;

...

}

or just have an empty line before and after the comment, such as in:

template <typename TInputImage, typename TMaskImage, typename TOutputImage>

void

N4BiasFieldCorrectionImageFilter<TInputImage, TMaskImage, TOutputImage>::

SharpenImage(const RealImageType * unsharpenedImage,

RealImageType * sharpenedImage) const

{

const auto maskImageBufferRange =

MakeImageBufferRange(this->GetMaskImage());

const auto confidenceImageBufferRange =

MakeImageBufferRange(this->GetConfidenceImage());

const MaskPixelType maskLabel = this->GetMaskLabel();

const bool useMaskLabel = this->GetUseMaskLabel();

// Build the histogram for the uncorrected image. Store copy

// in a vnl_vector to utilize vnl FFT routines. Note that variables

// in real space are denoted by a single uppercase letter whereas their

// frequency counterparts are indicated by a trailing lowercase 'f'.

RealType binMaximum = NumericTraits<RealType>::NonpositiveMin();

RealType binMinimum = NumericTraits<RealType>::max();

ImageRegionConstIterator<RealImageType> itU(

unsharpenedImage, unsharpenedImage->GetLargestPossibleRegion());

...

}

Empty lines are not allowed to contain white spaces in ITK.

Logical blocks may be separated by a single-line comment (// Comment) if necessary

in the implementation file (.h). No comment line or any other separation string (e.g.

/***********************/) must be placed between the definition of two methods in the im-

plementation file (.cxx, .hxx).

362 Appendix C. Coding Style Guide

C.13.11 New Line Character

Use std::endl to introduce a new line instead of \n in string literals, e.g.

template <typename TInputImage>

void

MinimumMaximumImageCalculator<TInputImage>::PrintSelf(std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "Minimum: "

<< static_cast<typename NumericTraits<PixelType>::PrintType>(m_Minimum)

<< std::endl;

os << indent << "Maximum: "

<< static_cast<typename NumericTraits<PixelType>::PrintType>(m_Maximum)

<< std::endl;

os << indent << "IndexOfMinimum: " << m_IndexOfMinimum << std::endl;

os << indent << "IndexOfMaximum: " << m_IndexOfMaximum << std::endl;

itkPrintSelfObjectMacro(Image);

os << indent << "Region: " << std::endl;

m_Region.Print(os, indent.GetNextIndent());

os << indent << "RegionSetByUser: " << m_RegionSetByUser << std::endl;

}

C.13.12 End Of File Character

The file must be terminated by a (preferably single) blank line. This policy is enforced by the

KWStyle pre-commit hooks (see Section C.3.2 on page 314).

C.14 Increment/decrement Operators

Systematically use the pre-increment(decrement) syntax, instead of the post-increment(decrement)

syntax:

for (unsigned int i = 0; i < ImageDimension; ++i)

{

...

}

Although the advantage can be very little when using it with a standard type, in the case of iterators

over potentially large structures, the optimization performed by modern compilers may involve a

significant advantage:

C.15. Trailing Return Types 363

while (it != m_Container.end())

{

...

++it;

}

C.15 Trailing Return Types

Whenever choosing between a trailing return type (as introduced with C++11) and the old form of

having the return type before the function name (as was already supported by C++98), prefer the

form that is the shortest, and the simplest.

In the following example, the old form is preferred over a trailing return type:

// Preferred:

template <typename T1, typename T2>

bool

AlmostEquals(T1 x1, T2 x2)

// Rather than:

template <typename T1, typename T2>

auto

AlmostEquals(T1 x1, T2 x2) -> bool

In the following example, a trailing return type is preferred over the old form:

// Preferred:

template <typename TValue, unsigned int VLength>

auto

FixedArray<TValue, VLength>::Size() const -> SizeType

// Rather than:

template <typename TValue, unsigned int VLength>

typename FixedArray<TValue, VLength>::SizeType

FixedArray<TValue, VLength>::Size() const

C.16 Empty Arguments in Methods

The use of the void keyword is discouraged for methods not requiring input arguments. Hence, they

are declared and called with an empty opening/closing parenthesis pair:

364 Appendix C. Coding Style Guide

/** Method doc. */

void

methodName();

and

this->methodName();

C.17 Ternary Operator

The use of the ternary operator

for (unsigned int i = 0; i < m_NumOfThreads; ++i)

{

for (unsigned int j = (i == 0 ? 0 : m_Boundary[i - 1] + 1);

j <= m_Boundary[i];

++j)

{

m_GlobalZHistogram[j] = m_Data[i].m_ZHistogram[j];

}

}

is generally discouraged in ITK, especially in cases where complicated statements have any part of

the ternary operator.

Thus, the above should be expanded to

for (unsigned int i = 0; i < m_NumOfThreads; ++i)

{

if (i == 0)

{

for (unsigned int j = 0; j <= m_Boundary[i]; ++j)

{

m_GlobalZHistogram[j] = m_Data[i].m_ZHistogram[j];

}

}

else

{

for (unsigned int j = m_Boundary[i - 1] + 1; j <= m_Boundary[i]; ++j)

{

m_GlobalZHistogram[j] = m_Data[i].m_ZHistogram[j];

}

}

}

or, performing a code refactoring:

C.18. Using Standard Macros 365

for (unsigned int j = 0; j <= m_Boundary[i]; ++j)

{

m_GlobalZHistogram[j] = m_Data[0].m_ZHistogram[j];

}

for (unsigned int i = 1; i < m_NumOfThreads; ++i)

{

for (unsigned int j = m_Boundary[i - 1] + 1; j <= m_Boundary[i]; ++j)

{

m_GlobalZHistogram[j] = m_Data[i].m_ZHistogram[j];

}

}

However, in simple constructs, such as when initializing a variable that could be const, e.g.

for (unsigned int i = 0; j < ImageDimension; ++i)

{

const elementSign = (m_Step[i] > 0) ? 1.0 : -1.0;

flipMatrix[i][i] = elementSign;

}

a ternary operator can have significant advantage in terms of the reading speed over the alternative

if-else statement with duplicated syntax:

for (unsigned int i = 0; j < ImageDimension; ++i)

{

if (m_Step[i] > 0)

{

elementSign = 1.0;

}

else

{

elementSign = -1.0;

}

flipMatrix[i][i] = elementSign;

}

And hence, the ternary operator is accepted in such cases.

C.18 Using Standard Macros

There are several macros defined in the file itkMacro.h. These macros should be used because

they perform several important operations that if not done correctly can cause serious, hard to debug

problems in the system.

These operations are:

• Object modified time is properly managed.

366 Appendix C. Coding Style Guide

• Debug information is printed.

• Reference counting is handled properly.

• Disallow copy semantics by deleting copy constructor and assignment operator.

Some of the more important object macros are:

• itkNewMacro(T): Creates the static class method New() that interacts with the object factory

to instantiate objects. The method returns a SmartPointer<T> properly reference counted.

• itkOverrideGetNameOfClassMacro(thisClass): Adds an override of the

GetNameOfClass() method to the class.

• ITK DISALLOW COPY AND ASSIGN(TypeName): Disallow copying by declaring copy con-

structor and assignment operator deleted. This must be declared in the public section.

• itkDebugMacro(x): If debug is set on a subclass of itk::Object, prints debug information

to the appropriate output stream.

• itkStaticConstMacro(name, type, value): Creates a static const member of type

type and sets it to the value value.

• itkSetMacro(name, type): Creates a method SetName() that takes an argument of type

type.

• itkGetMacro(name, type): Creates a method GetName() that returns a non-const value of

type type.

• itkGetConstMacro(name, type): Creates a method GetName() that returns a const value

of type type.

• itkSetStringMacro(name): Creates a method SetName() that takes an argument of type

const char*.

• itkGetStringMacro(name): Creates a method GetName() that returns an argumentof type

const char*.

• itkBooleanMacro(name): Creates two methods named NameOn and NameOff that set

true/false boolean values.

• itkSetObjectMacro(name, type): Creates a method SetName() that takes argument type

type *. For ITK objects, itkSetObjectMacro must be used in lieu of itkSetMacro.

• itkGetConstObjectMacro(name, type): Creates a method named GetName() that returns

a itk::SmartPointer to a type type.

• itkSetConstObjectMacro(name, type): Creates a method SetName() that takes an argu-

ment of type const type *.

https://www.itk.org/Doxygen/html/classitk_1_1Object.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

C.18. Using Standard Macros 367

• itkGetConstObjectMacro(name, type): Creates a method named GetName() that returns

a const itk::SmartPointer to a type type.

• itkSetClampMacro(name, type, min, max): Creates a method named SetName() that

takes an argument of type type constraining it to the [min, max] closed interval.

Furthermore, the ITK symbol visibility is governed by some macros using the following rules:

• $ModuleName EXPORT: export for non-templated classes.

• ITK TEMPLATE EXPORT: export for templated classes.

• ITK FORWARD EXPORT: export for forward declarations.

This supports the all the combinations of:

• macOS, Linux and Windows operating systems,

• the shared BUILD SHARED LIBS ON and OFF static linking modes,

• explicit and implicit template instantiation,

• the CMake CMAKE CXX VISIBILITY PRESET flag set to hidden (i.e.

-fvisibility=hidden),

• the CMake flag CMAKE WINDOWS EXPORT ALL SYMBOLS:BOOL=ON.

Please review this file and become familiar with these macros.

All classes must declare the basic macros for object creation and run-time type information (RTTI):

/** Method for creation through the object factory. */

itkNewMacro(Self);

/** Run-time type information (and related methods). */

itkOverrideGetNameOfClassMacro(Image);

Basic types (e.g. int, double, etc.) must be returned by value using the method defined through

the itkGetMacro macro; member data pointers that must not be modified should be returned using

the method defined through the itkGetConstMacro.

When using a macro that accepts a statement, a semi-colon (;) is not required for the argument, e.g.

ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

368 Appendix C. Coding Style Guide

C.19 Exception Handling

ITK exceptions are defined in itkExceptionObject.h. Derived exception classes include:

• itkImageFileReaderException.h for exceptions thrown while trying to read image files

(i.e. DICOM files, JPEG files, metaimage files, etc.).

• itkMeshFileReaderException.h for exceptions thrown while trying to read mesh files.

• itkMeshFileWriterrException.h for exceptions thrown while trying to write mesh files.

Methods throwing exceptions must indicate so in their declaration as in:

/** Initialize the components related to supporting multiple threads. */

virtual void

MultiThreadingInitialize() throw(ExceptionObject);

When a code block is liable to throw an exception, a try/catch block must be used to deal with the

exception. The following rules apply to such blocks

• The exception object should generally be redirected to the error output std::cerr and be

trailed with a line break std::endl.

• In classes that have a member to store the error messages (e.g. m ExceptionMessage), the

exception description must be obtained using GetDescription() and be assigned to the ex-

ception message member.

• Otherwise, the error shall be re-thrown to the caller.

For instance,

try

{

// Code liable to throw an exception

}

catch (const ExceptionObject & exc)

{

std::cerr << exc << std::endl;

}

catch (const std::exception & exc)

{

std::cerr << exc.what() << std::endl;

}

For instance,

C.19. Exception Handling 369

try

{

m_ExceptionMessage = "";

this->TestFileExistanceAndReadability();

}

catch (const ExceptionObject & exc)

{

m_ExceptionMessage = exc.GetDescription();

}

For instance,

// Do the optimization

try

{

m_Optimizer->StartOptimization();

}

catch (const ExceptionObject & exc)

{

// An error has occurred in the optimization.

// Update the parameters.

m_LastTransformParameters = m_Optimizer->GetCurrentPosition();

// Pass the exception to the caller

throw exc;

}

Exceptions can also be thrown outside try/catch blocks, when there is sufficient evidence for that,

e.g. a filename to be read is empty. In such cases, depending on the exception class the following

information should be included:

• the file

• the line

• the error message

of the related exception, e.g.

if (m_FileName == "")

{

throw MeshFileReaderException(

__FILE__, __LINE__, "FileName must be specified", ITK_LOCATION);

}

See Section 3.2.5 on page 29 for details about error handling in ITK.

370 Appendix C. Coding Style Guide

C.19.1 Errors in Pipelines

When in a function an element must have a given value, a check must ensure that such condition is

met. The condition is generally being non-null (e.g. for I/O images), or different from zero (e.g. for

sizes, etc.).

When the I/O objects are not set, the ITK itkAssertInDebugAndIgnoreInReleaseMacro macro

is used: the ITK processing framework should handle this situation and throw the appropriate ex-

ception (e.g. the itk::ProcessObject class), such macro assertion is preferred over an exception,

e.g.

template <typename TInputImage, typename TOutputImage>

void

BinShrinkImageFilter<TInputImage,

TOutputImage>::GenerateInputRequestedRegion()

{

// Call the superclass' implementation of this method.

Superclass::GenerateInputRequestedRegion();

// Get pointers to the input and output.

InputImageType * inputPtr = const_cast<InputImageType *>(this->GetInput());

const OutputImageType * outputPtr = this->GetOutput();

itkAssertInDebugAndIgnoreInReleaseMacro(inputPtr != nullptr);

itkAssertInDebugAndIgnoreInReleaseMacro(outputPtr);

...

}

e.g

template <typename TInputImage, typename TOutputImage>

void

PatchBasedDenoisingBaseImageFilter<TInputImage, TOutputImage>::

SetPatchWeights(const PatchWeightsType & weights)

{

itkAssertOrThrowMacro(

this->GetPatchLengthInVoxels() == weights.GetSize(),

"Unexpected patch size encountered while setting patch weights");

...

}

The itkAssertInDebugAndIgnoreInReleaseMacro macro is useful for logic checks in perfor-

mance sections that should never be violated. itkAssertOrThrowMacro is fine for non-performance

critical sections where it would be helpful to also add an error message.

https://www.itk.org/Doxygen/html/classitk_1_1ProcessObject.html

C.20. Messages 371

C.20 Messages

C.20.1 Messages in Macros

Messages written for debugging purposes which are deemed to be appropriate to remain in the code,

and those reported when raising exceptions should be using the output stream operator (<<) to add

the message to any previous string in the buffer. Messages should start with capitals and should not

finish with a period. Self-contained sentences must be streamed.

itkDebugMacro(<< "Computing Bayes Rule");

or

itkExceptionMacro(<< "The size of the mask differs from the input image");

C.20.2 Messages in Tests

ITK tests are run automatically, and hence, results are not read by humans. Although at times it

may be beneficial (e.g. when a large number of regressions are done in a test, checking different

image types, or using different approaches), tests should not generally contain messages sent to the

standard output.

One of the general exceptions is a message at the end of the test signaling that the test has ended:

...

std::cout << "Test finished." << std::endl;

return EXIT_SUCCESS;

In case of test failure, this allows ITK maintainers to know whether the issue came from the test

execution or from a potential regression against a baseline.

When failures are to be reported in a test (i.e. if an insufficient number of test arguments are provided

or a regression fails), messages must be redirected to the error output.

When an insufficient number of parameters are found, the test arguments should be written in medial

capitals, starting with lower cases.

if (argc != 3)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);

std::cerr << " inputImage outputImage" << std::endl;

return EXIT_FAILURE;

}

372 Appendix C. Coding Style Guide

If the length of the message is longer than 200 characters, the argument list must be split in its

individual components, leaving a white space at the beginning of each line, and the std::cerr

redirection should only exist on the first line. A final line break must be always added. Optional

arguments must be enclosed in square brackets [].

if (argc < 3)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);

std::cerr << " inputImage"

<< " outputImage"

<< " [foregroundValue]"

<< " [backgroundValue]" << std::endl;

return EXIT_FAILURE;

}

When a regression fails in a check, it must be clearly stated that the test failed, and details about the

method that failed to return the correct value, as well as the expected and returned values, must be

provided:

bool tf = colors->SetColor(0, 0, 0, 0, name);

if (tf != true)

{

std::cerr << "Test failed!" << std::endl;

std::cerr << "Error in itk::ColorTable::SetColor" << std::endl;

std::cerr << "Expected: " << true << ", but got: " << tf << std::endl;

return EXIT_FAILURE;

}

If any index is involved (i.e. the test failure stems from a given index position when checking the

values of a list, image, etc.), the index at issue must be specified in the message:

// Check the content of the result image

const OutputImageType::PixelType expectedValue =

static_cast<OutputImageType::PixelType>(valueA * valueB);

const OutputImageType::PixelType epsilon = 1e-6;

while (!oIt.IsAtEnd())

{

if (!itk::Math::FloatAlmostEqual(oIt.Get(), expectedValue, 10, epsilon))

{

std::cerr.precision(

static_cast<int>(itk::Math::abs(std::log10(epsilon))));

std::cerr << "Test failed!" << std::endl;

std::cerr << "Error in pixel value at index [" << oIt.GetIndex() << "]"

<< std::endl;

std::cerr << "Expected value " << expectedValue << std::endl;

std::cerr << " differs from " << oIt.Get();

std::cerr << " by more than " << epsilon << std::endl;

return EXIT_FAILURE;

}

C.21. Concept Checking 373

++oIt;

}

C.21 Concept Checking

C.22 Printing Variables

All member variables, regardless of whether they are publicly exposed or not, must be printed in a

class’ PrintSelf method. Besides being an important sanity check that allows to identify uninitial-

ized variables, it allows to know the state of a class instance at any stage.

The basic conventions for printing member variables are:

• Each variable must be printed on a new line and be indented.

• The name of the variable must immediately follow to the indentation.

• The Superclass must always be printed.

Thus, the general layout for printing member variables is:

Superclass::PrintSelf(os, indent);

os << indent << "<MemberVariableName>" << <MemberVariableValue> << std::endl;

The following additional conventions apply to printing member variables:

• When printing constructs such as matrices, double indentation should be used to print its

contents using itk::Indent::GetNextIndent().

• Objects that can be null (such as itk::SmartPointer) must be printed using the

itkPrintSelfObjectMacro macro.

• Without harm to the previous convention, constructs such as images can be printed using the

Print method.

• Objects that have been declared as a type alias must be casted statically using the

NumericTraits<Type>::PrintType helper formatting.

• The order of the variables should be the same used in their declaration.

For instance,

https://www.itk.org/Doxygen/html/classitk_1_1Indent::GetNextIndent().html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

374 Appendix C. Coding Style Guide

template <typename TInputImage>

void

MinimumMaximumImageCalculator<TInputImage>::PrintSelf(std::ostream & os,

Indent indent) const

{

Superclass::PrintSelf(os, indent);

os << indent << "Minimum: "

<< static_cast<typename NumericTraits<PixelType>::PrintType>(m_Minimum)

<< std::endl;

os << indent << "Maximum: "

<< static_cast<typename NumericTraits<PixelType>::PrintType>(m_Maximum)

<< std::endl;

os << indent << "IndexOfMinimum: " << m_IndexOfMinimum << std::endl;

os << indent << "IndexOfMaximum: " << m_IndexOfMaximum << std::endl;

itkPrintSelfObjectMacro(Image);

os << indent << "Region: " << std::endl;

m_Region.Print(os, indent.GetNextIndent());

os << indent << "RegionSetByUser: " << m_RegionSetByUser << std::endl;

}

C.23 Checking for Null

ITK’s itk::SmartPointer constructs can be checked against the null pointer using either the

syntax

itkSmartPtr.IsNull();

or

itkSmartPtr == nullptr;

The latter, being more explicit, is preferred over the former.

C.24 Writing Tests

The following section provides additional rules that apply to writing tests in ITK.

C.24.1 Code Layout in Tests

The following general layout is recommended for ITK unit tests:

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

C.24. Writing Tests 375

• Input argument number check.

• Input image read (or generation).

• foo class instantiation and basic object checks (e.g. ITK EXERCISE BASIC OBJECT -

METHODS).

• foo class properties’ input argument read and test (e.g. using the macros in

itkTestingMacro.h, such as ITK TEST SET GET VALUE, etc.).

• foo class Update().

• Regression checks.

• Output image write.

Note that constant declarations (e.g. image dimensions, etc.) and type alias declarations (e.g. pixel

and image types, etc.) should be local to where they are used for the sake of readability. If the test

main body uses them, they should be put after the input argument number check section.

C.24.2 Regressions in Tests

Tests should run as long as possible to report as much failures as possible before returning

int

itkAbsImageFilterAndAdaptorTest(int, char *[])

{

int testStatus = EXIT_SUCCESS;

...

// Check the content of the result image.

const OutputImageType::PixelType epsilon = 1e-6;

ot.GoToBegin();

it.GoToBegin();

while (!ot.IsAtEnd())

{

std::cout.precision(

static_cast<int>(itk::Math::abs(std::log10(epsilon))));

std::cout << ot.Get() << " = ";

std::cout << itk::Math::abs(it.Get()) << std::endl;

const InputImageType::PixelType input = it.Get();

const OutputImageType::PixelType output = ot.Get();

const OutputImageType::PixelType absolute = itk::Math::abs(input);

if (!itk::Math::FloatAlmostEqual(absolute, output, 10, epsilon))

{

std::cerr.precision(

static_cast<int>(itk::Math::abs(std::log10(epsilon))));

std::cerr << "Test failed!" << std::endl;

std::cerr << "Error in pixel value at index [" << oIt.GetIndex() << "]"

376 Appendix C. Coding Style Guide

<< std::endl;

std::cerr << "Expected value "

<< "abs(" << input << ") = " << absolute << std::endl;

std::cerr << " differs from " << output();

std::cerr << " by more than " << epsilon << std::endl;

testStatus = EXIT_FAILURE;

}

++ot;

++it;

}

//

// Test AbsImageAdaptor

//

...

// Check the content of the diff image.

std::cout << "Comparing the results with those of an Adaptor" << std::endl;

std::cout << "Verification of the output " << std::endl;

// Create an iterator for going through the image output.

OutputIteratorType dt(diffImage, diffImage->GetRequestedRegion());

dt.GoToBegin();

while (!dt.IsAtEnd())

{

std::cout.precision(

static_cast<int>(itk::Math::abs(std::log10(epsilon))));

const OutputImageType::PixelType diff = dt.Get();

if (!itk::Math::FloatAlmostEqual(

diff, (OutputImageType::PixelType)0, 10, epsilon))

{

std::cerr.precision(

static_cast<int>(itk::Math::abs(std::log10(epsilon))));

std::cerr << "Test failed!" << std::endl;

std::cerr << "Error in pixel value at index [" << dt.GetIndex() << "]"

<< std::endl;

std::cerr << "Expected difference " << diff << std::endl;

std::cerr << " differs from 0 ";

std::cerr << " by more than " << epsilon << std::endl;

testStatus = EXIT_FAILURE;

}

++dt;

}

std::cout << "Test finished." << std::endl;

return testStatus;

}

Note that when dealing with real numbers, a tolerance parameter must be specified in or-

der to avoid precision issues. Furthermore, setting the output message precision with

std::cerr.precision(int n); is recommended to allow for easy identification of the magni-

C.24. Writing Tests 377

tude of the error.

When the magnitude of the error needs to be reported, as in the above examples, the error message

should be split into different lines, all starting with the error output redirection std::cerr << "";.

Care must be taken to appropriately add white space for a correct formatting of the message.

C.24.3 Arguments in Tests

Tests generally require input arguments, whether the filename of an input image, the output im-

age filename for regression purposes, or a variety of other parameters to be set to a filter instance.

However, some tests are self-contained and do not need any input parameter.

In such cases, the test’s main method argument variables do not need to be specified. The generally

accepted syntax for these cases is:

int

itkVersionTest(int, char *[])

Otherwise, it may happen that some test may or may not accept arguments, depending on the imple-

mentation. In such cases, the itkNotUsed ITK macro must be used to avoid compiler warnings:

int

itkGaborKernelFunctionTest(int itkNotUsed(argc), char * itkNotUsed(argv)[])

When a test requires input arguments, a basic sanity check on the presence of the required arguments

must be made. If the test does not have optional arguments, the exact match for the input arguments

must be checked:

if (argc != 3)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);

std::cerr << " inputImage outputImage " << std::endl;

return EXIT_FAILURE;

}

If the test does have optional arguments, the presence of the set of compulsory arguments must be

checked:

if (argc < 3)

{

std::cerr << "Missing parameters." << std::endl;

std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);

std::cerr << " inputImage"

<< " outputImage"

<< " [foregroundValue]"

378 Appendix C. Coding Style Guide

<< " [backgroundValue]" << std::endl;

return EXIT_FAILURE;

}

C.24.4 Testing Enumeration Streaming

The enumeration class streaming operator overload needs to be tested, e.g.

// Test streaming enumeration for MathematicalMorphologyEnums::Algorithm

// elements

const std::set<itk::MathematicalMorphologyEnums::Algorithm> allAlgorithm{

itk::MathematicalMorphologyEnums::Algorithm::BASIC,

itk::MathematicalMorphologyEnums::Algorithm::HISTO,

itk::MathematicalMorphologyEnums::Algorithm::ANCHOR,

itk::MathematicalMorphologyEnums::Algorithm::VHGW

};

for (const auto & ee : allAlgorithm)

{

std::cout << "STREAMED ENUM VALUE MathematicalMorphologyEnums::Algorithm: "

<< ee << std::endl;

}

C.24.5 Test Return Value

Tests must always return a value of type int, even if bool is tempting:

int

itkVersionTest(int, char *[])

Thus, if a test requires a variable to store its exit value due to the need of multiple regressions, an

int variable must be declared:

int

itkAbsImageFilterAndAdaptorTest(int, char *[])

{

int testStatus = EXIT_SUCCESS;

...

return testStatus;

Tests must exit gracefully using the values EXIT SUCCESS (in case of success) or EXIT FAILURE

(in case of failure) defined in the stdlib.h library values. Other ways of exiting tests such as

exit(1);, exit(255);, or exit(EXIT FAILURE); are not allowed in ITK.

C.25. Writing Examples 379

C.25 Writing Examples

Many ITK examples are used in this software guide to demonstrate ITK’s architecture and develop-

ment.

Thanks to scripting work, parts of the *.cxx example files within special placeholders are included

in this software guide. The LATEXplaceholders available to the code for such purpose are:

• Software Guide : BeginLatex and Software Guide : EndLatex: the text within these place-

holders is included in this software guide for text explanations, e.g.

// Software Guide : BeginLatex

//

// Noise present in the image can reduce the capacity of this filter to grow

// large regions. When faced with noisy images, it is usually convenient to

// pre-process the image by using an edge-preserving smoothing filter. Any of

// the filters discussed in Section˜\ref{sec:EdgePreservingSmoothingFilters}

// could be used to this end. In this particular example we use the

// \doxygen{CurvatureFlowImageFilter}, so we need to include its header

// file.

//

// Software Guide : EndLatex

• Software Guide : BeginCodeSnippet and Software Guide : EndCodeSnippet: the text

within these placeholders is included in this software guide for verbatim code snippets, e.g.

// Software Guide : BeginCodeSnippet

#include "itkCurvatureFlowImageFilter.h"

// Software Guide : EndCodeSnippet

Note that anything inside these gets inserted into the document; avoid blank lines or too much

whitespace. Make sure any LATEXcomments included in the code are correct in terms of grammar,

spelling, and are complete sentences.

Note that the code should not exceed 79 columns or it will go out of margins in the final document.

It is recommended that the LATEXcomment blocks are aligned to the code for the sake of readability.

C.26 Doxygen Documentation System

Doxygen is an open-source, powerful system for automatically generating documentation from

source code. To use Doxygen effectively, the developer must insert comments, delimited in a spe-

cial way, that Doxygen extracts to produce the documentation. While there are a large number of

options to Doxygen, ITK community members are required at a minimum to insert Doxygen com-

mands listed in this section.

380 Appendix C. Coding Style Guide

See more at https://www.stack.nl/ dimitri/doxygen/

C.26.1 General Principles

ITK uses a subset of C-style Doxygen markdown. No other markdown style (e.g. Qt, Javadoc) shall

be used.

In ITK, documentation is placed before the documented construct (i.e. a class, a method, a variable,

etc.).

Although not the general rule, if a comment is too short or applies to a single line so that it is a clear

candidate to dwell on that line, it can be placed on the same line using the // comment style, and

leaving a single space before the statement-ending ; and the comment itself, e.g.

template <typename TInputImage, typename TOutputImage>

void

SpecializedImageFilter<TInputImage, TOutputImage>::SpecializedMethod()

{

...

OutputVectorRealType lambda11 = -(x1 * v1) / ((x - x1) * v1); // upper left

OutputVectorRealType lambda12 = -(x1 * v2) / ((x - x1) * v2); // upper right

OutputVectorRealType lambda21 = -(x2 * v1) / ((x - x2) * v1); // lower left

OutputVectorRealType lambda22 = -(x2 * v2) / ((x - x2) * v2); // lower right

...

}

Correct English and complete, grammatically correct sentences must be used when documenting.

Finish the sentences with a period (.).

C.26.2 Documenting Classes

Classes must be documented using the \class, \brief, and \ingroup Doxygen commands, fol-

lowed by the detailed class description. The comment starts with /**, each subsequent line has an

aligned *, and the comment block terminates with a */ on a line of its own. A single white space

should exist between these keywords/characters and the documentation body, e.g.

/** \class Object

* \brief Base class for most ITK classes.

*

* Object is the second-highest level base class for most itk objects.

* It extends the base object functionality of LightObject by

* implementing debug flags/methods and modification time tracking.

*

* \ingroup Module

*/

https://www.stack.nl/~dimitri/doxygen/

C.26. Doxygen Documentation System 381

The \ingroup and other additional Doxygen keywords must be separated from their preceding and

following lines by an empty comment * line.

Doxygen keywords that may most commonly apply to complete a class documentation are

• \note

• \sa

Math formulas in class documentation are formatted following the LATEXguidelines. For more infor-

mation, please visit https://www.stack.nl/ dimitri/doxygen/manual/formulas.html.

Every class must be documented.

C.26.3 Documenting Methods

The method Doxygen documentation must be placed in the header file (.h).

A single white space should separate the comment characters (/**, *, or */) and the comment itself.

The starting (/**) and ending (*/) comment characters must be placed on the same lines as the

comment text, and the lines with the asterisk (*) character should be aligned, e.g.

/** Provides opportunity for the data object to insure internal

* consistency before access. Also causes owning source/filter (if

* any) to update itself. The Update() method is composed of

* UpdateOutputInformation(), PropagateRequestedRegion(), and

* UpdateOutputData(). This method may call methods that throw an

* InvalidRequestedRegionError exception. This exception will leave

* the pipeline in an inconsistent state. You will need to call

* ResetPipeline() on the last ProcessObject in your pipeline in

* order to restore the pipeline to a state where you can call

* Update() again. */

virtual void

Update();

The base class virtual method documentation is automatically applied for such methods in derived

class unless they are overridden. Virtual methods whose meaning or set of instructions differs from

their base class need to be documented in the derived classes. If the base class method documentation

applies, they need not to be documented in derived classes (e.g. the PrinSelf method).

Intra-method documentation must be done where necessary using single-line comment style, and

must be repeated for every line. A single white space should separate the comment character // and

the comment itself, e.g.

// We wish to copy whole lines, otherwise just use the basic implementation.

// Check that the number of internal components match.

if (inRegion.GetSize()[0] != outRegion.GetSize()[0] ||

NumberOfInternalComponents !=

https://www.stack.nl/~dimitri/doxygen/manual/formulas.html

382 Appendix C. Coding Style Guide

ImageAlgorithm::PixelSize<OutputImageType>::Get(outImage))

{

ImageAlgorithm::DispatchedCopy<InputImageType, OutputImageType>(

inImage, outImage, inRegion, outRegion);

return;

}

Self-contained, complete sentences must end with a period.

Every method must be documented.

C.26.4 Documenting Data Members

Class member variables should be documented through their corresponding Get##name/Set##name

methods, using a comment block style shown in the following example:

public:

/** Set/Get the standard deviation of the Gaussian used for smoothing. */

itkSetMacro(Sigma, SigmaArrayType);

itkGetConstMacro(Sigma, SigmaArrayType);

private:

SigmaArrayType m_Sigma;

The documentation block must be aligned to the Get##name/Set##name method indentation.

For bool type variables, the recommended way of documenting its default value is using “On” for

true and “Off” for false:

/** Set/Get direction along the gradient to search.

* Set to true to use the direction that the gradient is pointing;

* set to false for the opposite direction. */

itkGetConstMacro(Polarity, bool);

itkSetMacro(Polarity, bool);

itkBooleanMacro(Polarity);

Member variables that do not have either a Get##name or a Set##name method should also be

documented following the above guidelines.

C.26.5 Documenting Macros

The documentation block in a macro should start in column one, and should be placed immediately

before the macro definition, and will use /* as the starting character, immediately followed by the

body of the documentation, which shall be split into different lines starting with asterisks (*), aligned

C.26. Doxygen Documentation System 383

to the preceding asterisk character, with a single white space indentation for the text, and will end

with the */ character. The macro definition should have a double indentation, e.g.

/** This macro is used to print debug (or other information). They are

* also used to catch errors, etc. Example usage looks like:

* itkDebugMacro(<< "this is debug info" << this->SomeVariable); */

#if defined(NDEBUG)

define itkDebugMacro(x)

define itkDebugStatement(x)

#else

define itkDebugMacro(x) \

do \

{ \

if (this->GetDebug() && ::itk::Object::GetGlobalWarningDisplay()) \

{ \

std::ostringstream itkmsg; \

itkmsg << "Debug: In " __FILE__ ", line " << __LINE__ << "\n" \

<< this->GetNameOfClass() << " (" << this << "): " x \

<< "\n\n"; \

::itk::OutputWindowDisplayDebugText(itkmsg.str().c_str()); \

} \

} while (0)

C.26.6 Documenting Tests

Generally, an ITK test does not need to have a documentation block stating its purpose if this is re-

stricted to testing a single class. However, for tests that check multiple classes or complex pipelines,

documenting its motivation and purpose, as well as its general schema, is recommended.

The documentation block should start in column one, and should be placed immediately before the

main method, and will use /* as the starting character, immediately followed by the body of the

documentation, which shall be split into different lines starting with asterisks (*), aligned to the

preceding asterisk character, with a single white space indentation for the text, and will end with the

*/ character, e.g.

/* Test the SetMetricSamplingPercentage and SetMetricSamplingPercentagePerLevel.

* We only need to explicitly run the SetMetricSamplingPercentage method because

* it invokes the SetMetricSamplingPercentagePerLevel method. */

int

itkImageRegistrationSamplingTest(int, char *[])

It is recommended to document the body of the test with single-line comment style where appropri-

ate.

384 Appendix C. Coding Style Guide

C.27 CMake Style

For writing CMake scripts, the community member is referred to the standard CMake style.

C.28 Documentation Style

The Insight Software Consortium has adopted the following guidelines for producing supplemental

documentation (documentation not produced by Doxygen):

• The common denominator for documentation is either PDF or HTML. All documents in the

system should be available in these formats, even if they are mastered by another system.

• Presentations are acceptable in Microsoft PowerPoint format.

• Administrative and planning documents are acceptable in Microsoft Word format (either

.docx or .rtf).

• Larger documents, such as the user’s or developer’s guide, are written in LATEX.

BIBLIOGRAPHY

[1] M. H. Austern. Generic Programming and the STL:. Professional Computing Series. Addison-

Wesley, 1999. 3.2.1

[2] K.R. Castleman. Digital Image Processing. Prentice Hall, Upper Saddle River, NJ, 1996. 6.4.1,

6.4.2

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable

Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995. 3.2.6, 4.3.9,

8.6

[4] R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison-Wesley, Reading, MA,

1993. 6.4.1, 6.4.1, 6.4.2

[5] H. Gray. Gray’s Anatomy. Merchant Book Company, sixteenth edition, 2003. 4.1.5

[6] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular Cell

Biology. W. H. Freeman and Company, 2000. 4.1.5

[7] D. Malacara. Color Vision and Colorimetry: Theory and Applications. SPIE PRESS, 2002.

4.1.5, 4.1.5

[8] D. Musser and A. Saini. STL Tutorial and Reference Guide. Professional Computing Series.

Addison-Wesley, 1996. 3.2.1

[9] G. Wyszecki. Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley-

Interscience, 2000. 4.1.5, 4.1.5

INDEX

Accept()

itk::Mesh, 102

AddVisitor()

itk::Mesh, 102

BoundaryFeature, 86

BufferedRegion, 196

CDash, 236

CellAutoPointer, 73

TakeOwnership(), 74, 77, 80, 83, 90

CellBoundaryFeature, 86

CellDataContainer

Begin(), 77, 81

ConstIterator, 77, 81

End(), 77, 81

Iterator, 77, 81

CellDataIterator

increment, 78, 81

Value(), 78, 81

CellInterface

iterating points, 100

PointIdsBegin(), 100

PointIdsEnd(), 100

CellInterfaceVisitor, 97, 98

requirements, 97, 99

Visit(), 97, 99

CellIterator

increment, 75

Value(), 75

CellMultiVisitorType, 102

CellsContainer

Begin(), 75, 85, 91, 94

End(), 75, 85, 91, 94

CellType

creation, 74, 77, 80, 83, 90

GetNumberOfPoints(), 75

PointIdIterator, 86, 91

PointIdsBegin(), 86, 91

PointIdsEnd(), 86, 91

Print(), 75

CellVisitor, 97, 98, 101

CMake, 12

downloading, 12

Command/Observer design pattern, 30

const-correctness, 65, 67

ConstIterator, 65, 67

convolution

kernels, 168

operators, 168

convolution filtering, 167

Dashboard, 236

data object, 34, 195

data processing pipeline, 35, 195

discussion, 7

388 Index

down casting, 75

Downloading, 10

edge detection, 164

error handling, 29

event handling, 30

exceptions, 29

factory, 27

filter, 35, 195

overview of creation, 196

forward iteration, 142

garbage collection, 28

Gaussian blurring, 170

Generic Programming, 141

generic programming, 26, 141

GetBoundaryAssignment()

itk::Mesh, 88

GetNumberOfBoundaryFeatures()

itk::Mesh, 88

GetNumberOfFaces()

TetrahedronCell, 100

GetPointId(), 99

Git, 235

Hello World, 21

image region, 195

ImageAdaptor

RGB blue channel, 185

RGB green channel, 185

RGB red channel, 184

ImageAdaptors, 181

ImageLinearIteratorWithIndex

4D images, 152

InvokeEvent(), 30

iteration region, 142

Iterators

advantages of, 141

and 4D images, 152

and bounds checking, 144

and image lines, 151

and image regions, 142, 145, 146, 148

and image slices, 154

const, 142

construction of, 142, 148

definition of, 141

Get(), 144

GetIndex(), 144

GoToBegin(), 142

GoToEnd(), 142

image, 141–179

image dimensionality, 148

IsAtBegin(), 144

IsAtEnd(), 144

neighborhood, 159–179

operator++(), 143

operator+=(), 143

operator–, 143

operator-=(), 143

programming interface, 142–146

Set(), 144

SetPosition(), 144

speed, 146, 148

Value(), 145

iterators

neighborhood

and convolution, 168

ITK

advanced configuration, 14

building, 18

configuration, 14

discussion, 7

downloading release, 10

Git repository, 10, 235

history, 8

installation, 18

modules, 14

itk::ArrowSpatialObject, 113

itk::AutomaticTopologyMeshSource, 92

AddPoint(), 93

AddTetrahedron(), 93

header, 92

IdentifierArrayType, 92

IdentifierType, 92

itk::AutoPointer, 73

Index 389

TakeOwnership(), 74, 77, 80, 83, 90

itk::BlobSpatialObject, 114

itk::Cell

CellAutoPointer, 73

itk::CellInterface

GetPointId(), 99

itk::Command, 30

itk::CovariantVector, 70

Header, 68

Instantiation, 68

itk::PointSet, 68

itk::DefaultStaticMeshTraits

Header, 79

Instantiation, 79

itk::DTITubeSpatialObject, 134

itk::EllipseSpatialObject, 115

itk::GaussianSpatialObject, 117

itk::GroupSpatialObject, 118

itk::GroupSpatialObject - Continued, 119

itk::Image, 34

Allocate(), 43

direction, 48

GetPixel(), 45, 53

Header, 41

Index, 42, 49

IndexType, 42

Instantiation, 41

itk::ImageRegion, 42

New(), 42

origin, 47

PhysicalPoint, 49

Pointer, 42

read, 44

RegionType, 42

SetDirection(), 48

SetOrigin(), 47

SetPixel(), 45

SetRegions(), 43

SetSpacing(), 47

Size, 42

SizeType, 42

Spacing, 47

TransformPhysicalPointToIndex(), 49

Vector pixel, 54

itk::ImageRandomConstIteratorWithIndex,

158–159

and statistics, 158

begin and end positions, 158

example of using, 158

ReinitializeSeed(), 158

sample size, 158

SetNumberOfSamples(), 158

itk::ImageSliceIteratorWithIndex

example of using, 155–157

IsAtEndOfSlice(), 154

IsAtReverseEndOfSlice(), 154

NextSlice(), 154

PreviousSlice(), 154

SetFirstDirection(), 154

SetSecondDirection(), 154

itk::ImageAdaptor

Header, 182, 183, 186, 188

Instantiation, 182, 183, 186, 188

performing computation, 188

RGB blue channel, 185

RGB green channel, 185

RGB red channel, 184

itk::ImageFileReader

GetOutput(), 44

Instantiation, 44

New(), 44

Pointer, 44

RGB Image, 53

SetFileName(), 44

Update(), 44

itk::ImageLinearIteratorWithIndex, 151–154

example of using, 151–152

GoToBeginOfLine(), 151

GoToEndOfLine(), 151

GoToReverseBeginOfLine(), 151

IsAtEndOfLine(), 151

IsAtReverseEndOfLine(), 151

NextLine(), 151

PreviousLine(), 151

itk::ImageMaskSpatialObject, 123

itk::ImageRegionIterator, 146–148

390 Index

example of using, 146–148

itk::ImageRegionIteratorWithIndex,

148–150

example of using, 149–150

itk::ImageSliceIteratorWithIndex, 154–157

itk::ImageSpatialObject, 121

itk::ImportImageFilter

Header, 55

Instantiation, 55

New(), 55

Pointer, 55

SetRegion(), 55

itk::LandmarkSpatialObject, 124

itk::LineCell

Header, 72

header, 82, 89

Instantiation, 73, 76, 80, 82, 84, 89, 90

SetPointId(), 84, 90

itk::LineSpatialObject, 126

itk::MapContainer

InsertElement(), 60, 63

itk::Mesh, 34, 70

Accept(), 98, 102

AddVisitor(), 98, 102

BoundaryFeature, 86

Cell data, 76

CellInterfaceVisitorImplementation, 97,

101

CellAutoPointer, 73

CellFeatureCount, 88

CellInterfaceVisitor, 97–99, 101

CellIterator, 91, 94

CellsContainer, 85, 91, 94

CellsIterators, 85

CellType, 73

CellType casting, 75

CellVisitor, 97, 98, 101

Dynamic, 70

GetBoundaryAssignment(), 88

GetCellData(), 77, 81

GetCells(), 75, 85, 91, 94

GetNumberOfBoundaryFeatures(), 88

GetNumberOfCells(), 75

GetNumberOfPoints(), 71

GetPoints(), 72, 85, 90

Header file, 70

Inserting cells, 74

Instantiation, 71, 76, 82, 89

Iterating cell data, 77, 81

Iterating cells, 75

K-Complex, 82, 92

MultiVisitor, 102

New(), 71, 73, 76, 80, 82, 89

PixelType, 76, 82, 89

Pointer, 76, 80, 82, 89

Pointer(), 71

PointIterator, 90

PointsContainer, 85, 90

PointsIterators, 85

PointType, 71, 73, 76, 80, 82, 89

PolyLine, 88

SetBoundaryAssignment(), 86

SetCell(), 74, 77, 80, 83, 90

SetPoint(), 71, 73, 76, 80, 82, 89

Static, 70

traits, 73

itk::MeshSpatialObject, 127

itk::PixelAccessor

performing computation, 188

with parameters, 186, 188

itk::PointSet, 57

data iterator, 65

Dynamic, 57

GetNumberOfPoints(), 59, 61

GetPoint(), 59

GetPointData(), 62, 63, 65, 67

GetPoints(), 60, 61, 65, 67

Instantiation, 58

iterating point data, 65

iterating points, 65

itk::CovariantVector, 68

New(), 58

PixelType, 62

PointDataContainer, 63

PointDataIterator, 69

Pointer, 58

Index 391

PointIterator, 67

points iterator, 65

PointsContainer, 59

PointType, 58

RGBPixel, 64

SetPoint(), 59, 65, 66, 69

SetPointData(), 62, 63, 65, 66, 69

SetPoints(), 60

Static, 57

Vector pixels, 66

itk::ReadWriteSpatialObject, 137

itk::RGBPixel, 52

GetBlue(), 53

GetGreen(), 53

GetRed(), 53

header, 52

Image, 52

Instantiation, 52, 64

itk::SpatialObjectToImageStatistics-

Calculator, 138

itk::SpatialObjectHierarchy, 106

itk::SpatialObjectToImageFilter

Update(), 130

itk::SpatialObjectTransform, 108

itk::SurfaceSpatialObject, 130

itk::TetrahedronCell

header, 82

Instantiation, 82, 83

SetPointId(), 83

itk::TriangleCell

header, 82

Instantiation, 82, 83

SetPointId(), 83

itk::TubeSpatialObject, 132

itk::Vector, 54

header, 54

Instantiation, 54

itk::Image, 54

itk::PointSet, 66

itk::VectorContainer

InsertElement(), 60, 63

itk::VertexCell

header, 82, 89

Instantiation, 82, 89

LargestPossibleRegion, 195

LineCell

GetNumberOfPoints(), 75

Print(), 75

mapper, 35, 195

mesh region, 195

modified time, 196

module, 209

include, 212

src, 213

test, 213

third-party, 231

top level, 209

wrapping, 216

MultiVisitor, 102

Neighborhood iterators

active neighbors, 175

as stencils, 175

boundary conditions, 163

bounds checking, 163

construction of, 159

examples, 164

inactive neighbors, 175

radius of, 159

shaped, 175

NeighborhoodIterator

examples, 164

GetCenterPixel(), 162

GetImagePointer(), 162

GetIndex(), 163

GetNeighborhood(), 163

GetNeighborhoodIndex(), 163

GetNext(), 162

GetOffset(), 163

GetPixel(), 162

GetPrevious(), 162

GetRadius(), 159

GetSlice(), 163

NeedToUseBoundaryConditionOff(),

164

392 Index

NeedToUseBoundaryConditionOn(),

164

OverrideBoundaryCondition(), 164

ResetBoundaryCondition(), 164

SetCenterPixel(), 162

SetNeighborhood(), 163

SetNext(), 162

SetPixel(), 162, 164

SetPrevious(), 162

Size(), 162

NeighborhoodIterators, 162, 163

numerics, 33

object factory, 27

pipeline

downstream, 196

execution details, 199

information, 196

modified time, 196

overview of execution, 197

PropagateRequestedRegion, 200

streaming large data, 197

ThreadedFilterExecution, 201

UpdateOutputData, 201

UpdateOutputInformation, 199

upstream, 196

PixelAccessor

RGB blue channel, 185

RGB green channel, 185

RGB red channel, 184

PointDataContainer

Begin(), 63

End(), 64

increment ++, 64

InsertElement(), 63

Iterator, 63

New(), 63

Pointer, 63

PointIdIterator, 86, 91

PointIdsBegin(), 86, 91, 100

PointIdsEnd(), 86, 91, 100

PointsContainer

Begin(), 61, 72, 85, 90

End(), 61, 72, 85, 90

InsertElement(), 60

Iterator, 61, 72

New(), 60

Pointer, 60

Size(), 61

Print(), 75

process object, 35, 195

ProgressEvent(), 30

Python, 37

Quality Dashboard, 236

reader, 35

region, 195

RequestedRegion, 196

reverse iteration, 142, 145

scene graph, 36

SetBoundaryAssignment()

itk::Mesh, 86

SetCell()

itk::Mesh, 74

ShapedNeighborhoodIterator, 175

ActivateOffset(), 175

ClearActiveList(), 175

DeactivateOffset(), 175

examples of, 176

GetActiveIndexListSize(), 175

Iterator::Begin(), 176

Iterator::End(), 176

smart pointer, 28

Sobel operator, 164, 167

source, 35, 195

spatial object, 36

streaming, 35

template, 26

TetrahedronCell

GetNumberOfFaces(), 100

VNL, 33

wrapping, 37

The ITK Software Guide

Book 2: Design and Functionality

Fourth Edition

Updated for ITK version 5.4.0

Hans J. Johnson, Matthew M. McCormick, Luis Ibáñez,

and the Insight Software Consortium

May 21, 2024

https://itk.org

https://discourse.itk.org/

https://itk.org
https://discourse.itk.org/

The purpose of computing is Insight, not numbers.

Richard Hamming

ABSTRACT

The National Library of Medicine Insight Segmentation and Registration Toolkit, shortened as the

Insight Toolkit (ITK), is an open-source software toolkit for performing registration and segmenta-

tion. Segmentation is the process of identifying and classifying data found in a digitally sampled

representation. Typically the sampled representation is an image acquired from such medical instru-

mentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences

between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan

in order to combine the information contained in both.

ITK is a cross-platform software. It uses a build environment known as CMake to manage platform-

specific project generation and compilation process in a platform-independent way. ITK is imple-

mented in C++. ITK’s implementation style employs generic programming, which involves the

use of templates to generate, at compile-time, code that can be applied generically to any class or

data-type that supports the operations used by the template. The use of C++ templating means that

the code is highly efficient and many issues are discovered at compile-time, rather than at run-time

during program execution. It also means that many of ITK’s algorithms can be applied to arbitrary

spatial dimensions and pixel types.

An automated wrapping system integrated with ITK generates an interface between C++ and a high-

level programming language Python. This enables rapid prototyping and faster exploration of ideas

by shortening the edit-compile-execute cycle. In addition to automated wrapping, the SimpleITK

project provides a streamlined interface to ITK that is available for C++, Python, Java, CSharp, R,

Tcl and Ruby.

Developers from around the world can use, debug, maintain, and extend the software because ITK

is an open-source project. ITK uses a model of software development known as Extreme Program-

ming. Extreme Programming collapses the usual software development methodology into a simulta-

neous iterative process of design-implement-test-release. The key features of Extreme Programming

are communication and testing. Communication among the members of the ITK community is what

helps manage the rapid evolution of the software. Testing is what keeps the software stable. An

extensive testing process supported by the system known as CDash measures the quality of ITK

https://itk.org
https://cmake.org
https://www.python.org
https://www.itk.org/Wiki/SimpleITK
https://open.cdash.org/index.php?project=Insight

code on a daily basis. The ITK Testing Dashboard is updated continuously, reflecting the quality of

the code at any moment.

The most recent version of this document is available online at

https://itk.org/ItkSoftwareGuide.pdf. This book is a guide for developing software

with ITK; it is the second of two companion books. This book covers detailed design and

functionality for reading and writing images, filtering, registration, segmentation, and performing

statistical analysis. The first book covers building and installation, general architecture and design,

as well as the process of contributing in the ITK community.

https://itk.org/ItkSoftwareGuide.pdf

CONTRIBUTORS

The Insight Toolkit (ITK) has been created by the efforts of many talented individuals and presti-

gious organizations. It is also due in great part to the vision of the program established by Dr. Terry

Yoo and Dr. Michael Ackerman at the National Library of Medicine.

This book lists a few of these contributors in the following paragraphs. Not all developers of ITK are

credited here, so please visit the Web pages at https://itk.org/ITK/project/parti.html for the names of

additional contributors, as well as checking the GIT source logs for code contributions.

The following is a brief description of the contributors to this software guide and their contributions.

Luis Ibáñez is principal author of this text. He assisted in the design and layout of the text, im-

plemented the bulk of the LATEX and CMake build process, and was responsible for the bulk of the

content. He also developed most of the example code found in the Insight/Examples directory.

Will Schroeder helped design and establish the organization of this text and the Insight/Examples

directory. He is principal content editor, and has authored several chapters.

Lydia Ng authored the description for the registration framework and its components, the section

on the multiresolution framework, and the section on deformable registration methods. She also

edited the section on the resampling image filter and the sections on various level set segmentation

algorithms.

Joshua Cates authored the iterators chapter and the text and examples describing watershed seg-

mentation. He also co-authored the level-set segmentation material.

Jisung Kim authored the chapter on the statistics framework.

Julien Jomier contributed the chapter on spatial objects and examples on model-based registration

using spatial objects.

Karthik Krishnan reconfigured the process for automatically generating images from all the exam-

ples. Added a large number of new examples and updated the Filtering and Segmentation chapters

https://itk.org
https://itk.org/ITK/project/parti.html

vi

for the second edition.

Stephen Aylward contributed material describing spatial objects and their application.

Tessa Sundaram contributed the section on deformable registration using the finite element method.

Mark Foskey contributed the examples on the itk::AutomaticTopologyMeshSource class.

Mathieu Malaterre contributed the entire section on the description and use of DICOM readers and

writers based on the GDCM library. He also contributed an example on the use of the VTKImageIO

class.

Gavin Baker contributed the section on how to write composite filters. Also known as minipipeline

filters.

Since the software guide is generated in part from the ITK source code itself, many ITK developers

have been involved in updating and extending the ITK documentation. These include David Doria,

Bradley Lowekamp, Mark Foskey, Gaëtan Lehmann, Andreas Schuh, Tom Vercauteren, Cory

Quammen, Daniel Blezek, Paul Hughett, Matthew McCormick, Josh Cates, Arnaud Gelas,

Jim Miller, Brad King, Gabe Hart, Hans Johnson.

Hans Johnson, Kent Williams, Constantine Zakkaroff, Xiaoxiao Liu, Ali Ghayoor, and

Matthew McCormick updated the documentation for the initial ITK Version 4 release.

Luis Ibáñez and Sébastien Barré designed the original Book 1 cover. Xiaoxiao Liu, Bill

Lorensen, Luis Ibáñez, and Matthew McCormick created the 3D printed anatomical objects that

were photographed by Sébastien Barré for the Book 2 cover. Steve Jordan designed the layout of

the covers.

https://www.itk.org/Doxygen/html/classitk_1_1AutomaticTopologyMeshSource.html

CONTENTS

1 Reading and Writing Images 1

1.1 Basic Example . 1

1.2 Pluggable Factories . 5

1.3 Using ImageIO Classes Explicitly . 5

1.4 Reading and Writing RGB Images . 7

1.5 Reading, Casting and Writing Images . 8

1.6 Extracting Regions . 10

1.7 Extracting Slices . 12

1.8 Reading and Writing Vector Images . 15

1.8.1 The Minimal Example . 15

1.8.2 Producing and Writing Covariant Images . 17

1.8.3 Reading Covariant Images . 19

1.9 Reading and Writing Complex Images . 21

1.10 Extracting Components from Vector Images . 23

1.11 Reading and Writing Image Series . 25

1.11.1 Reading Image Series . 25

1.11.2 Writing Image Series . 27

1.11.3 Reading and Writing Series of RGB Images . 29

1.12 Reading and Writing DICOM Images . 32

1.12.1 Foreword . 32

viii CONTENTS

1.12.2 Reading and Writing a 2D Image . 33

1.12.3 Reading a 2D DICOM Series and Writing a Volume 37

1.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series 40

1.12.5 Printing DICOM Tags From One Slice . 44

1.12.6 Printing DICOM Tags From a Series . 48

1.12.7 Changing a DICOM Header . 51

2 Filtering 55

2.1 Thresholding . 55

2.1.1 Binary Thresholding . 55

2.1.2 General Thresholding . 58

2.2 Edge Detection . 61

2.2.1 Canny Edge Detection . 61

2.3 Casting and Intensity Mapping . 63

2.3.1 Linear Mappings . 63

2.3.2 Non Linear Mappings . 66

2.4 Gradients . 69

2.4.1 Gradient Magnitude . 69

2.4.2 Gradient Magnitude With Smoothing . 70

2.4.3 Derivative Without Smoothing . 73

2.5 Second Order Derivatives . 74

2.5.1 Second Order Recursive Gaussian . 74

2.5.2 Laplacian Filters . 79

Laplacian Filter Recursive Gaussian . 79

2.6 Neighborhood Filters . 84

2.6.1 Mean Filter . 84

2.6.2 Median Filter . 86

2.6.3 Mathematical Morphology . 87

Binary Filters . 88

Grayscale Filters . 90

2.6.4 Voting Filters . 93

Binary Median Filter . 93

CONTENTS ix

Hole Filling Filter . 97

Iterative Hole Filling Filter . 98

2.7 Smoothing Filters . 101

2.7.1 Blurring . 101

Discrete Gaussian . 103

Binomial Blurring . 104

Recursive Gaussian IIR . 106

2.7.2 Local Blurring . 109

Gaussian Blur Image Function . 110

2.7.3 Edge Preserving Smoothing . 110

Introduction to Anisotropic Diffusion . 110

Gradient Anisotropic Diffusion . 111

Curvature Anisotropic Diffusion . 114

Curvature Flow . 115

MinMaxCurvature Flow . 118

Bilateral Filter . 121

2.7.4 Edge Preserving Smoothing in Vector Images . 124

Vector Gradient Anisotropic Diffusion . 125

Vector Curvature Anisotropic Diffusion . 126

2.7.5 Edge Preserving Smoothing in Color Images . 128

Gradient Anisotropic Diffusion . 128

Curvature Anisotropic Diffusion . 130

2.8 Distance Map . 134

2.9 Geometric Transformations . 137

2.9.1 Filters You Should be Afraid to Use . 137

2.9.2 Change Information Image Filter . 137

2.9.3 Flip Image Filter . 137

2.9.4 Resample Image Filter . 139

Introduction . 139

Importance of Spacing and Origin . 144

A Complete Example . 152

x CONTENTS

Rotating an Image . 155

Rotating and Scaling an Image . 157

Resampling using a deformation field . 159

Subsampling and image in the same space . 160

Resampling an Anisotropic image to make it Isotropic 164

2.10 Frequency Domain . 169

2.10.1 Computing a Fast Fourier Transform (FFT) . 169

2.10.2 Filtering on the Frequency Domain . 172

2.11 Extracting Surfaces . 175

2.11.1 Surface extraction . 175

3 Registration 179

3.1 Registration Framework . 179

3.2 ”Hello World” Registration . 181

3.3 Features of the Registration Framework . 192

3.4 Monitoring Registration . 195

3.5 Multi-Modality Registration . 199

3.5.1 Mattes Mutual Information . 200

3.6 Center Initialization . 207

3.6.1 Rigid Registration in 2D . 207

3.6.2 Initializing with Image Moments . 215

3.6.3 Similarity Transform in 2D . 221

3.6.4 Rigid Transform in 3D . 223

3.6.5 Centered Initialized Affine Transform . 230

3.7 Multi-Resolution Registration . 233

3.7.1 Fundamentals . 235

3.7.2 Fundamentals . 236

3.8 Multi-Stage Registration . 242

3.8.1 Fundamentals . 243

3.8.2 Cascaded Multistage Registration . 251

3.9 Transforms . 256

3.9.1 Geometrical Representation . 256

CONTENTS xi

3.9.2 Transform General Properties . 259

3.9.3 Identity Transform . 260

3.9.4 Translation Transform . 260

3.9.5 Scale Transform . 261

3.9.6 Scale Logarithmic Transform . 263

3.9.7 Euler2DTransform . 263

3.9.8 CenteredRigid2DTransform . 264

3.9.9 Similarity2DTransform . 266

3.9.10 QuaternionRigidTransform . 267

3.9.11 VersorTransform . 268

3.9.12 VersorRigid3DTransform . 268

3.9.13 Euler3DTransform . 269

3.9.14 Similarity3DTransform . 270

3.9.15 Rigid3DPerspectiveTransform . 271

3.9.16 AffineTransform . 271

3.9.17 BSplineDeformableTransform . 273

3.9.18 KernelTransforms . 274

3.10 Interpolators . 276

3.10.1 Nearest Neighbor Interpolation . 277

3.10.2 Linear Interpolation . 277

3.10.3 B-Spline Interpolation . 277

3.10.4 Windowed Sinc Interpolation . 278

3.11 Metrics . 281

3.11.1 Mean Squares Metric . 283

Exploring a Metric . 283

3.11.2 Normalized Correlation Metric . 286

3.11.3 Mutual Information Metric . 286

Parzen Windowing . 287

Mattes et al. Implementation . 288

3.11.4 Normalized Mutual Information Metric . 288

3.11.5 Demons metric . 289

xii CONTENTS

3.11.6 ANTS neighborhood correlation metric . 289

3.12 Optimizers . 290

3.12.1 Registration using the One plus One Evolutionary Optimizer 292

3.12.2 Registration using masks constructed with Spatial objects 294

3.12.3 Rigid registrations incorporating prior knowledge 296

3.13 Deformable Registration . 299

3.13.1 FEM-Based Image Registration . 299

3.13.2 BSplines Image Registration . 302

3.13.3 Level Set Motion for Deformable Registration . 304

3.13.4 BSplines Multi-Grid Image Registration . 308

3.13.5 BSplines Multi-Grid Image Registration in 3D . 311

3.13.6 Image Warping with Kernel Splines . 312

3.13.7 Image Warping with BSplines . 314

3.14 Demons Deformable Registration . 318

3.14.1 Asymmetrical Demons Deformable Registration . 319

3.14.2 Symmetrical Demons Deformable Registration . 323

3.15 Visualizing Deformation fields . 327

3.15.1 Visualizing 2D deformation fields . 327

3.15.2 Visualizing 3D deformation fields . 327

3.16 Model Based Registration . 333

3.17 Point Set Registration . 343

3.17.1 Point Set Registration in 2D . 345

3.17.2 Point Set Registration in 3D . 347

3.17.3 Point Set to Distance Map Metric . 349

3.18 Registration Troubleshooting . 350

3.18.1 Too many samples outside moving image buffer . 351

3.18.2 General heuristics for parameter fine-tunning . 351

4 Segmentation 355

4.1 Region Growing . 355

4.1.1 Connected Threshold . 356

4.1.2 Otsu Segmentation . 359

CONTENTS xiii

4.1.3 Neighborhood Connected . 363

4.1.4 Confidence Connected . 366

Application of the Confidence Connected filter on the Brain Web Data 370

4.1.5 Isolated Connected . 370

4.1.6 Confidence Connected in Vector Images . 373

4.2 Segmentation Based on Watersheds . 377

4.2.1 Overview . 377

4.2.2 Using the ITK Watershed Filter . 379

4.3 Level Set Segmentation . 383

4.3.1 Fast Marching Segmentation . 385

4.3.2 Shape Detection Segmentation . 393

4.3.3 Geodesic Active Contours Segmentation . 402

4.3.4 Threshold Level Set Segmentation . 405

4.3.5 Canny-Edge Level Set Segmentation . 411

4.3.6 Laplacian Level Set Segmentation . 415

4.3.7 Geodesic Active Contours Segmentation With Shape Guidance 418

4.4 Feature Extraction . 428

4.4.1 Hough Transform . 429

Line Extraction . 429

Circle Extraction . 433

5 Statistics 437

5.1 Data Containers . 437

5.1.1 Sample Interface . 438

5.1.2 Sample Adaptors . 440

ImageToListSampleAdaptor . 440

PointSetToListSampleAdaptor . 442

5.1.3 Histogram . 446

5.1.4 Subsample . 449

5.1.5 MembershipSample . 451

5.1.6 MembershipSampleGenerator . 454

5.1.7 K-d Tree . 456

xiv CONTENTS

5.2 Algorithms and Functions . 461

5.2.1 Sample Statistics . 462

Mean and Covariance . 462

Weighted Mean and Covariance . 464

5.2.2 Sample Generation . 466

SampleToHistogramFilter . 466

NeighborhoodSampler . 468

5.2.3 Sample Sorting . 470

5.2.4 Probability Density Functions . 473

Gaussian Distribution . 473

5.2.5 Distance Metric . 474

Euclidean Distance . 474

5.2.6 Decision Rules . 476

Maximum Decision Rule . 476

Minimum Decision Rule . 477

Maximum Ratio Decision Rule . 477

5.2.7 Random Variable Generation . 478

Normal (Gaussian) Distribution . 479

5.3 Statistics applied to Images . 479

5.3.1 Image Histograms . 479

Scalar Image Histogram with Adaptor . 479

Scalar Image Histogram with Generator . 482

Color Image Histogram with Generator . 484

Color Image Histogram Writing . 487

5.3.2 Image Information Theory . 490

Computing Image Entropy . 491

Computing Images Mutual Information . 494

5.4 Classification . 500

5.4.1 k-d Tree Based k-Means Clustering . 501

5.4.2 K-Means Classification . 507

5.4.3 Bayesian Plug-In Classifier . 510

CONTENTS xv

5.4.4 Expectation Maximization Mixture Model Estimation 516

5.4.5 Classification using Markov Random Field . 519

LIST OF FIGURES

1.1 Collaboration diagram of the ImageIO classes . 3

1.2 Use cases of ImageIO factories . 4

1.3 Class diagram of ImageIO factories . 4

2.1 BinaryThresholdImageFilter transfer function . 56

2.2 BinaryThresholdImageFilter output . 58

2.3 ThresholdImageFilter using the threshold-below mode. 59

2.4 ThresholdImageFilter using the threshold-above mode . 59

2.5 ThresholdImageFilter using the threshold-outside mode . 59

2.6 Sigmoid Parameters . 66

2.7 Effect of the Sigmoid filter. 68

2.8 GradientMagnitudeImageFilter output . 71

2.9 GradientMagnitudeRecursiveGaussianImageFilter output . 73

2.10 Effect of the Derivative filter. 75

2.11 Output of the LaplacianRecursiveGaussianImageFilter. 82

2.12 Effect of the MedianImageFilter . 86

2.13 Effect of the Median filter. 88

2.14 Effect of erosion and dilation in a binary image. 91

2.15 Effect of erosion and dilation in a grayscale image. 93

2.16 Effect of the BinaryMedian filter. 95

xviii List of Figures

2.17 Effect of many iterations on the BinaryMedian filter. 96

2.18 Effect of the VotingBinaryHoleFilling filter. 99

2.19 Effect of the VotingBinaryIterativeHoleFilling filter. 102

2.20 DiscreteGaussianImageFilter Gaussian diagram. 103

2.21 DiscreteGaussianImageFilter output . 105

2.22 BinomialBlurImageFilter output. 106

2.23 Output of the SmoothingRecursiveGaussianImageFilter. 109

2.24 GradientAnisotropicDiffusionImageFilter output . 113

2.25 CurvatureAnisotropicDiffusionImageFilter output . 116

2.26 CurvatureFlowImageFilter output . 118

2.27 MinMaxCurvatureFlow computation . 119

2.28 MinMaxCurvatureFlowImageFilter output . 121

2.29 BilateralImageFilter output . 124

2.30 VectorGradientAnisotropicDiffusionImageFilter output . 126

2.31 VectorCurvatureAnisotropicDiffusionImageFilter output . 128

2.32 VectorGradientAnisotropicDiffusionImageFilter on RGB . 131

2.33 VectorCurvatureAnisotropicDiffusionImageFilter output on RGB 133

2.34 Various Anisotropic Diffusion compared . 133

2.35 DanielssonDistanceMapImageFilter output . 135

2.36 SignedDanielssonDistanceMapImageFilter output . 137

2.37 Effect of the FlipImageFilter . 139

2.38 Effect of the Resample filter . 142

2.39 Analysis of resampling in common coordinate system . 142

2.40 ResampleImageFilter with a translation by (−30,−50) . 143

2.41 ResampleImageFilter. Analysis of a translation by (−30,−50) 144

2.42 ResampleImageFilter highlighting image borders . 145

2.43 ResampleImageFilter selecting the origin of the output image 146

2.44 ResampleImageFilter origin in the output image . 147

2.45 ResampleImageFilter selecting the origin of the input image 148

2.46 ResampleImageFilter use of naive viewers . 149

2.47 ResampleImageFilter and output image spacing . 150

List of Figures xix

2.48 ResampleImageFilter naive viewers . 150

2.49 ResampleImageFilter with non-unit spacing . 151

2.50 Effect of a rotation on the resampling filter. 152

2.51 Input and output image placed in a common reference system 153

2.52 Effect of the Resample filter rotating an image . 156

2.53 Effect of the Resample filter rotating and scaling an image 159

3.1 Image Registration Concept . 179

3.2 A Typical Registration Framework Components . 180

3.3 Registration Framework Components . 180

3.4 Fixed and Moving images in registration framework . 187

3.5 HelloWorld registration output images . 189

3.6 Pipeline structure of the registration example . 189

3.7 Trace of translations and metrics during registration . 191

3.8 Registration Coordinate Systems . 193

3.9 Command/Observer and the Registration Framework . 198

3.10 Multi-Modality Registration Inputs . 203

3.11 MattesMutualInformationImageToImageMetricv4 output images 204

3.12 MattesMutualInformationImageToImageMetricv4 output plots 205

3.13 MattesMutualInformationImageToImageMetricv4 number of bins 206

3.14 Rigid2D Registration input images . 212

3.15 Rigid2D Registration output images . 212

3.16 Rigid2D Registration output plots . 213

3.17 Rigid2D Registration input images . 214

3.18 Rigid2D Registration output images . 214

3.19 Rigid2D Registration output plots . 215

3.20 Effect of changing the center of rotation . 219

3.21 CenteredTransformInitializer input images . 219

3.22 CenteredTransformInitializer output images . 220

3.23 CenteredTransformInitializer output plots . 220

3.24 Fixed and Moving image registered with Similarity2DTransform 224

3.25 Output of the Similarity2DTransform registration . 224

xx List of Figures

3.26 Similarity2DTransform registration plots . 225

3.27 CenteredTransformInitializer input images . 229

3.28 CenteredTransformInitializer output images . 229

3.29 CenteredTransformInitializer output plots . 230

3.30 AffineTransform registration . 234

3.31 AffineTransform output images . 234

3.32 AffineTransform output plots . 235

3.33 Conceptual representation of Multi-Resolution registration 237

3.34 Multi-Resolution registration input images . 241

3.35 Multi-Resolution registration output images . 242

3.36 AffineTransform registration . 251

3.37 Multistage registration input images . 252

3.38 Multistage registration input images . 255

3.39 Geometrical representation objects in ITK . 256

3.40 Mapping moving image to fixed image in Registration . 276

3.41 Need for interpolation in Registration . 276

3.42 BSpline Interpolation Concepts . 278

3.43 Parzen Windowing in Mutual Information . 281

3.44 Mean Squares Metric Plots . 285

3.45 Class diagram of the Optimizers hierarchy in ITKv4 . 291

3.46 FEM-based deformable registration results . 299

3.47 Demon’s deformable registration output . 308

3.48 Demon’s deformable registration output . 322

3.49 Demon’s deformable registration output . 326

3.50 Deformation field magnitudes . 328

3.51 Calculator . 328

3.52 Visualized Def field . 329

3.53 Visualized Def field4 . 330

3.54 Deformation field output . 332

3.55 Difference image . 332

3.56 Model to Image Registration Framework Components . 333

List of Figures xxi

3.57 Model to Image Registration Framework Concept . 334

3.58 SpatialObject to Image Registration results . 344

4.1 ConnectedThreshold segmentation results . 359

4.2 OtsuThresholdImageFilter output . 361

4.3 NeighborhoodConnected segmentation results . 366

4.4 ConfidenceConnected segmentation results . 370

4.5 Whitematter Confidence Connected segmentation. 371

4.6 Axial, sagittal, and coronal slice of Confidence Connected segmentation. 371

4.7 IsolatedConnected segmentation results . 374

4.8 VectorConfidenceConnected segmentation results . 376

4.9 Watershed Catchment Basins . 378

4.10 Watersheds Hierarchy of Regions . 378

4.11 Watersheds filter composition . 379

4.12 Watershed segmentation output . 382

4.13 Zero Set Concept . 383

4.14 Grid position of the embedded level-set surface. 384

4.15 FastMarchingImageFilter collaboration diagram . 385

4.16 FastMarchingImageFilter intermediate output . 392

4.17 FastMarchingImageFilter segmentations . 393

4.18 ShapeDetectionLevelSetImageFilter collaboration diagram 394

4.19 ShapeDetectionLevelSetImageFilter intermediate output . 401

4.20 ShapeDetectionLevelSetImageFilter segmentations . 402

4.21 GeodesicActiveContourLevelSetImageFilter collaboration diagram 403

4.22 GeodesicActiveContourLevelSetImageFilter intermediate output 406

4.23 GeodesicActiveContourImageFilter segmentations . 407

4.24 ThresholdSegmentationLevelSetImageFilter collaboration diagram 408

4.25 Propagation term for threshold-based level set segmentation 408

4.26 ThresholdSegmentationLevelSet segmentations . 410

4.27 CannySegmentationLevelSetImageFilter collaboration diagram 412

4.28 Segmentation results of CannyLevelSetImageFilter . 414

4.29 LaplacianSegmentationLevelSetImageFilter collaboration diagram 416

xxii List of Figures

4.30 Segmentation results of LaplacianLevelSetImageFilter . 418

4.31 GeodesicActiveContourShapePriorLevelSetImageFilter collaboration diagram 420

4.32 GeodesicActiveContourShapePriorImageFilter input image and initial model 427

4.33 Corpus callosum PCA modes . 427

4.34 GeodesicActiveContourShapePriorImageFilter segmentations 428

5.1 Sample class inheritance tree . 437

5.2 Histogram . 446

5.3 Simple conceptual classifier . 500

5.4 Statistical classification framework . 501

5.5 Two normal distributions plot . 504

5.6 Output of the KMeans classifier . 510

5.7 Bayesian plug-in classifier for two Gaussian classes . 511

5.8 Output of the ScalarImageMarkovRandomField . 525

LIST OF TABLES

3.1 Geometrical Elementary Objects . 257

3.2 Identity Transform Characteristics . 260

3.3 Translation Transform Characteristics . 261

3.4 Scale Transform Characteristics . 262

3.5 Scale Logarithmic Transform Characteristics . 263

3.6 Euler2D Transform Characteristics . 264

3.7 CenteredRigid2D Transform Characteristics . 265

3.8 Similarity2D Transform Characteristics . 266

3.9 QuaternionRigid Transform Characteristics . 267

3.10 Versor Transform Characteristics . 268

3.11 Versor Rigid3D Transform Characteristics . 269

3.12 Euler3D Transform Characteristics . 270

3.13 Similarity3D Transform Characteristics . 271

3.14 Rigid3DPerspective Transform Characteristics . 272

3.15 Affine Transform Characteristics . 272

3.16 BSpline Deformable Transform Characteristics . 274

3.17 LBFGS Optimizer trace . 331

4.1 ConnectedThreshold example parameters . 358

4.2 IsolatedConnectedImageFilter example parameters . 373

xxiv List of Tables

4.3 FastMarching segmentation example parameters . 391

4.4 ShapeDetection example parameters . 400

4.5 GeodesicActiveContour segmentation example parameters 405

4.6 ThresholdSegmentationLevelSet segmentation parameters 411

CHAPTER

ONE

READING AND WRITING IMAGES

This chapter describes the toolkit architecture supporting reading and writing of images to files. ITK

does not enforce any particular file format, instead, it provides a structure supporting a variety of

formats that can be easily extended by the user as new formats become available.

We begin the chapter with some simple examples of file I/O.

1.1 Basic Example

The source code for this section can be found in the file

ImageReadWrite.cxx.

The classes responsible for reading and writing images are located at the beginning and end of the

data processing pipeline. These classes are known as data sources (readers) and data sinks (writers).

Generally speaking they are referred to as filters, although readers have no pipeline input and writers

have no pipeline output.

The reading of images is managed by the class itk::ImageFileReader while writing is performed

by the class itk::ImageFileWriter. These two classes are independent of any particular file

format. The actual low level task of reading and writing specific file formats is done behind the

scenes by a family of classes of type itk::ImageIO.

The first step for performing reading and writing is to include the following headers.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

Then, as usual, a decision must be made about the type of pixel used to represent the image processed

by the pipeline. Note that when reading and writing images, the pixel type of the image is not

necessarily the same as the pixel type stored in the file. Your choice of the pixel type (and hence

template parameter) should be driven mainly by two considerations:

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html

2 Chapter 1. Reading and Writing Images

• It should be possible to cast the pixel type in the file to the pixel type you select. This casting

will be performed using the standard C-language rules, so you will have to make sure that the

conversion does not result in information being lost.

• The pixel type in memory should be appropriate to the type of processing you intend to apply

on the images.

A typical selection for medical images is illustrated in the following lines.

using PixelType = short;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

Note that the dimension of the image in memory should match that of the image in the file. There

are a couple of special cases in which this condition may be relaxed, but in general it is better to

ensure that both dimensions match.

We can now instantiate the types of the reader and writer. These two classes are parameterized over

the image type.

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

Then, we create one object of each type using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed to the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters to create a pipeline. For example, we can

create a short pipeline by passing the output of the reader directly to the input of the writer.

writer->SetInput(reader->GetOutput());

At first glance this may look like a quite useless program, but it is actually implementing a powerful

file format conversion tool! The execution of the pipeline is triggered by the invocation of the

Update() methods in one of the final objects. In this case, the final data pipeline object is the writer.

It is a wise practice of defensive programming to insert any Update() call inside a try/catch block

in case exceptions are thrown during the execution of the pipeline.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.1. Basic Example 3

1

PNGImageIO DicomImageIOMetaImageIO

CanReadFile():bool
CanWriteFile():bool

ImageIO

VTKImageIO

RawImageIO

GiplImageIO VOLImageIO

ImageFileWriterImageFileReader

1

1 1

Figure 1.1: Collaboration diagram of the ImageIO classes.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

Note that exceptions should only be caught by pieces of code that know what to do with them. In

a typical application this catch block should probably reside in the GUI code. The action on the

catch block could inform the user about the failure of the IO operation.

The IO architecture of the toolkit makes it possible to avoid explicit specification of the file format

used to read or write images.1 The object factory mechanism enables the ImageFileReader and

ImageFileWriter to determine (at run-time) which file format it is working with. Typically, file

formats are chosen based on the filename extension, but the architecture supports arbitrarily complex

processes to determine whether a file can be read or written. Alternatively, the user can specify the

data file format by explicit instantiation and assignment of the appropriate itk::ImageIO subclass.

For historical reasons and as a convenience to the user, the itk::ImageFileWriter also has a

Write() method that is aliased to the Update() method. You can in principle use either of them

but Update() is recommended since Write() may be deprecated in the future.

To better understand the IO architecture, please refer to Figures 1.1, 1.2, and 1.3.

The following section describes the internals of the IO architecture provided in the toolkit.

1In this example no file format is specified; this program can be used as a general file conversion utility.

https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

4 Chapter 1. Reading and Writing Images

file
name

Register

CanWrite ?

CanRead ?

MetaImageIOFactory

PNGImageIOFactory

ImageIOFactory

Pluggable Factories Pluggable Factories

ImageFileReader

ImageFileWriter

CreateImageIO
for Reading

CreateImageIO
for Writing

filename

filename

filename

Figure 1.2: Use cases of ImageIO factories.

1

Ge4xImageIOFactory

PNGImageIOFactory

JPEGImageIOFactory

VTKImageIOFactory

NrrdImageIOFactory

MetaImageIOFactory

DicomImageIOFactory

GDCMImageIOFactory

VOLImageIOFactory

BMPImageIOFactory

MetaImageIOFactory

TIFFImageIOFactory
 SiemensVisionIOFactory

StimulateImageIOFactory

GiplImageIOFactory

RawImageIOFactory

AnalyzeImageIOFactory

RegisterFactory(factory:ObjectFactoryBase)

ObjectFactoryBase

CreateImageIO(string)
RegisterBuiltInFactories()

ImageIOFactory

*

Figure 1.3: Class diagram of the ImageIO factories.

1.2. Pluggable Factories 5

1.2 Pluggable Factories

The principle behind the input/output mechanism used in ITK is known as pluggable-factories

[20]. This concept is illustrated in the UML diagram in Figure 1.1. From the user’s point of

view the objects responsible for reading and writing files are the itk::ImageFileReader and

itk::ImageFileWriter classes. These two classes, however, are not aware of the details involved

in reading or writing particular file formats like PNG or DICOM. What they do is dispatch the user’s

requests to a set of specific classes that are aware of the details of image file formats. These classes

are the itk::ImageIO classes. The ITK delegation mechanism enables users to extend the number

of supported file formats by just adding new classes to the ImageIO hierarchy.

Each instance of ImageFileReader and ImageFileWriter has a pointer to an ImageIO object. If this

pointer is empty, it will be impossible to read or write an image and the image file reader/writer

must determine which ImageIO class to use to perform IO operations. This is done basically by

passing the filename to a centralized class, the itk::ImageIOFactory and asking it to identify any

subclass of ImageIO capable of reading or writing the user-specified file. This is illustrated by the

use cases on the right side of Figure 1.2. The ImageIOFactory acts here as a dispatcher that helps

locate the actual IO factory classes corresponding to each file format.

Each class derived from ImageIO must provide an associated factory class capable of producing an

instance of the ImageIO class. For example, for PNG files, there is a itk::PNGImageIO object

that knows how to read this image files and there is a itk::PNGImageIOFactory class capable

of constructing a PNGImageIO object and returning a pointer to it. Each time a new file format is

added (i.e., a new ImageIO subclass is created), a factory must be implemented as a derived class of

the ObjectFactoryBase class as illustrated in Figure 1.3.

For example, in order to read PNG files, a PNGImageIOFactory is created and registered with the

central ImageIOFactory singleton2 class as illustrated in the left side of Figure 1.2. When the Im-

ageFileReader asks the ImageIOFactory for an ImageIO capable of reading the file identified with

filename the ImageIOFactory will iterate over the list of registered factories and will ask each one of

them if they know how to read the file. The factory that responds affirmatively will be used to create

the specific ImageIO instance that will be returned to the ImageFileReader and used to perform the

read operations.

In most cases the mechanism is transparent to the user who only interacts with the ImageFileReader

and ImageFileWriter. It is possible, however, to explicitly select the type of ImageIO object to use.

This is illustrated by the following example.

1.3 Using ImageIO Classes Explicitly

The source code for this section can be found in the file

ImageReadExportVTK.cxx.

2Singleton means that there is only one instance of this class in a particular application

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
https://www.itk.org/Doxygen/html/classitk_1_1PNGImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1PNGImageIOFactory.html

6 Chapter 1. Reading and Writing Images

In cases where the user knows what file format to use and wants to indicate this explicitly, a specific

itk::ImageIO class can be instantiated and assigned to the image file reader or writer. This cir-

cumvents the itk::ImageIOFactory mechanism which tries to find the appropriate ImageIO class

for performing the IO operations. Explicit selection of the ImageIO also allows the user to invoke

specialized features of a particular class which may not be available from the general API provided

by ImageIO.

The following example illustrates explicit instantiation of an IO class (in this case a VTK file format),

setting its parameters and then connecting it to the itk::ImageFileWriter .

The example begins by including the appropriate headers.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkVTKImageIO.h"

Then, as usual, we select the pixel types and the image dimension. Remember, if the file format

represents pixels with a particular type, C-style casting will be performed to convert the data.

using PixelType = unsigned short;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

We can now instantiate the reader and writer. These two classes are parameterized over the image

type. We instantiate the itk::VTKImageIO class as well. Note that the ImageIO objects are not

templated.

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

using ImageIOType = itk::VTKImageIO;

Then, we create one object of each type using the New() method and assigning the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

auto vtkIO = ImageIOType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

We can now connect these readers and writers to filters in a pipeline. For example, we can create a

short pipeline by passing the output of the reader directly to the input of the writer.

https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIOFactory.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.4. Reading and Writing RGB Images 7

writer->SetInput(reader->GetOutput());

Explicitly declaring the specific VTKImageIO allow users to invoke methods specific to a particular

IO class. For example, the following line specifies to the writer to use ASCII format when writing

the pixel data.

vtkIO->SetFileTypeToASCII();

The VTKImageIO object is then connected to the ImageFileWriter. This will short-circuit the action

of the ImageIOFactory mechanism. The ImageFileWriter will not attempt to look for other ImageIO

objects capable of performing the writing tasks. It will simply invoke the one provided by the user.

writer->SetImageIO(vtkIO);

Finally we invoke Update() on the ImageFileWriter and place this call inside a try/catch block in

case any errors occur during the writing process.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

Although this example only illustrates how to use an explicit ImageIO class with the Image-

FileWriter, the same can be done with the ImageFileReader. The typical case in which this is

done is when reading raw image files with the itk::RawImageIO object. The drawback of this

approach is that the parameters of the image have to be explicitly written in the code. The direct use

of raw files is strongly discouraged in medical imaging. It is always better to create a header for

a raw file by using any of the file formats that combine a text header file and a raw binary file, like

itk::MetaImageIO, itk::GiplImageIO and itk::VTKImageIO.

1.4 Reading and Writing RGB Images

The source code for this section can be found in the file

RGBImageReadWrite.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1RawImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1GiplImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1VTKImageIO.html

8 Chapter 1. Reading and Writing Images

RGB images are commonly used for representing data acquired from cryogenic sections, optical

microscopy and endoscopy. This example illustrates how to read and write RGB color images to

and from a file. This requires the following headers as shown.

#include "itkRGBPixel.h"

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

The itk::RGBPixel class is templated over the type used to represent each one of the red, green

and blue components. A typical instantiation of the RGB image class might be as follows.

using PixelType = itk::RGBPixel<unsigned char>;

using ImageType = itk::Image<PixelType, 2>;

The image type is used as a template parameter to instantiate the reader and writer.

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

auto reader = ReaderType::New();

auto writer = WriterType::New();

The filenames of the input and output files must be provided to the reader and writer respectively.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Finally, execution of the pipeline can be triggered by invoking the Update() method in the writer.

writer->Update();

You may have noticed that apart from the declaration of the PixelType there is nothing in this code

specific to RGB images. All the actions required to support color images are implemented internally

in the itk::ImageIO objects.

1.5 Reading, Casting and Writing Images

The source code for this section can be found in the file

ImageReadCastWrite.cxx.

Given that ITK is based on the Generic Programming paradigm, most of the types are defined at

compilation time. It is sometimes important to anticipate conversion between different types of

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
https://www.itk.org

1.5. Reading, Casting and Writing Images 9

images. The following example illustrates the common case of reading an image of one pixel type

and writing it as a different pixel type. This process not only involves casting but also rescaling the

image intensity since the dynamic range of the input and output pixel types can be quite different.

The itk::RescaleIntensityImageFilter is used here to linearly rescale the image values.

The first step in this example is to include the appropriate headers.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkRescaleIntensityImageFilter.h"

Then, as usual, a decision should be made about the pixel type that should be used to represent the

images. Note that when reading an image, this pixel type is not necessarily the pixel type of the

image stored in the file. Instead, it is the type that will be used to store the image as soon as it is read

into memory.

using InputPixelType = float;

using OutputPixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

Note that the dimension of the image in memory should match the one of the image in the file. There

are a couple of special cases in which this condition may be relaxed, but in general it is better to

ensure that both dimensions match.

We can now instantiate the types of the reader and writer. These two classes are parameterized over

the image type.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

Below we instantiate the RescaleIntensityImageFilter class that will linearly scale the image inten-

sities.

using FilterType =

itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;

A filter object is constructed and the minimum and maximum values of the output are selected using

the SetOutputMinimum() and SetOutputMaximum() methods.

auto filter = FilterType::New();

filter->SetOutputMinimum(0);

filter->SetOutputMaximum(255);

https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

10 Chapter 1. Reading and Writing Images

Then, we create the reader and writer and connect the pipeline.

auto reader = ReaderType::New();

auto writer = WriterType::New();

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

The name of the files to be read and written are passed with the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Finally we trigger the execution of the pipeline with the Update() method on the writer. The output

image will then be the scaled and cast version of the input image.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.6 Extracting Regions

The source code for this section can be found in the file

ImageReadRegionOfInterestWrite.cxx.

This example should arguably be placed in the previous filtering chapter. However its usefulness for

typical IO operations makes it interesting to mention here. The purpose of this example is to read an

image, extract a subregion and write this subregion to a file. This is a common task when we want

to apply a computationally intensive method to the region of interest of an image.

As usual with ITK IO, we begin by including the appropriate header files.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

The itk::RegionOfInterestImageFilter is the filter used to extract a region from an image. Its

header is included below.

https://www.itk.org/Doxygen/html/classitk_1_1RegionOfInterestImageFilter.html

1.6. Extracting Regions 11

#include "itkRegionOfInterestImageFilter.h"

Image types are defined below.

using InputPixelType = short;

using OutputPixelType = short;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The types for the itk::ImageFileReader and itk::ImageFileWriter are instantiated using the

image types.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The RegionOfInterestImageFilter type is instantiated using the input and output image types. A

filter object is created with the New() method and assigned to a itk::SmartPointer.

using FilterType =

itk::RegionOfInterestImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The RegionOfInterestImageFilter requires a region to be defined by the user. The region is specified

by an itk::Index indicating the pixel where the region starts and an itk::Size indicating how

many pixels the region has along each dimension. In this example, the specification of the region is

taken from the command line arguments (this example assumes that a 2D image is being processed).

OutputImageType::IndexType start;

start[0] = std::stoi(argv[3]);

start[1] = std::stoi(argv[4]);

OutputImageType::SizeType size;

size[0] = std::stoi(argv[5]);

size[1] = std::stoi(argv[6]);

An itk::ImageRegion object is created and initialized with start and size obtained from the com-

mand line.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

12 Chapter 1. Reading and Writing Images

OutputImageType::RegionType desiredRegion;

desiredRegion.SetSize(size);

desiredRegion.SetIndex(start);

Then the region is passed to the filter using the SetRegionOfInterest() method.

filter->SetRegionOfInterest(desiredRegion);

Below, we create the reader and writer using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the data processing pipeline.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a

try/catch block in case exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.7 Extracting Slices

The source code for this section can be found in the file

ImageReadExtractWrite.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.7. Extracting Slices 13

This example illustrates the common task of extracting a 2D slice from a 3D volume. This is typi-

cally used for display purposes and for expediting user feedback in interactive programs. Here we

simply read a 3D volume, extract one of its slices and save it as a 2D image. Note that caution

should be used when working with 2D slices from a 3D dataset, since for most image processing

operations, the application of a filter on an extracted slice is not equivalent to first applying the filter

in the volume and then extracting the slice.

In this example we start by including the appropriate header files.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

The filter used to extract a region from an image is the itk::ExtractImageFilter. Its header is

included below. This filter is capable of extracting (N −1)-dimensional images from N-dimensional

ones.

#include "itkExtractImageFilter.h"

Image types are defined below. Note that the input image type is 3D and the output image type is

2D.

using InputPixelType = short;

using OutputPixelType = short;

using InputImageType = itk::Image<InputPixelType, 3>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The types for the itk::ImageFileReader and itk::ImageFileWriter are instantiated using the

image types.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

Below, we create the reader and writer using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

https://www.itk.org/Doxygen/html/classitk_1_1ExtractImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

14 Chapter 1. Reading and Writing Images

The ExtractImageFilter type is instantiated using the input and output image types. A filter object is

created with the New() method and assigned to a itk::SmartPointer.

using FilterType = itk::ExtractImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

filter->InPlaceOn();

filter->SetDirectionCollapseToSubmatrix();

The ExtractImageFilter requires a region to be defined by the user. The region is specified by an

itk::Index indicating the pixel where the region starts and an itk::Size indicating how many

pixels the region has along each dimension. In order to extract a 2D image from a 3D data set, it is

enough to set the size of the region to 0 in one dimension. This will indicate to ExtractImageFilter

that a dimensional reduction has been specified. Here we take the region from the largest possible

region of the input image. Note that UpdateOutputInformation() is being called first on the

reader. This method updates the metadata in the output image without actually reading in the bulk-

data.

reader->UpdateOutputInformation();

InputImageType::RegionType inputRegion =

reader->GetOutput()->GetLargestPossibleRegion();

We take the size from the region and collapse the size in the Z component by setting its value to 0.

This will indicate to the ExtractImageFilter that the output image should have a dimension less than

the input image.

InputImageType::SizeType size = inputRegion.GetSize();

size[2] = 0;

Note that in this case we are extracting a Z slice, and for that reason, the dimension to be collapsed

is the one with index 2. You may keep in mind the association of index components {X = 0,Y =
1,Z = 2}. If we were interested in extracting a slice perpendicular to the Y axis we would have set

size[1]=0;.

Then, we take the index from the region and set its Z value to the slice number we want to extract.

In this example we obtain the slice number from the command line arguments.

InputImageType::IndexType start = inputRegion.GetIndex();

const unsigned int sliceNumber = std::stoi(argv[3]);

start[2] = sliceNumber;

Finally, an itk::ImageRegion object is created and initialized with the start and size we just

prepared using the slice information.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html
https://www.itk.org/Doxygen/html/classitk_1_1Size.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegion.html

1.8. Reading and Writing Vector Images 15

InputImageType::RegionType desiredRegion;

desiredRegion.SetSize(size);

desiredRegion.SetIndex(start);

Then the region is passed to the filter using the SetExtractionRegion() method.

filter->SetExtractionRegion(desiredRegion);

Below we connect the reader, filter and writer to form the data processing pipeline.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a

try/catch block in case exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.8 Reading and Writing Vector Images

Images whose pixel type is a Vector, a CovariantVector, an Array, or a Complex are quite common

in image processing. It is convenient then to describe rapidly how those images can be saved into

files and how they can be read from those files later on.

1.8.1 The Minimal Example

The source code for this section can be found in the file

VectorImageReadWrite.cxx.

This example illustrates how to read and write an image of pixel type itk::Vector.

We should include the header files for the Image, the ImageFileReader and the ImageFileWriter.

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

16 Chapter 1. Reading and Writing Images

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

Then we define the specific type of vector to be used as pixel type.

constexpr unsigned int VectorDimension = 3;

using PixelType = itk::Vector<float, VectorDimension>;

We define the image dimension, and along with the pixel type we use it for fully instantiating the

image type.

constexpr unsigned int ImageDimension = 2;

using ImageType = itk::Image<PixelType, ImageDimension>;

Having the image type at hand, we can instantiate the reader and writer types, and use them for

creating one object of each type.

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

auto reader = ReaderType::New();

auto writer = WriterType::New();

A filename must be provided to both the reader and the writer. In this particular case we take those

filenames from the command line arguments.

reader->SetFileName(argv[1]);

writer->SetFileName(argv[2]);

This being a minimal example, we create a short pipeline where we simply connect the output of the

reader to the input of the writer.

writer->SetInput(reader->GetOutput());

The execution of this short pipeline is triggered by invoking the writer’s Update() method. This

invocation must be placed inside a try/catch block since its execution may result in exceptions

being thrown.

1.8. Reading and Writing Vector Images 17

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

Of course, you could envision the addition of filters in between the reader and the writer. Those

filters could perform operations on the vector image.

1.8.2 Producing and Writing Covariant Images

The source code for this section can be found in the file

CovariantVectorImageWrite.cxx.

This example illustrates how to write an image whose pixel type is CovariantVector. For prac-

tical purposes all the content in this example is applicable to images of pixel type itk::Vector,

itk::Point and itk::FixedArray. These pixel types are similar in that they are all arrays of

fixed size in which the components have the same representational type.

In order to make this example a bit more interesting we setup a pipeline to read an im-

age, compute its gradient and write the gradient to a file. Gradients are represented with

itk::CovariantVectors as opposed to Vectors. In this way, gradients are transformed correctly

under itk::AffineTransforms or in general, any transform having anisotropic scaling.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

We use the itk::GradientRecursiveGaussianImageFilter in order to compute the image gra-

dient. The output of this filter is an image whose pixels are CovariantVectors.

#include "itkGradientRecursiveGaussianImageFilter.h"

We read an image of short pixels and compute the gradient to produce an image of CovariantVectors

where each component is of type float.

using InputPixelType = short;

using ComponentType = float;

constexpr unsigned int Dimension = 2;

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientRecursiveGaussianImageFilter.html

18 Chapter 1. Reading and Writing Images

using OutputPixelType = itk::CovariantVector<ComponentType, Dimension>;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image types.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The GradientRecursiveGaussianImageFilter class is instantiated using the input and output image

types. A filter object is created with the New() method and assigned to a itk::SmartPointer.

using FilterType =

itk::GradientRecursiveGaussianImageFilter<InputImageType,

OutputImageType>;

auto filter = FilterType::New();

We select a value for the σ parameter of the GradientRecursiveGaussianImageFilter. Note that σ for

this filter is specified in millimeters.

filter->SetSigma(1.5); // Sigma in millimeters

Below, we create the reader and writer using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed to the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the data processing pipeline.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a

try/catch block in case exceptions are thrown.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.8. Reading and Writing Vector Images 19

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.8.3 Reading Covariant Images

Let’s now take the image that we just created and read it into another program.

The source code for this section can be found in the file

CovariantVectorImageRead.cxx.

This example illustrates how to read an image whose pixel type is CovariantVector. For practi-

cal purposes this example is applicable to images of pixel type itk::Vector, itk::Point and

itk::FixedArray. These pixel types are similar in that they are all arrays of fixed size in which

the components have the same representation type.

In this example we are reading a gradient image from a file (written in the previous example) and

computing its magnitude using the itk::VectorMagnitudeImageFilter . Note that this filter is

different from the itk::GradientMagnitudeImageFilter which actually takes a scalar image as

input and computes the magnitude of its gradient. The VectorMagnitudeImageFilter class takes an

image of vector pixel type as input and computes pixel-wise the magnitude of each vector.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkVectorMagnitudeImageFilter.h"

#include "itkRescaleIntensityImageFilter.h"

We read an image of itk::CovariantVector pixels and compute pixel magnitude to pro-

duce an image where each pixel is of type unsigned short. The components of the Covari-

antVector are selected to be float here. Notice that a renormalization is required in order to

map the dynamic range of the magnitude values into the range of the output pixel type. The

itk::RescaleIntensityImageFilter is used to achieve this.

using ComponentType = float;

constexpr unsigned int Dimension = 2;

using InputPixelType = itk::CovariantVector<ComponentType, Dimension>;

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorMagnitudeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

20 Chapter 1. Reading and Writing Images

using MagnitudePixelType = float;

using OutputPixelType = unsigned short;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using MagnitudeImageType = itk::Image<MagnitudePixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image types.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The VectorMagnitudeImageFilter is instantiated using the input and output image types. A filter

object is created with the New() method and assigned to a itk::SmartPointer.

using FilterType =

itk::VectorMagnitudeImageFilter<InputImageType, MagnitudeImageType>;

auto filter = FilterType::New();

The RescaleIntensityImageFilter class is instantiated next.

using RescaleFilterType =

itk::RescaleIntensityImageFilter<MagnitudeImageType, OutputImageType>;

auto rescaler = RescaleFilterType::New();

In the following the minimum and maximum values for the output image are specified. Note the use

of the itk::NumericTraits class which allows us to define a number of type-related constants in

a generic way. The use of traits is a fundamental characteristic of generic programming [5, 1].

rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());

rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

Below, we create the reader and writer using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed with the SetFileName() method.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.9. Reading and Writing Complex Images 21

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the data processing pipeline.

filter->SetInput(reader->GetOutput());

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a

try/catch block in case exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.9 Reading and Writing Complex Images

The source code for this section can be found in the file

ComplexImageReadWrite.cxx.

This example illustrates how to read and write an image of pixel type std::complex. The complex

type is defined as an integral part of the C++ language. The characteristics of the type are specified

in the C++ standard document in Chapter 26 ”Numerics Library”, page 565, in particular in section

26.2 [4].

We start by including the headers of the complex class, the image, and the reader and writer classes.

#include <complex>

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

The image dimension and pixel type must be declared. In this case we use the std::complex<> as

the pixel type. Using the dimension and pixel type we proceed to instantiate the image type.

22 Chapter 1. Reading and Writing Images

constexpr unsigned int Dimension = 2;

using PixelType = std::complex<float>;

using ImageType = itk::Image<PixelType, Dimension>;

The image file reader and writer types are instantiated using the image type. We can then create

objects for both of them.

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

auto reader = ReaderType::New();

auto writer = WriterType::New();

File names should be provided for both the reader and the writer. In this particular example we take

those file names from the command line arguments.

reader->SetFileName(argv[1]);

writer->SetFileName(argv[2]);

Here we simply connect the output of the reader as input to the writer. This simple program could

be used for converting complex images from one file format to another.

writer->SetInput(reader->GetOutput());

The execution of this short pipeline is triggered by invoking the Update() method of the writer.

This invocation must be placed inside a try/catch block since its execution may result in exceptions

being thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

For a more interesting use of this code, you may want to add a filter in between the reader and the

writer and perform any complex image to complex image operation. A practical application of this

code is presented in section 2.10 in the context of Fourier analysis.

1.10. Extracting Components from Vector Images 23

1.10 Extracting Components from Vector Images

The source code for this section can be found in the file

CovariantVectorImageExtractComponent.cxx.

This example illustrates how to read an image whose pixel type is CovariantVector, extract one

of its components to form a scalar image and finally save this image into a file.

The itk::VectorIndexSelectionCastImageFilter is used to extract a scalar from the vector

image. It is also possible to cast the component type when using this filter. It is the user’s responsi-

bility to make sure that the cast will not result in any information loss.

Let’s start by including the relevant header files.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkVectorIndexSelectionCastImageFilter.h"

#include "itkRescaleIntensityImageFilter.h"

We read an image of itk::CovariantVector pixels and extract one of its components to generate

a scalar image of a consistent pixel type. Then, we rescale the intensities of this scalar image and

write it as an image of unsigned short pixels.

using ComponentType = float;

constexpr unsigned int Dimension = 2;

using InputPixelType = itk::CovariantVector<ComponentType, Dimension>;

using OutputPixelType = unsigned short;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using ComponentImageType = itk::Image<ComponentType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The itk::ImageFileReader and itk::ImageFileWriter are instantiated using the image types.

using ReaderType = itk::ImageFileReader<InputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The VectorIndexSelectionCastImageFilter is instantiated using the input and output image types. A

filter object is created with the New() method and assigned to a itk::SmartPointer.

using FilterType =

itk::VectorIndexSelectionCastImageFilter<InputImageType,

ComponentImageType>;

auto componentExtractor = FilterType::New();

https://www.itk.org/Doxygen/html/classitk_1_1VectorIndexSelectionCastImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

24 Chapter 1. Reading and Writing Images

The VectorIndexSelectionCastImageFilter class requires us to specify which of the vector compo-

nents is to be extracted from the vector image. This is done with the SetIndex() method. In this

example we obtain this value from the command line arguments.

componentExtractor->SetIndex(indexOfComponentToExtract);

The itk::RescaleIntensityImageFilter filter is instantiated here.

using RescaleFilterType =

itk::RescaleIntensityImageFilter<ComponentImageType, OutputImageType>;

auto rescaler = RescaleFilterType::New();

The minimum and maximum values for the output image are specified in the following. Note the

use of the itk::NumericTraits class which allows us to define a number of type-related constants

in a generic way. The use of traits is a fundamental characteristic of generic programming [5, 1].

rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());

rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

Below, we create the reader and writer using the New() method and assign the result to a

itk::SmartPointer.

auto reader = ReaderType::New();

auto writer = WriterType::New();

The name of the file to be read or written is passed to the SetFileName() method.

reader->SetFileName(inputFilename);

writer->SetFileName(outputFilename);

Below we connect the reader, filter and writer to form the data processing pipeline.

componentExtractor->SetInput(reader->GetOutput());

rescaler->SetInput(componentExtractor->GetOutput());

writer->SetInput(rescaler->GetOutput());

Finally we execute the pipeline by invoking Update() on the writer. The call is placed in a

try/catch block in case exceptions are thrown.

try

{

writer->Update();

https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NumericTraits.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

1.11. Reading and Writing Image Series 25

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.11 Reading and Writing Image Series

It is still quite common to store 3D medical images in sets of files each one containing a single slice

of a volume dataset. Those 2D files can be read as individual 2D images, or can be grouped together

in order to reconstruct a 3D dataset. The same practice can be extended to higher dimensions, for

example, for managing 4D datasets by using sets of files each one containing a 3D image. This

practice is common in the domain of cardiac imaging, perfusion, functional MRI and PET. This

section illustrates the functionalities available in ITK for dealing with reading and writing series of

images.

1.11.1 Reading Image Series

The source code for this section can be found in the file

ImageSeriesReadWrite.cxx.

This example illustrates how to read a series of 2D slices from independent files in order to compose

a volume. The class itk::ImageSeriesReader is used for this purpose. This class works in

combination with a generator of filenames that will provide a list of files to be read. In this particular

example we use the itk::NumericSeriesFileNames class as a filename generator. This generator

uses a printf style of string format with a “%d” field that will be successively replaced by a number

specified by the user. Here we will use a format like “file%03d.png” for reading PNG files named

file001.png, file002.png, file003.png... and so on.

This requires the following headers as shown.

#include "itkImage.h"

#include "itkImageSeriesReader.h"

#include "itkImageFileWriter.h"

#include "itkNumericSeriesFileNames.h"

#include "itkPNGImageIO.h"

We start by defining the PixelType and ImageType.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html
https://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

26 Chapter 1. Reading and Writing Images

using PixelType = unsigned char;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

The image type is used as a template parameter to instantiate the reader and writer.

using ReaderType = itk::ImageSeriesReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

auto reader = ReaderType::New();

auto writer = WriterType::New();

Then, we declare the filename generator type and create one instance of it.

using NameGeneratorType = itk::NumericSeriesFileNames;

auto nameGenerator = NameGeneratorType::New();

The filename generator requires us to provide a pattern of text for the filenames, and numbers for

the initial value, last value and increment to be used for generating the names of the files.

nameGenerator->SetSeriesFormat("vwe%03d.png");

nameGenerator->SetStartIndex(first);

nameGenerator->SetEndIndex(last);

nameGenerator->SetIncrementIndex(1);

The ImageIO object that actually performs the read process is now connected to the ImageSeries-

Reader. This is the safest way of making sure that we use an ImageIO object that is appropriate for

the type of files that we want to read.

reader->SetImageIO(itk::PNGImageIO::New());

The filenames of the input files must be provided to the reader, while the writer is instructed to write

the same volume dataset in a single file.

reader->SetFileNames(nameGenerator->GetFileNames());

writer->SetFileName(outputFilename);

We connect the output of the reader to the input of the writer.

1.11. Reading and Writing Image Series 27

writer->SetInput(reader->GetOutput());

Finally, execution of the pipeline can be triggered by invoking the Update() method in the writer.

This call must be placed in a try/catch block since exceptions be potentially be thrown in the

process of reading or writing the images.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

1.11.2 Writing Image Series

The source code for this section can be found in the file

ImageReadImageSeriesWrite.cxx.

This example illustrates how to save an image using the itk::ImageSeriesWriter. This class

enables the saving of a 3D volume as a set of files containing one 2D slice per file.

The type of the input image is declared here and it is used for declaring the type of the reader. This

will be a conventional 3D image reader.

using ImageType = itk::Image<unsigned char, 3>;

using ReaderType = itk::ImageFileReader<ImageType>;

The reader object is constructed using the New() operator and assigning the result to a

SmartPointer. The filename of the 3D volume to be read is taken from the command line ar-

guments and passed to the reader using the SetFileName() method.

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

The type of the series writer must be instantiated taking into account that the input file is a 3D

volume and the output files are 2D images. Additionally, the output of the reader is connected as

input to the writer.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesWriter.html

28 Chapter 1. Reading and Writing Images

using Image2DType = itk::Image<unsigned char, 2>;

using WriterType = itk::ImageSeriesWriter<ImageType, Image2DType>;

auto writer = WriterType::New();

writer->SetInput(reader->GetOutput());

The writer requires a list of filenames to be generated. This list can be produced with the help of the

itk::NumericSeriesFileNames class.

using NameGeneratorType = itk::NumericSeriesFileNames;

auto nameGenerator = NameGeneratorType::New();

The NumericSeriesFileNames class requires an input string in order to have a template for gener-

ating the filenames of all the output slices. Here we compose this string using a prefix taken from

the command line arguments and adding the extension for PNG files.

std::string format = argv[2];

format += "%03d.";

format += argv[3]; // filename extension

nameGenerator->SetSeriesFormat(format.c_str());

The input string is going to be used for generating filenames by setting the values of the first and last

slice. This can be done by collecting information from the input image. Note that before attempting

to take any image information from the reader, its execution must be triggered with the invocation

of the Update() method, and since this invocation can potentially throw exceptions, it must be put

inside a try/catch block.

try

{

reader->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Exception thrown while reading the image" << std::endl;

std::cerr << excp << std::endl;

}

Now that the image has been read we can query its largest possible region and recover information

about the number of pixels along every dimension.

https://www.itk.org/Doxygen/html/classitk_1_1NumericSeriesFileNames.html

1.11. Reading and Writing Image Series 29

ImageType::ConstPointer inputImage = reader->GetOutput();

ImageType::RegionType region = inputImage->GetLargestPossibleRegion();

ImageType::IndexType start = region.GetIndex();

ImageType::SizeType size = region.GetSize();

With this information we can find the number that will identify the first and last slices of the 3D data

set. These numerical values are then passed to the filename generator object that will compose the

names of the files where the slices are going to be stored.

const unsigned int firstSlice = start[2];

const unsigned int lastSlice = start[2] + size[2] - 1;

nameGenerator->SetStartIndex(firstSlice);

nameGenerator->SetEndIndex(lastSlice);

nameGenerator->SetIncrementIndex(1);

The list of filenames is taken from the names generator and it is passed to the series writer.

writer->SetFileNames(nameGenerator->GetFileNames());

Finally we trigger the execution of the pipeline with the Update() method on the writer. At this

point the slices of the image will be saved in individual files containing a single slice per file. The

filenames used for these slices are those produced by the filename generator.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Exception thrown while reading the image" << std::endl;

std::cerr << excp << std::endl;

}

Note that by saving data into isolated slices we are losing information that may be significant for

medical applications, such as the interslice spacing in millimeters.

1.11.3 Reading and Writing Series of RGB Images

The source code for this section can be found in the file

RGBImageSeriesReadWrite.cxx.

RGB images are commonly used for representing data acquired from cryogenic sections, optical

microscopy and endoscopy. This example illustrates how to read RGB color images from a set of

30 Chapter 1. Reading and Writing Images

files containing individual 2D slices in order to compose a 3D color dataset. Then we will save it

into a single 3D file, and finally save it again as a set of 2D slices with other names.

This requires the following headers as shown.

#include "itkRGBPixel.h"

#include "itkImage.h"

#include "itkImageSeriesReader.h"

#include "itkImageSeriesWriter.h"

#include "itkNumericSeriesFileNames.h"

#include "itkPNGImageIO.h"

The itk::RGBPixel class is templated over the type used to represent each one of the Red, Green

and Blue components. A typical instantiation of the RGB image class might be as follows.

using PixelType = itk::RGBPixel<unsigned char>;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

The image type is used as a template parameter to instantiate the series reader and the volumetric

writer.

using SeriesReaderType = itk::ImageSeriesReader<ImageType>;

using WriterType = itk::ImageFileWriter<ImageType>;

auto seriesReader = SeriesReaderType::New();

auto writer = WriterType::New();

We use a NumericSeriesFileNames class in order to generate the filenames of the slices to be read.

Later on in this example we will reuse this object in order to generate the filenames of the slices to

be written.

using NameGeneratorType = itk::NumericSeriesFileNames;

auto nameGenerator = NameGeneratorType::New();

nameGenerator->SetStartIndex(first);

nameGenerator->SetEndIndex(last);

nameGenerator->SetIncrementIndex(1);

nameGenerator->SetSeriesFormat("vwe%03d.png");

The ImageIO object that actually performs the read process is now connected to the ImageSeries-

Reader.

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

1.11. Reading and Writing Image Series 31

seriesReader->SetImageIO(itk::PNGImageIO::New());

The filenames of the input slices are taken from the names generator and passed to the series reader.

seriesReader->SetFileNames(nameGenerator->GetFileNames());

The name of the volumetric output image is passed to the image writer, and we connect the output

of the series reader to the input of the volumetric writer.

writer->SetFileName(outputFilename);

writer->SetInput(seriesReader->GetOutput());

Finally, execution of the pipeline can be triggered by invoking the Update() method in the volu-

metric writer. This, of course, is done from inside a try/catch block.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Error reading the series " << std::endl;

std::cerr << excp << std::endl;

}

We now proceed to save the same volumetric dataset as a set of slices. This is done only to illustrate

the process for saving a volume as a series of 2D individual datasets. The type of the series writer

must be instantiated taking into account that the input file is a 3D volume and the output files are 2D

images. Additionally, the output of the series reader is connected as input to the series writer.

using Image2DType = itk::Image<PixelType, 2>;

using SeriesWriterType = itk::ImageSeriesWriter<ImageType, Image2DType>;

auto seriesWriter = SeriesWriterType::New();

seriesWriter->SetInput(seriesReader->GetOutput());

We now reuse the filename generator in order to produce the list of filenames for the output series.

In this case we just need to modify the format of the filename generator. Then, we pass the list of

output filenames to the series writer.

32 Chapter 1. Reading and Writing Images

nameGenerator->SetSeriesFormat("output%03d.png");

seriesWriter->SetFileNames(nameGenerator->GetFileNames());

Finally we trigger the execution of the series writer from inside a try/catch block.

try

{

seriesWriter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Error reading the series " << std::endl;

std::cerr << excp << std::endl;

}

You may have noticed that apart from the declaration of the PixelType there is nothing in this code

that is specific to RGB images. All the actions required to support color images are implemented

internally in the itk::ImageIO objects.

1.12 Reading and Writing DICOM Images

1.12.1 Foreword

With the introduction of computed tomography (CT) followed by other digital diagnostic imaging

modalities such as MRI in the 1970’s, and the increasing use of computers in clinical applications,

the American College of Radiology (ACR)3 and the National Electrical Manufacturers Association

(NEMA)4 recognized the need for a standard method for transferring images as well as associated

information between devices manufactured from various vendors.

ACR and NEMA formed a joint committee to develop a standard for Digital Imaging and Commu-

nications in Medicine (DICOM). This standard was developed in liaison with other Standardization

Organizations such as CEN TC251, JIRA including IEEE, HL7 and ANSI USA as reviewers.

DICOM is a comprehensive set of standards for handling, storing and transmitting information in

medical imaging. The DICOM standard was developed based on the previous NEMA specification.

The standard specifies a file format definition as well as a network communication protocol. DICOM

was developed to enable integration of scanners, servers, workstations and network hardware from

multiple vendors into an image archiving and communication system.

DICOM files consist of a header and a body of image data. The header contains standardized as well

as free-form fields. The set of standardized fields is called the public DICOM dictionary, an instance

3https://www.acr.org
4https://www.nema.org

https://www.itk.org/Doxygen/html/classitk_1_1ImageIO.html
https://www.acr.org
https://www.nema.org

1.12. Reading and Writing DICOM Images 33

of this dictionary is available in ITK in the file Insight/Utilities/gdcm/Dict/dicomV3.dic.

The list of free-form fields is also called the shadow dictionary.

A single DICOM file can contain multiples frames, allowing storage of volumes or animations.

Image data can be compressed using a large variety of standards, including JPEG (both lossy and

lossless), LZW (Lempel Ziv Welch), and RLE (Run-length encoding).

The DICOM Standard is an evolving standard and it is maintained in accordance with the Proce-

dures of the DICOM Standards Committee. Proposals for enhancements are forthcoming from the

DICOM Committee member organizations based on input from users of the Standard. These pro-

posals are considered for inclusion in future editions of the Standard. A requirement in updating the

Standard is to maintain effective compatibility with previous editions.

For a more detailed description of the DICOM standard see [43].

The following sections illustrate how to use the functionalities that ITK provides for reading and

writing DICOM files. This is extremely important in the domain of medical imaging since most

of the images that are acquired in a clinical setting are stored and transported using the DICOM

standard.

DICOM functionalities in ITK are provided by the GDCM library. This open source library was de-

veloped by the CREATIS Team 5 at INSA-Lyon [7]. Although originally this library was distributed

under a LGPL License6, the CREATIS Team was lucid enough to understand the limitations of that

license and agreed to adopt the more open BSD-like License7. This change in their licensing made

possible to distribute GDCM along with ITK.

GDCM is now maintained by Mathieu Malaterre and the GDCM community. The version distributed

with ITK gets updated with major releases of the GDCM library.

1.12.2 Reading and Writing a 2D Image

The source code for this section can be found in the file

DicomImageReadWrite.cxx.

This example illustrates how to read a single DICOM slice and write it back as another DICOM

slice. In the process an intensity rescaling is also applied.

In order to read and write the slice we use the itk::GDCMImageIO class which encapsulates a

connection to the underlying GDCM library. In this way we gain access from ITK to the DICOM

functionalities offered by GDCM. The GDCMImageIO object is connected as the ImageIO object

to be used by the itk::ImageFileWriter.

We should first include the following header files.

5https://www.creatis.insa-lyon.fr
6https://www.gnu.org/copyleft/lesser.html
7https://www.opensource.org/licenses/bsd-license.php

https://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.creatis.insa-lyon.fr
https://www.gnu.org/copyleft/lesser.html
https://www.opensource.org/licenses/bsd-license.php

34 Chapter 1. Reading and Writing Images

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkRescaleIntensityImageFilter.h"

#include "itkGDCMImageIO.h"

Then we declare the pixel type and image dimension, and use them for instantiating the image type

to be read.

using InputPixelType = short;

constexpr unsigned int InputDimension = 2;

using InputImageType = itk::Image<InputPixelType, InputDimension>;

With the image type we can instantiate the type of the reader, create one, and set the filename of the

image to be read.

using ReaderType = itk::ImageFileReader<InputImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

GDCMImageIO is an ImageIO class for reading and writing DICOM v3 and ACR/NEMA images.

The GDCMImageIO object is constructed here and connected to the ImageFileReader.

using ImageIOType = itk::GDCMImageIO;

auto gdcmImageIO = ImageIOType::New();

reader->SetImageIO(gdcmImageIO);

At this point we can trigger the reading process by invoking the Update() method. Since this

reading process may eventually throw an exception, we place the invocation inside a try/catch

block.

try

{

reader->Update();

}

catch (const itk::ExceptionObject & e)

{

std::cerr << "exception in file reader " << std::endl;

std::cerr << e << std::endl;

return EXIT_FAILURE;

}

We now have the image in memory and can get access to it using the GetOutput() method of the

1.12. Reading and Writing DICOM Images 35

reader. In the remainder of this current example, we focus on showing how to save this image again

in DICOM format in a new file.

First, we must instantiate an ImageFileWriter type. Then, we construct one, set the filename to be

used for writing, and connect the input image to be written. Since in this example we write the

image in different ways, and in each case use a different writer, we enumerated the variable names

of the writer objects as well as their types.

using Writer1Type = itk::ImageFileWriter<InputImageType>;

auto writer1 = Writer1Type::New();

writer1->SetFileName(argv[2]);

writer1->SetInput(reader->GetOutput());

We need to explicitly set the proper image IO (GDCMImageIO) to the writer filter since the input

DICOM dictionary is being passed along the writing process. The dictionary contains all necessary

information that a valid DICOM file should contain, like Patient Name, Patient ID, Institution Name,

etc.

writer1->SetImageIO(gdcmImageIO);

The writing process is triggered by invoking the Update() method. Since this execution may result

in exceptions being thrown we place the Update() call inside a try/catch block.

try

{

writer1->Update();

}

catch (const itk::ExceptionObject & e)

{

std::cerr << "exception in file writer " << std::endl;

std::cerr << e << std::endl;

return EXIT_FAILURE;

}

We will now rescale the image using the RescaleIntensityImageFilter. For this purpose we use a

better suited pixel type: unsigned char instead of short. The minimum and maximum values of

the output image are explicitly defined in the rescaling filter.

using WritePixelType = unsigned char;

using WriteImageType = itk::Image<WritePixelType, 2>;

using RescaleFilterType =

itk::RescaleIntensityImageFilter<InputImageType, WriteImageType>;

36 Chapter 1. Reading and Writing Images

auto rescaler = RescaleFilterType::New();

rescaler->SetOutputMinimum(0);

rescaler->SetOutputMaximum(255);

We create a second writer object that will save the rescaled image into a new file, which is not in

DICOM format. This is done only for the sake of verifying the image against the one that will be

saved in DICOM format later in this example.

using Writer2Type = itk::ImageFileWriter<WriteImageType>;

auto writer2 = Writer2Type::New();

writer2->SetFileName(argv[3]);

rescaler->SetInput(reader->GetOutput());

writer2->SetInput(rescaler->GetOutput());

The writer can be executed by invoking the Update() method from inside a try/catch block.

We proceed now to save the same rescaled image into a file in DICOM format. For this purpose we

just need to set up a itk::ImageFileWriter and pass to it the rescaled image as input.

using Writer3Type = itk::ImageFileWriter<WriteImageType>;

auto writer3 = Writer3Type::New();

writer3->SetFileName(argv[4]);

writer3->SetInput(rescaler->GetOutput());

We now need to explicitly set the proper image IO (GDCMImageIO), but also we must tell the

ImageFileWriter to not use the MetaDataDictionary from the input but from the GDCMImageIO

since this is the one that contains the DICOM specific information

The GDCMImageIO object will automatically detect the pixel type, in this case unsigned char

and it will update the DICOM header information accordingly.

writer3->UseInputMetaDataDictionaryOff();

writer3->SetImageIO(gdcmImageIO);

Finally we trigger the execution of the DICOM writer by invoking the Update() method from inside

a try/catch block.

try

{

writer3->Update();

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

1.12. Reading and Writing DICOM Images 37

}

catch (const itk::ExceptionObject & e)

{

std::cerr << "Exception in file writer " << std::endl;

std::cerr << e << std::endl;

return EXIT_FAILURE;

}

1.12.3 Reading a 2D DICOM Series and Writing a Volume

The source code for this section can be found in the file

DicomSeriesReadImageWrite2.cxx.

Probably the most common representation of datasets in clinical applications is the one that uses

sets of DICOM slices in order to compose 3-dimensional images. This is the case for CT, MRI and

PET scanners. It is very common therefore for image analysts to have to process volumetric images

stored in a set of DICOM files belonging to a common DICOM series.

The following example illustrates how to use ITK functionalities in order to read a DICOM series

into a volume and then save this volume in another file format.

The example begins by including the appropriate headers. In particular we will need the

itk::GDCMImageIO object in order to have access to the capabilities of the GDCM library for read-

ing DICOM files, and the itk::GDCMSeriesFileNames object for generating the lists of filenames

identifying the slices of a common volumetric dataset.

#include "itkImage.h"

#include "itkGDCMImageIO.h"

#include "itkGDCMSeriesFileNames.h"

#include "itkImageSeriesReader.h"

#include "itkImageFileWriter.h"

We define the pixel type and dimension of the image to be read. In this particular case, the dimen-

sionality of the image is 3, and we assume a short pixel type that is commonly used for X-Rays CT

scanners.

The image orientation information contained in the direction cosines of the DICOM header are read

in and passed correctly down the image processing pipeline.

using PixelType = short;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

We use the image type for instantiating the type of the series reader and for constructing one object

of its type.

https://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

38 Chapter 1. Reading and Writing Images

using ReaderType = itk::ImageSeriesReader<ImageType>;

auto reader = ReaderType::New();

A GDCMImageIO object is created and connected to the reader. This object is the one that is aware

of the internal intricacies of the DICOM format.

using ImageIOType = itk::GDCMImageIO;

auto dicomIO = ImageIOType::New();

reader->SetImageIO(dicomIO);

Now we face one of the main challenges of the process of reading a DICOM series: to identify

from a given directory the set of filenames that belong together to the same volumetric image.

Fortunately for us, GDCM offers functionalities for solving this problem and we just need to in-

voke those functionalities through an ITK class that encapsulates a communication with GDCM

classes. This ITK object is the GDCMSeriesFileNames. Conveniently, we only need to pass to

this class the name of the directory where the DICOM slices are stored. This is done with the

SetDirectory() method. The GDCMSeriesFileNames object will explore the directory and will

generate a sequence of filenames for DICOM files for one study/series. In this example, we also call

the SetUseSeriesDetails(true) function that tells the GDCMSeriesFileNames object to use ad-

ditional DICOM information to distinguish unique volumes within the directory. This is useful, for

example, if a DICOM device assigns the same SeriesID to a scout scan and its 3D volume; by using

additional DICOM information the scout scan will not be included as part of the 3D volume. Note

that SetUseSeriesDetails(true) must be called prior to calling SetDirectory(). By default

SetUseSeriesDetails(true) will use the following DICOM tags to sub-refine a set of files into

multiple series:

0020 0011 Series Number

0018 0024 Sequence Name

0018 0050 Slice Thickness

0028 0010 Rows

0028 0011 Columns

If this is not enough for your specific case you can always add some more restrictions using the

AddSeriesRestriction() method. In this example we will use the DICOM Tag: 0008 0021 DA

1 Series Date, to sub-refine each series. The format for passing the argument is a string containing

first the group then the element of the DICOM tag, separated by a pipe (|) sign.

1.12. Reading and Writing DICOM Images 39

using NamesGeneratorType = itk::GDCMSeriesFileNames;

auto nameGenerator = NamesGeneratorType::New();

nameGenerator->SetUseSeriesDetails(true);

nameGenerator->AddSeriesRestriction("0008|0021");

nameGenerator->SetDirectory(argv[1]);

The GDCMSeriesFileNames object first identifies the list of DICOM series present in the given

directory. We receive that list in a reference to a container of strings and then we can do things like

print out all the series identifiers that the generator had found. Since the process of finding the series

identifiers can potentially throw exceptions, it is wise to put this code inside a try/catch block.

using SeriesIdContainer = std::vector<std::string>;

const SeriesIdContainer & seriesUID = nameGenerator->GetSeriesUIDs();

auto seriesItr = seriesUID.begin();

auto seriesEnd = seriesUID.end();

while (seriesItr != seriesEnd)

{

std::cout << seriesItr->c_str() << std::endl;

++seriesItr;

}

Given that it is common to find multiple DICOM series in the same directory, we must tell the

GDCM classes what specific series we want to read. In this example we do this by checking first if

the user has provided a series identifier in the command line arguments. If no series identifier has

been passed, then we simply use the first series found during the exploration of the directory.

std::string seriesIdentifier;

if (argc > 3) // If no optional series identifier

{

seriesIdentifier = argv[3];

}

else

{

seriesIdentifier = seriesUID.begin()->c_str();

}

We pass the series identifier to the name generator and ask for all the filenames associated to that

series. This list is returned in a container of strings by the GetFileNames() method.

using FileNamesContainer = std::vector<std::string>;

FileNamesContainer fileNames;

fileNames = nameGenerator->GetFileNames(seriesIdentifier);

40 Chapter 1. Reading and Writing Images

The list of filenames can now be passed to the itk::ImageSeriesReader using the

SetFileNames() method.

reader->SetFileNames(fileNames);

Finally we can trigger the reading process by invoking the Update() method in the reader. This call

as usual is placed inside a try/catch block.

try

{

reader->Update();

}

catch (const itk::ExceptionObject & ex)

{

std::cout << ex << std::endl;

return EXIT_FAILURE;

}

At this point, we have a volumetric image in memory that we can access by invoking the

GetOutput() method of the reader.

We proceed now to save the volumetric image in another file, as specified by the user in the com-

mand line arguments of this program. Thanks to the ImageIO factory mechanism, only the filename

extension is needed to identify the file format in this case.

using WriterType = itk::ImageFileWriter<ImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(reader->GetOutput());

The process of writing the image is initiated by invoking the Update() method of the writer.

writer->Update();

Note that in addition to writing the volumetric image to a file we could have used it as the input

for any 3D processing pipeline. Keep in mind that DICOM is simply a file format and a network

protocol. Once the image data has been loaded into memory, it behaves as any other volumetric

dataset that you could have loaded from any other file format.

1.12.4 Reading a 2D DICOM Series and Writing a 2D DICOM Series

The source code for this section can be found in the file

DicomSeriesReadSeriesWrite.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1ImageSeriesReader.html

1.12. Reading and Writing DICOM Images 41

This example illustrates how to read a DICOM series into a volume and then save this volume into

another DICOM series using the exact same header information. It makes use of the GDCM library.

The main purpose of this example is to show how to properly propagate the DICOM specific infor-

mation along the pipeline to be able to correctly write back the image using the information from

the input DICOM files.

Please note that writing DICOM files is quite a delicate operation since we are dealing with a sig-

nificant amount of patient specific data. It is your responsibility to verify that the DICOM headers

generated from this code are not introducing risks in the diagnosis or treatment of patients. It is as

well your responsibility to make sure that the privacy of the patient is respected when you process

data sets that contain personal information. Privacy issues are regulated in the United States by the

HIPAA norms8. You would probably find similar legislation in every country.

When saving datasets in DICOM format it must be made clear whether these datasets have been

processed in any way, and if so, you should inform the recipients of the data about the purpose and

potential consequences of the processing. This is fundamental if the datasets are intended to be used

for diagnosis, treatment or follow-up of patients. For example, the simple reduction of a dataset from

a 16-bits/pixel to a 8-bits/pixel representation may make it impossible to detect certain pathologies

and as a result will expose the patient to the risk of remaining untreated for a long period of time

while her/his pathology progresses.

You are strongly encouraged to get familiar with the report on medical errors “To Err is Human”,

produced by the U.S. Institute of Medicine [31]. Raising awareness about the high frequency of

medical errors is a first step in reducing their occurrence.

After all these warnings, let us now go back to the code and get familiar with the use of ITK and

GDCM for writing DICOM Series. The first step that we must take is to include the header files of

the relevant classes. We include the GDCMImageIO class, the GDCM filenames generator, as well

as the series reader and writer.

#include "itkGDCMImageIO.h"

#include "itkGDCMSeriesFileNames.h"

#include "itkImageSeriesReader.h"

#include "itkImageSeriesWriter.h"

As a second step, we define the image type to be used in this example. This is done by explicitly

selecting a pixel type and a dimension. Using the image type we can define the type of the series

reader.

using PixelType = short;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

using ReaderType = itk::ImageSeriesReader<ImageType>;

8The Health Insurance Portability and Accountability Act of 1996. https://www.cms.hhs.gov/hipaa/

https://www.cms.hhs.gov/hipaa/

42 Chapter 1. Reading and Writing Images

We also declare types for the itk::GDCMImageIO object that will actually read and write the DI-

COM images, and the itk::GDCMSeriesFileNames object that will generate and order all the

filenames for the slices composing the volume dataset. Once we have the types, we proceed to

create instances of both objects.

using ImageIOType = itk::GDCMImageIO;

using NamesGeneratorType = itk::GDCMSeriesFileNames;

auto gdcmIO = ImageIOType::New();

auto namesGenerator = NamesGeneratorType::New();

Just as the previous example, we get the DICOM filenames from the directory. Note however, that in

this case we use the SetInputDirectory() method instead of the SetDirectory(). This is done

because in the present case we will use the filenames generator for producing both the filenames for

reading and the filenames for writing. Then, we invoke the GetInputFileNames() method in order

to get the list of filenames to read.

namesGenerator->SetInputDirectory(argv[1]);

const ReaderType::FileNamesContainer & filenames =

namesGenerator->GetInputFileNames();

We construct one instance of the series reader object. Set the DICOM image IO object to be used

with it, and set the list of filenames to read.

auto reader = ReaderType::New();

reader->SetImageIO(gdcmIO);

reader->SetFileNames(filenames);

We can trigger the reading process by calling the Update() method on the series reader. It is wise

to put this invocation inside a try/catch block since the process may eventually throw exceptions.

reader->Update();

At this point we have the volumetric data loaded in memory and we can access it by invoking the

GetOutput() method in the reader.

Now we can prepare the process for writing the dataset. First, we take the name of the output

directory from the command line arguments.

const char * outputDirectory = argv[2];

Second, we make sure the output directory exists, using the cross-platform tools:

itksys::SystemTools. In this case we choose to create the directory if it does not exist yet.

https://www.itk.org/Doxygen/html/classitk_1_1GDCMImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1GDCMSeriesFileNames.html

1.12. Reading and Writing DICOM Images 43

itksys::SystemTools::MakeDirectory(outputDirectory);

We explicitly instantiate the image type to be used for writing, and use the image type for instanti-

ating the type of the series writer.

using OutputPixelType = short;

constexpr unsigned int OutputDimension = 2;

using Image2DType = itk::Image<OutputPixelType, OutputDimension>;

using SeriesWriterType = itk::ImageSeriesWriter<ImageType, Image2DType>;

We construct a series writer and connect to its input the output from the reader. Then we pass the

GDCM image IO object in order to be able to write the images in DICOM format.

auto seriesWriter = SeriesWriterType::New();

seriesWriter->SetInput(reader->GetOutput());

seriesWriter->SetImageIO(gdcmIO);

It is time now to setup the GDCMSeriesFileNames to generate new filenames using another output

directory. Then simply pass those newly generated files to the series writer.

namesGenerator->SetOutputDirectory(outputDirectory);

seriesWriter->SetFileNames(namesGenerator->GetOutputFileNames());

The following line of code is extremely important for this process to work correctly. The line is

taking the MetaDataDictionary from the input reader and passing it to the output writer. This step is

important because the MetaDataDictionary contains all the entries of the input DICOM header.

seriesWriter->SetMetaDataDictionaryArray(

reader->GetMetaDataDictionaryArray());

Finally we trigger the writing process by invoking the Update() method in the series writer. We

place this call inside a try/catch block, in case any exception is thrown during the writing process.

try

{

seriesWriter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Exception thrown while writing the series " << std::endl;

std::cerr << excp << std::endl;

44 Chapter 1. Reading and Writing Images

return EXIT_FAILURE;

}

Please keep in mind that you should avoid generating DICOM files which have the appearance of

being produced by a scanner. It should be clear from the directory or filenames that these data were

the result of the execution of some sort of algorithm. This will prevent your dataset from being used

as scanner data by accident.

1.12.5 Printing DICOM Tags From One Slice

The source code for this section can be found in the file

DicomImageReadPrintTags.cxx.

It is often valuable to be able to query the entries from the header of a DICOM file. This can be

used for consistency checking, or simply for verifying that we have the correct dataset in our hands.

This example illustrates how to read a DICOM file and then print out most of the DICOM header

information. The binary fields of the DICOM header are skipped.

The headers of the main classes involved in this example are specified below. They include the

image file reader, the GDCMImageIO object, the MetaDataDictionary and its entry element, the

MetaDataObject.

#include "itkImageFileReader.h"

#include "itkGDCMImageIO.h"

#include "itkMetaDataObject.h"

We instantiate the type to be used for storing the image once it is read into memory.

using PixelType = short;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

Using the image type as a template parameter we instantiate the type of the image file reader and

construct one instance of it.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

The GDCM image IO type is declared and used for constructing one image IO object.

1.12. Reading and Writing DICOM Images 45

using ImageIOType = itk::GDCMImageIO;

auto dicomIO = ImageIOType::New();

We pass to the reader the filename of the image to be read and connect the ImageIO object to it too.

reader->SetFileName(argv[1]);

reader->SetImageIO(dicomIO);

The reading process is triggered with a call to the Update() method. This call should be placed

inside a try/catch block because its execution may result in exceptions being thrown.

reader->Update();

Now that the image has been read, we obtain the MetaDataDictionary from the ImageIO object

using the GetMetaDataDictionary() method.

using DictionaryType = itk::MetaDataDictionary;

const DictionaryType & dictionary = dicomIO->GetMetaDataDictionary();

Since we are interested only in the DICOM tags that can be expressed in strings, we declare a

MetaDataObject suitable for managing strings.

using MetaDataStringType = itk::MetaDataObject<std::string>;

We instantiate the iterators that will make possible to walk through all the entries of the MetaData-

Dictionary.

auto itr = dictionary.Begin();

auto end = dictionary.End();

For each one of the entries in the dictionary, we check first if its element can be converted to a string,

a dynamic cast is used for this purpose.

while (itr != end)

{

itk::MetaDataObjectBase::Pointer entry = itr->second;

MetaDataStringType::Pointer entryvalue =

dynamic_cast<MetaDataStringType *>(entry.GetPointer());

For those entries that can be converted, we take their DICOM tag and pass it to the

GetLabelFromTag() method of the GDCMImageIO class. This method checks the DICOM dictio-

nary and returns the string label associated with the tag that we are providing in the tagkey variable.

46 Chapter 1. Reading and Writing Images

If the label is found, it is returned in labelId variable. The method itself returns false if the tagkey

is not found in the dictionary. For example ”0010|0010” in tagkey becomes ”Patient’s Name” in

labelId.

if (entryvalue)

{

std::string tagkey = itr->first;

std::string labelId;

bool found = itk::GDCMImageIO::GetLabelFromTag(tagkey, labelId);

The actual value of the dictionary entry is obtained as a string with the

GetMetaDataObjectValue() method.

std::string tagvalue = entryvalue->GetMetaDataObjectValue();

At this point we can print out an entry by concatenating the DICOM Name or label, the numeric tag

and its actual value.

if (found)

{

std::cout << "(" << tagkey << ") " << labelId;

std::cout << " = " << tagvalue.c_str() << std::endl;

}

Finally we just close the loop that will walk through all the Dictionary entries.

++itr;

}

It is also possible to read a specific tag. In that case the string of the entry can be used for querying

the MetaDataDictionary.

std::string entryId = "0010|0010";

auto tagItr = dictionary.Find(entryId);

If the entry is actually found in the Dictionary, then we can attempt to convert it to a string entry by

using a dynamic cast.

if (tagItr != end)

{

MetaDataStringType::ConstPointer entryvalue =

dynamic_cast<const MetaDataStringType *>(tagItr->second.GetPointer());

If the dynamic cast succeeds, then we can print out the values of the label, the tag and the actual

value.

1.12. Reading and Writing DICOM Images 47

if (entryvalue)

{

std::string tagvalue = entryvalue->GetMetaDataObjectValue();

std::cout << "Patient's Name (" << entryId << ") ";

std::cout << " is: " << tagvalue.c_str() << std::endl;

}

Another way to read a specific tag is to use the encapsulation above MetaDataDictionary. Note that

this is strictly equivalent to the above code.

std::string tagkey = "0008|1050";

std::string labelId;

if (itk::GDCMImageIO::GetLabelFromTag(tagkey, labelId))

{

std::string value;

std::cout << labelId << " (" << tagkey << "): ";

if (dicomIO->GetValueFromTag(tagkey, value))

{

std::cout << value;

}

else

{

std::cout << "(No Value Found in File)";

}

std::cout << std::endl;

}

else

{

std::cerr << "Trying to access inexistent DICOM tag." << std::endl;

}

For a full description of the DICOM dictionary please look at the file.

Insight/Utilities/gdcm/Dicts/dicomV3.dic

The following piece of code will print out the proper pixel type / component for instantiating an

itk::ImageFileReader that can properly import the printed DICOM file.

itk::IOPixelEnum pixelType = reader->GetImageIO()->GetPixelType();

itk::IOComponentEnum componentType =

reader->GetImageIO()->GetComponentType();

std::cout << "PixelType: "

<< reader->GetImageIO()->GetPixelTypeAsString(pixelType)

<< std::endl;

std::cout << "Component Type: "

<< reader->GetImageIO()->GetComponentTypeAsString(componentType)

<< std::endl;

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

48 Chapter 1. Reading and Writing Images

1.12.6 Printing DICOM Tags From a Series

The source code for this section can be found in the file

DicomSeriesReadPrintTags.cxx.

This example illustrates how to read a DICOM series into a volume and then print most of the

DICOM header information. The binary fields are skipped.

The header files for the series reader and the GDCM classes for image IO and name generation

should be included first.

#include "itkImageSeriesReader.h"

#include "itkGDCMImageIO.h"

#include "itkGDCMSeriesFileNames.h"

Next, we instantiate the type to be used for storing the image once it is read into memory.

using PixelType = short;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

We use the image type for instantiating the series reader type and then we construct one object of

this class.

using ReaderType = itk::ImageSeriesReader<ImageType>;

auto reader = ReaderType::New();

A GDCMImageIO object is created and assigned to the reader.

using ImageIOType = itk::GDCMImageIO;

auto dicomIO = ImageIOType::New();

reader->SetImageIO(dicomIO);

A GDCMSeriesFileNames is declared in order to generate the names of DICOM slices. We specify

the directory with the SetInputDirectory() method and, in this case, take the directory name

from the command line arguments. You could have obtained the directory name from a file dialog

in a GUI.

using NamesGeneratorType = itk::GDCMSeriesFileNames;

auto nameGenerator = NamesGeneratorType::New();

nameGenerator->SetInputDirectory(argv[1]);

1.12. Reading and Writing DICOM Images 49

The list of files to read is obtained from the name generator by invoking the GetInputFileNames()

method and receiving the results in a container of strings. The list of filenames is passed to the

reader using the SetFileNames() method.

using FileNamesContainer = std::vector<std::string>;

FileNamesContainer fileNames = nameGenerator->GetInputFileNames();

reader->SetFileNames(fileNames);

We trigger the reader by invoking the Update() method. This invocation should normally be done

inside a try/catch block given that it may eventually throw exceptions.

reader->Update();

ITK internally queries GDCM and obtains all the DICOM tags from the file headers. The tag

values are stored in the itk::MetaDataDictionary which is a general-purpose container for

{key,value} pairs. The Metadata dictionary can be recovered from any ImageIO class by invok-

ing the GetMetaDataDictionary() method.

using DictionaryType = itk::MetaDataDictionary;

const DictionaryType & dictionary = dicomIO->GetMetaDataDictionary();

In this example, we are only interested in the DICOM tags that can be represented as strings. There-

fore, we declare a itk::MetaDataObject of string type in order to receive those particular values.

using MetaDataStringType = itk::MetaDataObject<std::string>;

The metadata dictionary is organized as a container with its corresponding iterators. We can there-

fore visit all its entries by first getting access to its Begin() and End() methods.

auto itr = dictionary.Begin();

auto end = dictionary.End();

We are now ready for walking through the list of DICOM tags. For this purpose we use the itera-

tors that we just declared. At every entry we attempt to convert it into a string entry by using the

dynamic cast based on RTTI information9. The dictionary is organized like a std::map struc-

ture, so we should use the first and second members of every entry in order to get access to the

{key,value} pairs.

9Run Time Type Information

https://www.itk.org/Doxygen/html/classitk_1_1MetaDataDictionary.html
https://www.itk.org/Doxygen/html/classitk_1_1MetaDataObject.html

50 Chapter 1. Reading and Writing Images

while (itr != end)

{

itk::MetaDataObjectBase::Pointer entry = itr->second;

MetaDataStringType::Pointer entryvalue =

dynamic_cast<MetaDataStringType *>(entry.GetPointer());

if (entryvalue)

{

std::string tagkey = itr->first;

std::string tagvalue = entryvalue->GetMetaDataObjectValue();

std::cout << tagkey << " = " << tagvalue << std::endl;

}

++itr;

}

It is also possible to query for specific entries instead of reading all of them as we did above. In this

case, the user must provide the tag identifier using the standard DICOM encoding. The identifier is

stored in a string and used as key in the dictionary.

std::string entryId = "0010|0010";

auto tagItr = dictionary.Find(entryId);

if (tagItr == end)

{

std::cerr << "Tag " << entryId;

std::cerr << " not found in the DICOM header" << std::endl;

return EXIT_FAILURE;

}

Since the entry may or may not be of string type we must again use a dynamic cast in order to

attempt to convert it to a string dictionary entry. If the conversion is successful, we can then print

out its content.

MetaDataStringType::ConstPointer entryvalue =

dynamic_cast<const MetaDataStringType *>(tagItr->second.GetPointer());

if (entryvalue)

{

std::string tagvalue = entryvalue->GetMetaDataObjectValue();

std::cout << "Patient's Name (" << entryId << ") ";

std::cout << " is: " << tagvalue << std::endl;

}

else

{

std::cerr << "Entry was not of string type" << std::endl;

return EXIT_FAILURE;

}

1.12. Reading and Writing DICOM Images 51

This type of functionality will probably be more useful when provided through a graphical user

interface. For a full description of the DICOM dictionary please look at the following file.

Insight/Utilities/gdcm/Dicts/dicomV3.dic

1.12.7 Changing a DICOM Header

The source code for this section can be found in the file

DicomImageReadChangeHeaderWrite.cxx.

This example illustrates how to read a single DICOM slice and write it back with some changed

header information as another DICOM slice. Header Key/Value pairs can be specified on the com-

mand line. The keys are defined in the file

Insight/Utilities/gdcm/Dicts/dicomV3.dic.

Please note that modifying the content of a DICOM header is a very risky operation. The header

contains fundamental information about the patient and therefore its consistency must be protected

from any data corruption. Before attempting to modify the DICOM headers of your files, you

must make sure that you have a very good reason for doing so, and that you can ensure that this

information change will not result in a lower quality of health care being delivered to the patient.

We must start by including the relevant header files. Here we include the image reader, image writer,

the image, the metadata dictionary and its entries, the metadata objects and the GDCMImageIO. The

metadata dictionary is the data container that stores all the entries from the DICOM header once the

DICOM image file is read into an ITK image.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkImage.h"

#include "itkMetaDataObject.h"

#include "itkGDCMImageIO.h"

We declare the image type by selecting a particular pixel type and image dimension.

using InputPixelType = short;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

We instantiate the reader type by using the image type as template parameter. An instance of the

reader is created and the file name to be read is taken from the command line arguments.

using ReaderType = itk::ImageFileReader<InputImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

52 Chapter 1. Reading and Writing Images

The GDCMImageIO object is created in order to provide the services for reading and writing DI-

COM files. The newly created image IO class is connected to the reader.

using ImageIOType = itk::GDCMImageIO;

auto gdcmImageIO = ImageIOType::New();

reader->SetImageIO(gdcmImageIO);

The reading of the image is triggered by invoking Update() in the reader.

reader->Update();

We take the metadata dictionary from the image that the reader had loaded in memory.

InputImageType::Pointer inputImage = reader->GetOutput();

using DictionaryType = itk::MetaDataDictionary;

DictionaryType & dictionary = inputImage->GetMetaDataDictionary();

Now we access the entries in the metadata dictionary, and for particular key values we assign a

new content to the entry. This is done here by taking {key,value} pairs from the command line

arguments. The relevant method is EncapsulateMetaData that takes the dictionary and for a given

key provided by entryId, replaces the current value with the content of the value variable. This is

repeated for every potential pair present in the command line arguments.

for (int i = 3; i < argc; i += 2)

{

std::string entryId(argv[i]);

std::string value(argv[i + 1]);

itk::EncapsulateMetaData<std::string>(dictionary, entryId, value);

}

Now that the dictionary has been updated, we proceed to save the image. This output image will

have the modified data associated with its DICOM header.

Using the image type, we instantiate a writer type and construct a writer. A short pipeline between

the reader and the writer is connected. The filename to write is taken from the command line

arguments. The image IO object is connected to the writer.

using Writer1Type = itk::ImageFileWriter<InputImageType>;

auto writer1 = Writer1Type::New();

writer1->SetInput(reader->GetOutput());

writer1->SetFileName(argv[2]);

writer1->SetImageIO(gdcmImageIO);

Execution of the writer is triggered by invoking the Update() method.

1.12. Reading and Writing DICOM Images 53

writer1->Update();

Remember again, that modifying the header entries of a DICOM file involves very serious risks for

patients and therefore must be done with extreme caution.

CHAPTER

TWO

FILTERING

This chapter introduces the most commonly used filters found in the toolkit. Most of these filters are

intended to process images. They will accept one or more images as input and will produce one or

more images as output. ITK is based on a data pipeline architecture in which the output of one filter

is passed as input to another filter. (See the Data Processing Pipeline section in Book 1 for more

information.)

2.1 Thresholding

The thresholding operation is used to change or identify pixel values based on specifying one or more

values (called the threshold value). The following sections describe how to perform thresholding

operations using ITK.

2.1.1 Binary Thresholding

The source code for this section can be found in the file

BinaryThresholdImageFilter.cxx.

This example illustrates the use of the binary threshold image filter. This filter is used to trans-

form an image into a binary image by changing the pixel values according to the rule illustrated in

Figure 2.1. The user defines two thresholds—Upper and Lower—and two intensity values—Inside

and Outside. For each pixel in the input image, the value of the pixel is compared with the lower

and upper thresholds. If the pixel value is inside the range defined by [Lower,Upper] the output

pixel is assigned the InsideValue. Otherwise the output pixels are assigned to the OutsideValue.

Thresholding is commonly applied as the last operation of a segmentation pipeline.

The first step required to use the itk::BinaryThresholdImageFilter is to include its header file.

https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

56 Chapter 2. Filtering

Threshold
Upper

Threshold

Output
Intensity

Input
Intensity

Outside
Value

Inside
Value

Lower

Figure 2.1: Transfer function of the BinaryThresholdImageFilter.

#include "itkBinaryThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

The input and output image types are now defined using their respective pixel types and dimensions.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type can be instantiated using the input and output image types defined above.

using FilterType =

itk::BinaryThresholdImageFilter<InputImageType, OutputImageType>;

An itk::ImageFileReader class is also instantiated in order to read image data from a file. (See

Section 1 on page 1 for more information about reading and writing data.)

using ReaderType = itk::ImageFileReader<InputImageType>;

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

2.1. Thresholding 57

using WriterType = itk::ImageFileWriter<OutputImageType>;

Both the filter and the reader are created by invoking their New() methods and assigning the result

to itk::SmartPointers.

auto reader = ReaderType::New();

auto filter = FilterType::New();

The image obtained with the reader is passed as input to the BinaryThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The method SetOutsideValue() defines the intensity value to be assigned to those pixels

whose intensities are outside the range defined by the lower and upper thresholds. The method

SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling in-

side the threshold range.

filter->SetOutsideValue(outsideValue);

filter->SetInsideValue(insideValue);

The methods SetLowerThreshold() and SetUpperThreshold() define the range of the input

image intensities that will be transformed into the InsideValue. Note that the lower and upper

thresholds are values of the type of the input image pixels, while the inside and outside values are of

the type of the output image pixels.

filter->SetLowerThreshold(lowerThreshold);

filter->SetUpperThreshold(upperThreshold);

The execution of the filter is triggered by invoking the Update() method. If the filter’s output

has been passed as input to subsequent filters, the Update() call on any downstream filters in the

pipeline will indirectly trigger the update of this filter.

filter->Update();

Figure 2.2 illustrates the effect of this filter on a MRI proton density image of the brain. This

figure shows the limitations of the filter for performing segmentation by itself. These limitations are

particularly noticeable in noisy images and in images lacking spatial uniformity as is the case with

MRI due to field bias.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

58 Chapter 2. Filtering

Figure 2.2: Effect of the BinaryThresholdImageFilter on a slice from a MRI proton density image of the brain.

2.1.2 General Thresholding

The source code for this section can be found in the file

ThresholdImageFilter.cxx.

This example illustrates the use of the itk::ThresholdImageFilter. This filter can be used to

transform the intensity levels of an image in three different ways.

• First, the user can define a single threshold. Any pixels with values below this threshold will

be replaced by a user defined value, called here the OutsideValue. Pixels with values above

the threshold remain unchanged. This type of thresholding is illustrated in Figure 2.3.

• Second, the user can define a particular threshold such that all the pixels with values above

the threshold will be replaced by the OutsideValue. Pixels with values below the threshold

remain unchanged. This is illustrated in Figure 2.4.

• Third, the user can provide two thresholds. All the pixels with intensity values inside the

range defined by the two thresholds will remain unchanged. Pixels with values outside this

range will be assigned to the OutsideValue. This is illustrated in Figure 2.5.

The following methods choose among the three operating modes of the filter.

• ThresholdBelow()

https://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

2.1. Thresholding 59

Value

Output
Intensity

Input
Intensity

Threshold
Below

Unchanged
Intensities

Outside

Figure 2.3: ThresholdImageFilter using the threshold-below mode.

Intensity

Input
Intensity

Unchanged
Intensities

Threshold
Above

Outside
Value

Output

Figure 2.4: ThresholdImageFilter using the threshold-above mode.

Value

Output
Intensity

Lower
Threshold

Unchanged
Intensities

Upper
Threshold

Input
Intensity

Outside

Figure 2.5: ThresholdImageFilter using the threshold-outside mode.

60 Chapter 2. Filtering

• ThresholdAbove()

• ThresholdOutside()

The first step required to use this filter is to include its header file.

#include "itkThresholdImageFilter.h"

Then we must decide what pixel type to use for the image. This filter is templated over a single

image type because the algorithm only modifies pixel values outside the specified range, passing the

rest through unchanged.

using PixelType = unsigned char;

The image is defined using the pixel type and the dimension.

using ImageType = itk::Image<PixelType, 2>;

The filter can be instantiated using the image type defined above.

using FilterType = itk::ThresholdImageFilter<ImageType>;

An itk::ImageFileReader class is also instantiated in order to read image data from a file.

using ReaderType = itk::ImageFileReader<ImageType>;

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

using WriterType = itk::ImageFileWriter<ImageType>;

Both the filter and the reader are created by invoking their New() methods and assigning the result

to SmartPointers.

auto reader = ReaderType::New();

auto filter = FilterType::New();

The image obtained with the reader is passed as input to the itk::ThresholdImageFilter.

filter->SetInput(reader->GetOutput());

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html

2.2. Edge Detection 61

The method SetOutsideValue() defines the intensity value to be assigned to those pixels whose

intensities are outside the range defined by the lower and upper thresholds.

filter->SetOutsideValue(0);

The method ThresholdBelow() defines the intensity value below which pixels of the input image

will be changed to the OutsideValue.

filter->ThresholdBelow(180);

The filter is executed by invoking the Update() method. If the filter is part of a larger image

processing pipeline, calling Update() on a downstream filter will also trigger update of this filter.

filter->Update();

The output of this example is shown in Figure 2.3. The second operating mode of the filter is now

enabled by calling the method ThresholdAbove().

filter->ThresholdAbove(180);

filter->Update();

Updating the filter with this new setting produces the output shown in Figure 2.4. The third operating

mode of the filter is enabled by calling ThresholdOutside().

filter->ThresholdOutside(170, 190);

filter->Update();

The output of this third, “band-pass” thresholding mode is shown in Figure 2.5.

The examples in this section also illustrate the limitations of the thresholding filter for performing

segmentation by itself. These limitations are particularly noticeable in noisy images and in images

lacking spatial uniformity, as is the case with MRI due to field bias.

The following classes provide similar functionality:

• itk::BinaryThresholdImageFilter

2.2 Edge Detection

2.2.1 Canny Edge Detection

The source code for this section can be found in the file

CannyEdgeDetectionImageFilter.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

62 Chapter 2. Filtering

This example introduces the use of the itk::CannyEdgeDetectionImageFilter . Canny edge

detection is widely used for edge detection since it is the optimal solution satisfying the constraints

of good sensitivity, localization and noise robustness. To achieve this end, Canny edge detection is

implemented internally as a multi-stage algorithm, which involves Gaussian smoothing to remove

noise, calculation of gradient magnitudes to localize edge features, non-maximum suppression to

remove spurious features, and finally thresholding to yield a binary image. Though the specifics of

this internal pipeline are largely abstracted from the user of the class, it is nonetheless beneficial to

have a general understanding of these components so that parameters can be appropriately adjusted.

The first step required for using this filter is to include its header file.

#include "itkCannyEdgeDetectionImageFilter.h"

In this example, images are read and written with unsigned char pixel type. However, Canny edge

detection requires floating point pixel types in order to avoid numerical errors. For this reason, a

separate internal image type with pixel type double is defined for edge detection.

constexpr unsigned int Dimension = 2;

using CharPixelType = unsigned char; // IO

using RealPixelType = double; // Operations

using CharImageType = itk::Image<CharPixelType, Dimension>;

using RealImageType = itk::Image<RealPixelType, Dimension>;

The CharImageType image is cast to and from RealImageType using itk::CastImageFilter

and RescaleIntensityImageFilter, respectively; both the input and output of

CannyEdgeDetectionImageFilter are RealImageType.

using CastToRealFilterType =

itk::CastImageFilter<CharImageType, RealImageType>;

using CannyFilterType =

itk::CannyEdgeDetectionImageFilter<RealImageType, RealImageType>;

using RescaleFilterType =

itk::RescaleIntensityImageFilter<RealImageType, CharImageType>;

In this example, three parameters of the Canny edge detection filter may be set via the

SetVariance(), SetUpperThreshold(), and SetLowerThreshold() methods. Based on the pre-

vious discussion of the steps in the internal pipeline, we understand that variance adjusts the

amount of Gaussian smoothing and upperThreshold and lowerThreshold control which edges

are selected in the final step.

cannyFilter->SetVariance(variance);

cannyFilter->SetUpperThreshold(upperThreshold);

cannyFilter->SetLowerThreshold(lowerThreshold);

https://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

2.3. Casting and Intensity Mapping 63

Finally, Update() is called on writer to trigger execution of the pipeline. As usual, the call is

wrapped in a try/catch block.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

2.3 Casting and Intensity Mapping

The filters discussed in this section perform pixel-wise intensity mappings. Casting is used to convert

one pixel type to another, while intensity mappings also take into account the different intensity

ranges of the pixel types.

2.3.1 Linear Mappings

The source code for this section can be found in the file

CastingImageFilters.cxx.

Due to the use of Generic Programming in the toolkit, most types are resolved at compile-time. Few

decisions regarding type conversion are left to run-time. It is up to the user to anticipate the pixel

type-conversions required in the data pipeline. In medical imaging applications it is usually not

desirable to use a general pixel type since this may result in the loss of valuable information.

This section introduces the mechanisms for explicit casting of images that flow through the

pipeline. The following four filters are treated in this section: itk::CastImageFilter,

itk::RescaleIntensityImageFilter, itk::ShiftScaleImageFilter and

itk::NormalizeImageFilter . These filters are not directly related to each other except

that they all modify pixel values. They are presented together here for the purpose of comparing

their individual features.

The CastImageFilter is a very simple filter that acts pixel-wise on an input image, casting every pixel

to the type of the output image. Note that this filter does not perform any arithmetic operation on the

intensities. Applying CastImageFilter is equivalent to performing a C-Style cast on every pixel.

outputPixel = static cast<OutputPixelType>(inputPixel)

The RescaleIntensityImageFilter linearly scales the pixel values in such a way that the minimum and

https://www.boost.org/more/generic_programming.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ShiftScaleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NormalizeImageFilter.html

64 Chapter 2. Filtering

maximum values of the input are mapped to minimum and maximum values provided by the user.

This is a typical process for forcing the dynamic range of the image to fit within a particular scale

and is common for image display. The linear transformation applied by this filter can be expressed

as

out putPixel = (inputPixel− inpMin)× (outMax− outMin)

(inpMax− inpMin)
+ outMin

.

The ShiftScaleImageFilter also applies a linear transformation to the intensities of the input image,

but the transformation is specified by the user in the form of a multiplying factor and a value to be

added. This can be expressed as

out putPixel = (inputPixel+ Shi f t)× Scale

.

The parameters of the linear transformation applied by the NormalizeImageFilter are computed

internally such that the statistical distribution of gray levels in the output image have zero mean and

a variance of one. This intensity correction is particularly useful in registration applications as a

preprocessing step to the evaluation of mutual information metrics. The linear transformation of

NormalizeImageFilter is given as

out putPixel =
(inputPixel−mean)√

variance
.

As usual, the first step required to use these filters is to include their header files.

#include "itkCastImageFilter.h"

#include "itkRescaleIntensityImageFilter.h"

#include "itkNormalizeImageFilter.h"

Let’s define pixel types for the input and output images.

using InputPixelType = unsigned char;

using OutputPixelType = float;

Then, the input and output image types are defined.

using InputImageType = itk::Image<InputPixelType, 3>;

using OutputImageType = itk::Image<OutputPixelType, 3>;

The filters are instantiated using the defined image types.

2.3. Casting and Intensity Mapping 65

using CastFilterType =

itk::CastImageFilter<InputImageType, OutputImageType>;

using RescaleFilterType =

itk::RescaleIntensityImageFilter<InputImageType, OutputImageType>;

using ShiftScaleFilterType =

itk::ShiftScaleImageFilter<InputImageType, OutputImageType>;

using NormalizeFilterType =

itk::NormalizeImageFilter<InputImageType, OutputImageType>;

Object filters are created by invoking the New() method and assigning the result to

itk::SmartPointers.

auto castFilter = CastFilterType::New();

auto rescaleFilter = RescaleFilterType::New();

auto shiftFilter = ShiftScaleFilterType::New();

auto normalizeFilter = NormalizeFilterType::New();

The output of a reader filter (whose creation is not shown here) is now connected as input to the

various casting filters.

castFilter->SetInput(reader->GetOutput());

shiftFilter->SetInput(reader->GetOutput());

rescaleFilter->SetInput(reader->GetOutput());

normalizeFilter->SetInput(reader->GetOutput());

Next we proceed to setup the parameters required by each filter. The CastImageFilter and the Nor-

malizeImageFilter do not require any parameters. The RescaleIntensityImageFilter, on the other

hand, requires the user to provide the desired minimum and maximum pixel values of the output

image. This is done by using the SetOutputMinimum() and SetOutputMaximum() methods as

illustrated below.

rescaleFilter->SetOutputMinimum(10);

rescaleFilter->SetOutputMaximum(250);

The ShiftScaleImageFilter requires a multiplication factor (scale) and a post-scaling additive value

(shift). The methods SetScale() and SetShift() are used, respectively, to set these values.

shiftFilter->SetScale(1.2);

shiftFilter->SetShift(25);

Finally, the filters are executed by invoking the Update() method.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

66 Chapter 2. Filtering

OutputMaximum

OutputMinimum

Alpha=−1

0.6

0.8

1

−10 −5 0 5 10

0.2

0

Alpha=0.25

Alpha=0.5

Alpha=4

Alpha=2

Alpha=1
0.4

Beta = −4

Beta = 0

Beta = 2
Beta = 4

Beta = −2

0

−10 −5 0 5 10

0.8

0.6

0.4

0.2

1

Figure 2.6: Effects of the various parameters in the SigmoidImageFilter. The alpha parameter defines the width

of the intensity window. The beta parameter defines the center of the intensity window.

castFilter->Update();

shiftFilter->Update();

rescaleFilter->Update();

normalizeFilter->Update();

2.3.2 Non Linear Mappings

The following filter can be seen as a variant of the casting filters. Its main difference is the use of a

smooth and continuous transition function of non-linear form.

The source code for this section can be found in the file

SigmoidImageFilter.cxx.

The itk::SigmoidImageFilter is commonly used as an intensity transform. It maps a specific

range of intensity values into a new intensity range by making a very smooth and continuous tran-

sition in the borders of the range. Sigmoids are widely used as a mechanism for focusing attention

on a particular set of values and progressively attenuating the values outside that range. In order to

extend the flexibility of the Sigmoid filter, its implementation in ITK includes four parameters that

can be tuned to select its input and output intensity ranges. The following equation represents the

Sigmoid intensity transformation, applied pixel-wise.

I′ = (Max−Min) · 1
(

1+ e
−
(

I−β
α

)) +Min (2.1)

In the equation above, I is the intensity of the input pixel, I′ the intensity of the output pixel,

Min,Max are the minimum and maximum values of the output image, α defines the width of the

input intensity range, and β defines the intensity around which the range is centered. Figure 2.6

illustrates the significance of each parameter.

https://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html

2.3. Casting and Intensity Mapping 67

This filter will work on images of any dimension and will take advantage of multiple processors

when available.

The header file corresponding to this filter should be included first.

#include "itkSigmoidImageFilter.h"

Then pixel and image types for the filter input and output must be defined.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

Using the image types, we instantiate the filter type and create the filter object.

using SigmoidFilterType =

itk::SigmoidImageFilter<InputImageType, OutputImageType>;

auto sigmoidFilter = SigmoidFilterType::New();

The minimum and maximum values desired in the output are defined using the methods

SetOutputMinimum() and SetOutputMaximum().

sigmoidFilter->SetOutputMinimum(outputMinimum);

sigmoidFilter->SetOutputMaximum(outputMaximum);

The coefficients α and β are set with the methods SetAlpha() and SetBeta(). Note that α is

proportional to the width of the input intensity window. As rule of thumb, we may say that the

window is the interval [−3α,3α]. The boundaries of the intensity window are not sharp. The α
curve approaches its extrema smoothly, as shown in Figure 2.6. You may want to think about this

in the same terms as when taking a range in a population of measures by defining an interval of

[−3σ,+3σ] around the population mean.

sigmoidFilter->SetAlpha(alpha);

sigmoidFilter->SetBeta(beta);

The input to the SigmoidImageFilter can be taken from any other filter, such as an image file reader,

for example. The output can be passed down the pipeline to other filters, like an image file writer.

An Update() call on any downstream filter will trigger the execution of the Sigmoid filter.

sigmoidFilter->SetInput(reader->GetOutput());

writer->SetInput(sigmoidFilter->GetOutput());

writer->Update();

68 Chapter 2. Filtering

Figure 2.7: Effect of the Sigmoid filter on a slice from a MRI proton density brain image.

Figure 2.7 illustrates the effect of this filter on a slice of MRI brain image using the following

parameters.

• Minimum = 10

• Maximum = 240

• α = 10

• β = 170

As can be seen from the figure, the intensities of the white matter were expanded in their dynamic

range, while intensity values lower than β−3α and higher than β+3α became progressively mapped

to the minimum and maximum output values. This is the way in which a Sigmoid can be used for

performing smooth intensity windowing.

Note that both α and β can be positive and negative. A negative α will have the effect of negating

the image. This is illustrated on the left side of Figure 2.6. An application of the Sigmoid filter as

preprocessing for segmentation is presented in Section 4.3.1.

Sigmoid curves are common in the natural world. They represent the plot of sensitivity to a stimulus.

They are also the integral curve of the Gaussian and, therefore, appear naturally as the response to

signals whose distribution is Gaussian.

2.4. Gradients 69

2.4 Gradients

Computation of gradients is a fairly common operation in image processing. The term “gradient”

may refer in some contexts to the gradient vectors and in others to the magnitude of the gradient vec-

tors. ITK filters attempt to reduce this ambiguity by including the magnitude term when appropriate.

ITK provides filters for computing both the image of gradient vectors and the image of magnitudes.

2.4.1 Gradient Magnitude

The source code for this section can be found in the file

GradientMagnitudeImageFilter.cxx.

The magnitude of the image gradient is extensively used in image analysis, mainly to help

in the determination of object contours and the separation of homogeneous regions. The

itk::GradientMagnitudeImageFilter computes the magnitude of the image gradient at each

pixel location using a simple finite differences approach. For example, in the case of 2D the compu-

tation is equivalent to convolving the image with masks of type

-1 0 1

1

0

-1

then adding the sum of their squares and computing the square root of the sum.

This filter will work on images of any dimension thanks to the internal use of

itk::NeighborhoodIterator and itk::NeighborhoodOperator.

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeImageFilter.h"

Types should be chosen for the pixels of the input and output images.

using InputPixelType = float;

using OutputPixelType = float;

The input and output image types can be defined using the pixel types.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The type of the gradient magnitude filter is defined by the input image and the output image types.

https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

70 Chapter 2. Filtering

using FilterType =

itk::GradientMagnitudeImageFilter<InputImageType, OutputImageType>;

A filter object is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, the source is an image

reader.

filter->SetInput(reader->GetOutput());

Finally, the filter is executed by invoking the Update() method.

filter->Update();

If the output of this filter has been connected to other filters in a pipeline, updating any of the

downstream filters will also trigger an update of this filter. For example, the gradient magnitude

filter may be connected to an image writer.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

Figure 2.8 illustrates the effect of the gradient magnitude filter on a MRI proton density image of

the brain. The figure shows the sensitivity of this filter to noisy data.

Attention should be paid to the image type chosen to represent the output image since the dynamic

range of the gradient magnitude image is usually smaller than the dynamic range of the input image.

As always, there are exceptions to this rule, for example, synthetic images that contain high contrast

objects.

This filter does not apply any smoothing to the image before computing the gradients. The results

can therefore be very sensitive to noise and may not be the best choice for scale-space analysis.

2.4.2 Gradient Magnitude With Smoothing

The source code for this section can be found in the file

GradientMagnitudeRecursiveGaussianImageFilter.cxx.

Differentiation is an ill-defined operation over digital data. In practice it is convenient to define a

scale in which the differentiation should be performed. This is usually done by preprocessing the

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

2.4. Gradients 71

Figure 2.8: Effect of the GradientMagnitudeImageFilter on a slice from a MRI proton density image of the brain.

data with a smoothing filter. It has been shown that a Gaussian kernel is the most convenient choice

for performing such smoothing. By choosing a particular value for the standard deviation (σ) of the

Gaussian, an associated scale is selected that ignores high frequency content, commonly considered

image noise.

The itk::GradientMagnitudeRecursiveGaussianImageFilter computes the magnitude of the

image gradient at each pixel location. The computational process is equivalent to first smoothing the

image by convolving it with a Gaussian kernel and then applying a differential operator. The user

selects the value of σ.

Internally this is done by applying an IIR 1 filter that approximates a convolution with the derivative

of the Gaussian kernel. Traditional convolution will produce a more accurate result, but the IIR

approach is much faster, especially using large σs [15, 16].

GradientMagnitudeRecursiveGaussianImageFilter will work on images of any dimension by taking

advantage of the natural separability of the Gaussian kernel and its derivatives.

The first step required to use this filter is to include its header file.

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"

Types should be instantiated based on the pixels of the input and output images.

1Infinite Impulse Response

https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html

72 Chapter 2. Filtering

using InputPixelType = float;

using OutputPixelType = float;

With them, the input and output image types can be instantiated.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types.

using FilterType =

itk::GradientMagnitudeRecursiveGaussianImageFilter<InputImageType,

OutputImageType>;

A filter object is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

filter->SetInput(reader->GetOutput());

The standard deviation of the Gaussian smoothing kernel is now set.

filter->SetSigma(sigma);

Finally the filter is executed by invoking the Update() method.

filter->Update();

If connected to other filters in a pipeline, this filter will automatically update when any downstream

filters are updated. For example, we may connect this gradient magnitude filter to an image file

writer and then update the writer.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

2.4. Gradients 73

Figure 2.9: Effect of the GradientMagnitudeRecursiveGaussianImageFilter on a slice from a MRI proton density

image of the brain.

Figure 2.9 illustrates the effect of this filter on a MRI proton density image of the brain using σ
values of 3 (left) and 5 (right). The figure shows how the sensitivity to noise can be regulated by

selecting an appropriate σ. This type of scale-tunable filter is suitable for performing scale-space

analysis.

Attention should be paid to the image type chosen to represent the output image since the dynamic

range of the gradient magnitude image is usually smaller than the dynamic range of the input image.

2.4.3 Derivative Without Smoothing

The source code for this section can be found in the file

DerivativeImageFilter.cxx.

The itk::DerivativeImageFilter is used for computing the partial derivative of an image, the

derivative of an image along a particular axial direction.

The header file corresponding to this filter should be included first.

#include "itkDerivativeImageFilter.h"

Next, the pixel types for the input and output images must be defined and, with them, the image

types can be instantiated. Note that it is important to select a signed type for the image, since the

https://www.itk.org/Doxygen/html/classitk_1_1DerivativeImageFilter.html

74 Chapter 2. Filtering

values of the derivatives will be positive as well as negative.

using InputPixelType = float;

using OutputPixelType = float;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

Using the image types, it is now possible to define the filter type and create the filter object.

using FilterType =

itk::DerivativeImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The order of the derivative is selected with the SetOrder() method. The direction along which the

derivative will be computed is selected with the SetDirection() method.

filter->SetOrder(std::stoi(argv[4]));

filter->SetDirection(std::stoi(argv[5]));

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An Update() call on any downstream

filter will trigger the execution of the derivative filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.10 illustrates the effect of the DerivativeImageFilter on a slice of MRI brain image. The

derivative is taken along the x direction. The sensitivity to noise in the image is evident from this

result.

2.5 Second Order Derivatives

2.5.1 Second Order Recursive Gaussian

The source code for this section can be found in the file

SecondDerivativeRecursiveGaussianImageFilter.cxx.

This example illustrates how to compute second derivatives of a 3D image using the

itk::RecursiveGaussianImageFilter.

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

2.5. Second Order Derivatives 75

Figure 2.10: Effect of the Derivative filter on a slice from a MRI proton density brain image.

It’s good to be able to compute the raw derivative without any smoothing, but this can be problem-

atic in a medical imaging scenario, when images will often have a certain amount of noise. It’s

almost always more desirable to include a smoothing step first, where an image is convolved with

a Gaussian kernel in whichever directions the user desires a derivative. The nature of the Gaussian

kernel makes it easy to combine these two steps into one, using an infinite impulse response (IIR)

filter. In this example, all the second derivatives are computed independently in the same way, as

if they were intended to be used for building the Hessian matrix of the image (a square matrix of

second-order derivatives of an image, which is useful in many image processing techniques).

First, we will include the relevant header files: the itkRecursiveGaussianImageFilter, the image

reader, writer, and duplicator.

#include "itkRecursiveGaussianImageFilter.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkImageDuplicator.h"

#include <string>

Next, we declare our pixel type and output pixel type to be floats, and our image dimension to be 3.

using PixelType = float;

using OutputPixelType = float;

constexpr unsigned int Dimension = 3;

76 Chapter 2. Filtering

Using these definitions, define the image types, reader and writer types, and duplicator types, which

are templated over the pixel types and dimension. Then, instantiate the reader, writer, and duplicator

with the New() method.

using ImageType = itk::Image<PixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

using ReaderType = itk::ImageFileReader<ImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

using DuplicatorType = itk::ImageDuplicator<OutputImageType>;

using FilterType = itk::RecursiveGaussianImageFilter<ImageType, ImageType>;

auto reader = ReaderType::New();

auto writer = WriterType::New();

auto duplicator = DuplicatorType::New();

Here we create three new filters. For each derivative we take, we will want to smooth in that

direction first. So after the filters are created, each is given a dimension, and set to (in this

example) the same sigma. Note that here, σ represents the standard deviation, whereas the

itk::DiscreteGaussianImageFilter exposes the SetVariance method.

auto ga = FilterType::New();

auto gb = FilterType::New();

auto gc = FilterType::New();

ga->SetDirection(0);

gb->SetDirection(1);

gc->SetDirection(2);

if (argc > 3)

{

const float sigma = std::stod(argv[3]);

ga->SetSigma(sigma);

gb->SetSigma(sigma);

gc->SetSigma(sigma);

}

First we will compute the second derivative of the z-direction. In order to do this, we smooth in the

x- and y- directions, and finally smooth and compute the derivative in the z-direction. Taking the

zero-order derivative is equivalent to simply smoothing in that direction. This result is commonly

notated Izz.

ga->SetZeroOrder();

gb->SetZeroOrder();

gc->SetSecondOrder();

https://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

2.5. Second Order Derivatives 77

ImageType::Pointer inputImage = reader->GetOutput();

ga->SetInput(inputImage);

gb->SetInput(ga->GetOutput());

gc->SetInput(gb->GetOutput());

duplicator->SetInputImage(gc->GetOutput());

gc->Update();

duplicator->Update();

ImageType::Pointer Izz = duplicator->GetOutput();

Recall that gc is the filter responsible for taking the second derivative. We can now take advantage

of the pipeline architecture and, without much hassle, switch the direction of gc and gb, so that gc

now takes the derivatives in the y-direction. Now we only need to call Update() on gc to re-run

the entire pipeline from ga to gc, obtaining the second-order derivative in the y-direction, which is

commonly notated Iyy.

gc->SetDirection(1); // gc now works along Y

gb->SetDirection(2); // gb now works along Z

gc->Update();

duplicator->Update();

ImageType::Pointer Iyy = duplicator->GetOutput();

Now we switch the directions of gc with that of ga in order to take the derivatives in the x-direction.

This will give us Ixx.

gc->SetDirection(0); // gc now works along X

ga->SetDirection(1); // ga now works along Y

gc->Update();

duplicator->Update();

ImageType::Pointer Ixx = duplicator->GetOutput();

Now we can reset the directions to their original values, and compute first derivatives in different

directions. Since we set both gb and gc to compute first derivatives, and ga to zero-order (which is

only smoothing) we will obtain Iyz.

ga->SetDirection(0);

gb->SetDirection(1);

gc->SetDirection(2);

ga->SetZeroOrder();

gb->SetFirstOrder();

78 Chapter 2. Filtering

gc->SetFirstOrder();

gc->Update();

duplicator->Update();

ImageType::Pointer Iyz = duplicator->GetOutput();

Here is how you may easily obtain Ixz.

ga->SetDirection(1);

gb->SetDirection(0);

gc->SetDirection(2);

ga->SetZeroOrder();

gb->SetFirstOrder();

gc->SetFirstOrder();

gc->Update();

duplicator->Update();

ImageType::Pointer Ixz = duplicator->GetOutput();

For the sake of completeness, here is how you may compute Ixz and Ixy.

writer->SetInput(Ixz);

outputFileName = outputPrefix + "-Ixz.mhd";

writer->SetFileName(outputFileName.c_str());

writer->Update();

ga->SetDirection(2);

gb->SetDirection(0);

gc->SetDirection(1);

ga->SetZeroOrder();

gb->SetFirstOrder();

gc->SetFirstOrder();

gc->Update();

duplicator->Update();

ImageType::Pointer Ixy = duplicator->GetOutput();

writer->SetInput(Ixy);

outputFileName = outputPrefix + "-Ixy.mhd";

writer->SetFileName(outputFileName.c_str());

writer->Update();

2.5. Second Order Derivatives 79

2.5.2 Laplacian Filters

Laplacian Filter Recursive Gaussian

The source code for this section can be found in the file

LaplacianRecursiveGaussianImageFilter1.cxx.

This example illustrates how to use the itk::RecursiveGaussianImageFilter for computing

the Laplacian of a 2D image.

The first step required to use this filter is to include its header file.

#include "itkRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

using InputPixelType = float;

using OutputPixelType = float;

The input and output image types are instantiated using the pixel types.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types.

using FilterType =

itk::RecursiveGaussianImageFilter<InputImageType, OutputImageType>;

This filter applies the approximation of the convolution along a single dimension. It is therefore

necessary to concatenate several of these filters to produce smoothing in all directions. In this

example, we create a pair of filters since we are processing a 2D image. The filters are created by

invoking the New() method and assigning the result to a itk::SmartPointer.

We need two filters for computing the X component of the Laplacian and two other filters for com-

puting the Y component.

auto filterX1 = FilterType::New();

auto filterY1 = FilterType::New();

auto filterX2 = FilterType::New();

auto filterY2 = FilterType::New();

Since each one of the newly created filters has the potential to perform filtering along any dimension,

we have to restrict each one to a particular direction. This is done with the SetDirection() method.

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

80 Chapter 2. Filtering

filterX1->SetDirection(0); // 0 --> X direction

filterY1->SetDirection(1); // 1 --> Y direction

filterX2->SetDirection(0); // 0 --> X direction

filterY2->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianImageFilter can approximate the convolution with the Gaussian

or with its first and second derivatives. We select one of these options by using the SetOrder()

method. Note that the argument is an enum whose values can be ZeroOrder, FirstOrder and

SecondOrder. For example, to compute the x partial derivative we should select FirstOrder for

x and ZeroOrder for y. Here we want only to smooth in x and y, so we select ZeroOrder in both

directions.

filterX1->SetOrder(itk::GaussianOrderEnum::ZeroOrder);

filterY1->SetOrder(itk::GaussianOrderEnum::SecondOrder);

filterX2->SetOrder(itk::GaussianOrderEnum::SecondOrder);

filterY2->SetOrder(itk::GaussianOrderEnum::ZeroOrder);

There are two typical ways of normalizing Gaussians depending on their application. For scale-

space analysis it is desirable to use a normalization that will preserve the maximum value of the

input. This normalization is represented by the following equation.

1

σ
√

2π
(2.2)

In applications that use the Gaussian as a solution of the diffusion equation it is desirable to use a

normalization that preserves the integral of the signal. This last approach can be seen as a conserva-

tion of mass principle. This is represented by the following equation.

1

σ2
√

2π
(2.3)

The itk::RecursiveGaussianImageFilter has a boolean flag that allows users to select between

these two normalization options. Selection is done with the method SetNormalizeAcrossScale().

Enable this flag when analyzing an image across scale-space. In the current example, this setting

has no impact because we are actually renormalizing the output to the dynamic range of the reader,

so we simply disable the flag.

const bool normalizeAcrossScale = false;

filterX1->SetNormalizeAcrossScale(normalizeAcrossScale);

filterY1->SetNormalizeAcrossScale(normalizeAcrossScale);

filterX2->SetNormalizeAcrossScale(normalizeAcrossScale);

filterY2->SetNormalizeAcrossScale(normalizeAcrossScale);

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

2.5. Second Order Derivatives 81

The input image can be obtained from the output of another filter. Here, an image reader is used as

the source. The image is passed to the x filter and then to the y filter. The reason for keeping these

two filters separate is that it is usual in scale-space applications to compute not only the smoothing

but also combinations of derivatives at different orders and smoothing. Some factorization is pos-

sible when separate filters are used to generate the intermediate results. Here this capability is less

interesting, though, since we only want to smooth the image in all directions.

filterX1->SetInput(reader->GetOutput());

filterY1->SetInput(filterX1->GetOutput());

filterY2->SetInput(reader->GetOutput());

filterX2->SetInput(filterY2->GetOutput());

It is now time to select the σ of the Gaussian used to smooth the data. Note that σ must be passed to

both filters and that sigma is considered to be in millimeters. That is, at the moment of applying the

smoothing process, the filter will take into account the spacing values defined in the image.

filterX1->SetSigma(sigma);

filterY1->SetSigma(sigma);

filterX2->SetSigma(sigma);

filterY2->SetSigma(sigma);

Finally the two components of the Laplacian should be added together. The itk::AddImageFilter

is used for this purpose.

using AddFilterType =

itk::AddImageFilter<OutputImageType, OutputImageType, OutputImageType>;

auto addFilter = AddFilterType::New();

addFilter->SetInput1(filterY1->GetOutput());

addFilter->SetInput2(filterX2->GetOutput());

The filters are triggered by invoking Update() on the Add filter at the end of the pipeline.

try

{

addFilter->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

The resulting image could be saved to a file using the itk::ImageFileWriter class.

https://www.itk.org/Doxygen/html/classitk_1_1AddImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

82 Chapter 2. Filtering

Figure 2.11: Effect of the LaplacianRecursiveGaussianImageFilter on a slice from a MRI proton density image

of the brain.

using WritePixelType = float;

using WriteImageType = itk::Image<WritePixelType, 2>;

using WriterType = itk::ImageFileWriter<WriteImageType>;

auto writer = WriterType::New();

writer->SetInput(addFilter->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

The source code for this section can be found in the file

LaplacianRecursiveGaussianImageFilter2.cxx.

The previous example showed how to use the itk::RecursiveGaussianImageFilter

for computing the equivalent of a Laplacian of an image after smoothing with a Gaus-

sian. The elements used in this previous example have been packaged together in the

itk::LaplacianRecursiveGaussianImageFilter in order to simplify its usage. This current

example shows how to use this convenience filter for achieving the same results as the previous

example.

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1LaplacianRecursiveGaussianImageFilter.html

2.5. Second Order Derivatives 83

The first step required to use this filter is to include its header file.

#include "itkLaplacianRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

using InputPixelType = float;

using OutputPixelType = float;

The input and output image types are instantiated using the pixel types.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types.

using FilterType =

itk::LaplacianRecursiveGaussianImageFilter<InputImageType,

OutputImageType>;

This filter packages all the components illustrated in the previous example. The filter is created by

invoking the New() method and assigning the result to a itk::SmartPointer.

auto laplacian = FilterType::New();

The option for normalizing across scale space can also be selected in this filter.

laplacian->SetNormalizeAcrossScale(false);

The input image can be obtained from the output of another filter. Here, an image reader is used as

the source.

laplacian->SetInput(reader->GetOutput());

It is now time to select the σ of the Gaussian used to smooth the data. Note that σ must be passed to

both filters and that sigma is considered to be in millimeters. That is, at the moment of applying the

smoothing process, the filter will take into account the spacing values defined in the image.

laplacian->SetSigma(sigma);

Finally the pipeline is executed by invoking the Update() method.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

84 Chapter 2. Filtering

try

{

laplacian->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

2.6 Neighborhood Filters

The concept of locality is frequently encountered in image processing in the form of filters that

compute every output pixel using information from a small region in the neighborhood of the input

pixel. The classical form of these filters are the 3× 3 filters in 2D images. Convolution masks

based on these neighborhoods can perform diverse tasks ranging from noise reduction, to differential

operations, to mathematical morphology.

The Insight Toolkit implements an elegant approach to neighborhood-based image filtering. The

input image is processed using a special iterator called the itk::NeighborhoodIterator . This

iterator is capable of moving over all the pixels in an image and, for each position, it can address

the pixels in a local neighborhood. Operators are defined that apply an algorithmic operation in

the neighborhood of the input pixel to produce a value for the output pixel. The following section

describes some of the more commonly used filters that take advantage of this construction. (See the

Iterators chapter in Book 1 for more information.)

2.6.1 Mean Filter

The source code for this section can be found in the file

MeanImageFilter.cxx.

The itk::MeanImageFilter is commonly used for noise reduction. The filter computes the value

of each output pixel by finding the statistical mean of the neighborhood of the corresponding input

pixel. The following figure illustrates the local effect of the MeanImageFilter in a 2D case. The

statistical mean of the neighborhood on the left is passed as the output value associated with the

pixel at the center of the neighborhood.

25 30 32

27 25 29

28 26 50

✲ 30.22 ✲ 30

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1MeanImageFilter.html

2.6. Neighborhood Filters 85

Note that this algorithm is sensitive to the presence of outliers in the neighbor-

hood. This filter will work on images of any dimension thanks to the internal use of

itk::SmartNeighborhoodIterator and itk::NeighborhoodOperator . The size of the neigh-

borhood over which the mean is computed can be set by the user.

The header file corresponding to this filter should be included first.

#include "itkMeanImageFilter.h"

Then the pixel types for input and output image must be defined and, with them, the image types

can be instantiated.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

Using the image types it is now possible to instantiate the filter type and create the filter object.

using FilterType = itk::MeanImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The size of the neighborhood is defined along every dimension by passing a SizeType object with

the corresponding values. The value on each dimension is used as the semi-size of a rectangular

box. For example, in 2D a size of 1,2 will result in a 3× 5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x

indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An update call on any downstream

filter will trigger the execution of the mean filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.12 illustrates the effect of this filter on a slice of MRI brain image using neighborhood radii

of 1,1 which corresponds to a 3× 3 classical neighborhood. It can be seen from this picture that

edges are rapidly degraded by the diffusion of intensity values among neighbors.

https://www.itk.org/Doxygen/html/classitk_1_1SmartNeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

86 Chapter 2. Filtering

Figure 2.12: Effect of the MeanImageFilter on a slice from a MRI proton density brain image.

2.6.2 Median Filter

The source code for this section can be found in the file

MedianImageFilter.cxx.

The itk::MedianImageFilter is commonly used as a robust approach for noise reduction. This

filter is particularly efficient against salt-and-pepper noise. In other words, it is robust to the presence

of gray-level outliers. MedianImageFilter computes the value of each output pixel as the statistical

median of the neighborhood of values around the corresponding input pixel. The following figure

illustrates the local effect of this filter in a 2D case. The statistical median of the neighborhood on

the left is passed as the output value associated with the pixel at the center of the neighborhood.

25 30 32

27 25 29

28 26 50

✲ 28

This filter will work on images of any dimension thanks to the internal use of

itk::NeighborhoodIterator and itk::NeighborhoodOperator . The size of the neighborhood

over which the median is computed can be set by the user.

The header file corresponding to this filter should be included first.

https://www.itk.org/Doxygen/html/classitk_1_1MedianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

2.6. Neighborhood Filters 87

#include "itkMedianImageFilter.h"

Then the pixel and image types of the input and output must be defined.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

Using the image types, it is now possible to define the filter type and create the filter object.

using FilterType = itk::MedianImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The size of the neighborhood is defined along every dimension by passing a SizeType object with

the corresponding values. The value on each dimension is used as the semi-size of a rectangular

box. For example, in 2D a size of 1,2 will result in a 3× 5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = 1; // radius along x

indexRadius[1] = 1; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An update call on any downstream

filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.13 illustrates the effect of the MedianImageFilter filter on a slice of MRI brain image using

a neighborhood radius of 1,1, which corresponds to a 3× 3 classical neighborhood. The filtered

image demonstrates the moderate tendency of the median filter to preserve edges.

2.6.3 Mathematical Morphology

Mathematical morphology has proved to be a powerful resource for image processing and anal-

ysis [55]. ITK implements mathematical morphology filters using NeighborhoodIterators and

88 Chapter 2. Filtering

Figure 2.13: Effect of the MedianImageFilter on a slice from a MRI proton density brain image.

itk::NeighborhoodOperators. The toolkit contains two types of image morphology algorithms:

filters that operate on binary images and filters that operate on grayscale images.

Binary Filters

The source code for this section can be found in the file

MathematicalMorphologyBinaryFilters.cxx.

The following section illustrates the use of filters that perform basic mathematical

morphology operations on binary images. The itk::BinaryErodeImageFilter and

itk::BinaryDilateImageFilter are described here. The filter names clearly specify the type

of image on which they operate. The header files required to construct a simple example of the use

of the mathematical morphology filters are included below.

#include "itkBinaryErodeImageFilter.h"

#include "itkBinaryDilateImageFilter.h"

#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types and their associated image types.

constexpr unsigned int Dimension = 2;

using InputPixelType = unsigned char;

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryErodeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryDilateImageFilter.html

2.6. Neighborhood Filters 89

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

Mathematical morphology operations are implemented by applying an operator over the neighbor-

hood of each input pixel. The combination of the rule and the neighborhood is known as structuring

element. Although some rules have become defacto standards for image processing, there is a good

deal of freedom as to what kind of algorithmic rule should be applied to the neighborhood. The

implementation in ITK follows the typical rule of minimum for erosion and maximum for dilation.

The structuring element is implemented as a NeighborhoodOperator. In particular, the default struc-

turing element is the itk::BinaryBallStructuringElement class. This class is instantiated

using the pixel type and dimension of the input image.

using StructuringElementType =

itk::BinaryBallStructuringElement<InputPixelType, Dimension>;

The structuring element type is then used along with the input and output image types for instanti-

ating the type of the filters.

using ErodeFilterType = itk::BinaryErodeImageFilter<InputImageType,

OutputImageType,

StructuringElementType>;

using DilateFilterType =

itk::BinaryDilateImageFilter<InputImageType,

OutputImageType,

StructuringElementType>;

The filters can now be created by invoking the New() method and assigning the result to

itk::SmartPointers.

auto binaryErode = ErodeFilterType::New();

auto binaryDilate = DilateFilterType::New();

The structuring element is not a reference counted class. Thus it is created as a C++ stack object

instead of using New() and SmartPointers. The radius of the neighborhood associated with the struc-

turing element is defined with the SetRadius() method and the CreateStructuringElement()

method is invoked in order to initialize the operator. The resulting structuring element is passed to

the mathematical morphology filter through the SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring element

https://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

90 Chapter 2. Filtering

structuringElement.CreateStructuringElement();

binaryErode->SetKernel(structuringElement);

binaryDilate->SetKernel(structuringElement);

A binary image is provided as input to the filters. This image might be, for example, the output of a

binary threshold image filter.

thresholder->SetInput(reader->GetOutput());

InputPixelType background = 0;

InputPixelType foreground = 255;

thresholder->SetOutsideValue(background);

thresholder->SetInsideValue(foreground);

thresholder->SetLowerThreshold(lowerThreshold);

thresholder->SetUpperThreshold(upperThreshold);

binaryErode->SetInput(thresholder->GetOutput());

binaryDilate->SetInput(thresholder->GetOutput());

The values that correspond to “objects” in the binary image are specified with the methods

SetErodeValue() and SetDilateValue(). The value passed to these methods will be consid-

ered the value over which the dilation and erosion rules will apply.

binaryErode->SetErodeValue(foreground);

binaryDilate->SetDilateValue(foreground);

The filter is executed by invoking its Update() method, or by updating any downstream filter, such

as an image writer.

writerDilation->SetInput(binaryDilate->GetOutput());

writerDilation->Update();

Figure 2.14 illustrates the effect of the erosion and dilation filters on a binary image from a MRI

brain slice. The figure shows how these operations can be used to remove spurious details from

segmented images.

Grayscale Filters

The source code for this section can be found in the file

MathematicalMorphologyGrayscaleFilters.cxx.

2.6. Neighborhood Filters 91

Figure 2.14: Effect of erosion and dilation in a binary image.

The following section illustrates the use of filters for performing basic mathematical mor-

phology operations on grayscale images. The itk::GrayscaleErodeImageFilter and

itk::GrayscaleDilateImageFilter are covered in this example. The filter names clearly spec-

ify the type of image on which they operate. The header files required for a simple example of the

use of grayscale mathematical morphology filters are presented below.

#include "itkGrayscaleErodeImageFilter.h"

#include "itkGrayscaleDilateImageFilter.h"

#include "itkBinaryBallStructuringElement.h"

The following code defines the input and output pixel types and their associated image types.

constexpr unsigned int Dimension = 2;

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

Mathematical morphology operations are based on the application of an operator over a neighbor-

hood of each input pixel. The combination of the rule and the neighborhood is known as structuring

element. Although some rules have become the defacto standard in image processing there is a good

deal of freedom as to what kind of algorithmic rule should be applied on the neighborhood. The

implementation in ITK follows the typical rule of minimum for erosion and maximum for dilation.

The structuring element is implemented as a itk::NeighborhoodOperator. In particular, the

default structuring element is the itk::BinaryBallStructuringElement class. This class is

instantiated using the pixel type and dimension of the input image.

https://www.itk.org/Doxygen/html/classitk_1_1GrayscaleErodeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GrayscaleDilateImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryBallStructuringElement.html

92 Chapter 2. Filtering

using StructuringElementType =

itk::BinaryBallStructuringElement<InputPixelType, Dimension>;

The structuring element type is then used along with the input and output image types for instanti-

ating the type of the filters.

using ErodeFilterType =

itk::GrayscaleErodeImageFilter<InputImageType,

OutputImageType,

StructuringElementType>;

using DilateFilterType =

itk::GrayscaleDilateImageFilter<InputImageType,

OutputImageType,

StructuringElementType>;

The filters can now be created by invoking the New() method and assigning the result to SmartPoint-

ers.

auto grayscaleErode = ErodeFilterType::New();

auto grayscaleDilate = DilateFilterType::New();

The structuring element is not a reference counted class. Thus it is created as a C++ stack object

instead of using New() and SmartPointers. The radius of the neighborhood associated with the struc-

turing element is defined with the SetRadius() method and the CreateStructuringElement()

method is invoked in order to initialize the operator. The resulting structuring element is passed to

the mathematical morphology filter through the SetKernel() method, as illustrated below.

StructuringElementType structuringElement;

structuringElement.SetRadius(1); // 3x3 structuring element

structuringElement.CreateStructuringElement();

grayscaleErode->SetKernel(structuringElement);

grayscaleDilate->SetKernel(structuringElement);

A grayscale image is provided as input to the filters. This image might be, for example, the output

of a reader.

grayscaleErode->SetInput(reader->GetOutput());

grayscaleDilate->SetInput(reader->GetOutput());

The filter is executed by invoking its Update() method, or by updating any downstream filter, such

as an image writer.

2.6. Neighborhood Filters 93

Figure 2.15: Effect of erosion and dilation in a grayscale image.

writerDilation->SetInput(grayscaleDilate->GetOutput());

writerDilation->Update();

Figure 2.15 illustrates the effect of the erosion and dilation filters on a binary image from a MRI

brain slice. The figure shows how these operations can be used to remove spurious details from

segmented images.

2.6.4 Voting Filters

Voting filters are quite a generic family of filters. In fact, both the Dilate and Erode filters from

Mathematical Morphology are very particular cases of the broader family of voting filters. In a vot-

ing filter, the outcome of a pixel is decided by counting the number of pixels in its neighborhood and

applying a rule to the result of that counting. For example, the typical implementation of erosion in

terms of a voting filter will be to label a foreground pixel as background if the number of background

neighbors is greater than or equal to 1. In this context, you could imagine variations of erosion in

which the count could be changed to require at least 3 foreground pixels in its neighborhood.

Binary Median Filter

One case of a voting filter is the BinaryMedianImageFilter. This filter is equivalent to applying a

Median filter over a binary image. Having a binary image as input makes it possible to optimize the

execution of the filter since there is no real need for sorting the pixels according to their frequency

in the neighborhood.

The source code for this section can be found in the file

BinaryMedianImageFilter.cxx.

94 Chapter 2. Filtering

The itk::BinaryMedianImageFilter is commonly used as a robust approach for noise reduction.

BinaryMedianImageFilter computes the value of each output pixel as the statistical median of the

neighborhood of values around the corresponding input pixel. When the input images are binary,

the implementation can be optimized by simply counting the number of pixels ON/OFF around the

current pixel.

This filter will work on images of any dimension thanks to the internal use of

itk::NeighborhoodIterator and itk::NeighborhoodOperator . The size of the neighborhood

over which the median is computed can be set by the user.

The header file corresponding to this filter should be included first.

#include "itkBinaryMedianImageFilter.h"

Then the pixel and image types of the input and output must be defined.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

Using the image types, it is now possible to define the filter type and create the filter object.

using FilterType =

itk::BinaryMedianImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The size of the neighborhood is defined along every dimension by passing a SizeType object with

the corresponding values. The value on each dimension is used as the semi-size of a rectangular

box. For example, in 2D a size of 1,2 will result in a 3× 5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x

indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An update call on any downstream

filter will trigger the execution of the median filter.

https://www.itk.org/Doxygen/html/classitk_1_1BinaryMedianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html
https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodOperator.html

2.6. Neighborhood Filters 95

Figure 2.16: Effect of the BinaryMedianImageFilter on a slice from a MRI proton density brain image that has

been thresholded in order to produce a binary image.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.16 illustrates the effect of the BinaryMedianImageFilter filter on a slice of MRI brain image

using a neighborhood radius of 2,2, which corresponds to a 5× 5 classical neighborhood. The

filtered image demonstrates the capability of this filter for reducing noise both in the background

and foreground of the image, as well as smoothing the contours of the regions.

The typical effect of median filtration on a noisy digital image is a dramatic reduction in impulse

noise spikes. The filter also tends to preserve brightness differences across signal steps, resulting in

reduced blurring of regional boundaries. The filter also tends to preserve the positions of boundaries

in an image.

Figure 2.17 below shows the effect of running the median filter with a 3x3 classical window size

1, 10 and 50 times. There is a tradeoff in noise reduction and the sharpness of the image when the

window size is increased.

96 Chapter 2. Filtering

Figure 2.17: Effect of 1, 10 and 50 iterations of the BinaryMedianImageFilter using a 3x3 window.

2.6. Neighborhood Filters 97

Hole Filling Filter

Another variation of voting filters is the Hole Filling filter. This filter converts background pixels into

foreground only when the number of foreground pixels is a majority of the neighbors. By selecting

the size of the majority, this filter can be tuned to fill in holes of different sizes. To be more precise,

the effect of the filter is actually related to the curvature of the edge in which the pixel is located.

The source code for this section can be found in the file

VotingBinaryHoleFillingImageFilter.cxx.

The itk::VotingBinaryHoleFillingImageFilter applies a voting operation in order to fill in

cavities. This can be used for smoothing contours and for filling holes in binary images.

The header file corresponding to this filter should be included first.

#include "itkVotingBinaryHoleFillingImageFilter.h"

Then the pixel and image types of the input and output must be defined.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

Using the image types, it is now possible to define the filter type and create the filter object.

using FilterType =

itk::VotingBinaryHoleFillingImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The size of the neighborhood is defined along every dimension by passing a SizeType object with

the corresponding values. The value on each dimension is used as the semi-size of a rectangular

box. For example, in 2D a size of 1,2 will result in a 3× 5 neighborhood.

InputImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x

indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we must specify the levels that are going to

be considered background and foreground. This is done with the SetForegroundValue() and

SetBackgroundValue() methods.

https://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

98 Chapter 2. Filtering

filter->SetBackgroundValue(0);

filter->SetForegroundValue(255);

We must also specify the majority threshold that is going to be used as the decision criterion for

converting a background pixel into a foreground pixel. The rule of conversion is that a background

pixel will be converted into a foreground pixel if the number of foreground neighbors surpass the

number of background neighbors by the majority value. For example, in a 2D image, with neigh-

borhood of radius 1, the neighborhood will have size 3× 3. If we set the majority value to 2, then

we are requiring that the number of foreground neighbors should be at least (3x3 -1)/2 + majority.

This is done with the SetMajorityThreshold() method.

filter->SetMajorityThreshold(2);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An update call on any downstream

filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.18 illustrates the effect of the VotingBinaryHoleFillingImageFilter filter on a thresholded

slice of MRI brain image using neighborhood radii of 1,1, 2,2 and 3,3 that correspond respectively

to neighborhoods of size 3× 3, 5× 5, 7× 7. The filtered image demonstrates the capability of this

filter for reducing noise both in the background and foreground of the image, as well as smoothing

the contours of the regions.

Iterative Hole Filling Filter

The Hole Filling filter can be used in an iterative way, by applying it repeatedly until no pixel

changes. In this context, the filter can be seen as a binary variation of a Level Set filter.

The source code for this section can be found in the file

VotingBinaryIterativeHoleFillingImageFilter.cxx.

The itk::VotingBinaryIterativeHoleFillingImageFilter applies a voting operation in or-

der to fill in cavities. This can be used for smoothing contours and for filling holes in binary images.

This filter runs a itk::VotingBinaryHoleFillingImageFilter internally until no pixels change

or the maximum number of iterations has been reached.

The header file corresponding to this filter should be included first.

https://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryIterativeHoleFillingImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VotingBinaryHoleFillingImageFilter.html

2.6. Neighborhood Filters 99

Figure 2.18: Effect of the VotingBinaryHoleFillingImageFilter on a slice from a MRI proton density brain image

that has been thresholded in order to produce a binary image. The output images have used radius 1,2 and 3

respectively.

100 Chapter 2. Filtering

#include "itkVotingBinaryIterativeHoleFillingImageFilter.h"

Then the pixel and image types must be defined. Note that this filter requires the input and output

images to be of the same type, therefore a single image type is required for the template instantiation.

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, 2>;

Using the image types, it is now possible to define the filter type and create the filter object.

using FilterType =

itk::VotingBinaryIterativeHoleFillingImageFilter<ImageType>;

auto filter = FilterType::New();

The size of the neighborhood is defined along every dimension by passing a SizeType object with

the corresponding values. The value on each dimension is used as the semi-size of a rectangular

box. For example, in 2D a size of 1,2 will result in a 3× 5 neighborhood.

ImageType::SizeType indexRadius;

indexRadius[0] = radiusX; // radius along x

indexRadius[1] = radiusY; // radius along y

filter->SetRadius(indexRadius);

Since the filter is expecting a binary image as input, we must specify the levels that are going to

be considered background and foreground. This is done with the SetForegroundValue() and

SetBackgroundValue() methods.

filter->SetBackgroundValue(0);

filter->SetForegroundValue(255);

We must also specify the majority threshold that is going to be used as the decision criterion for

converting a background pixel into a foreground pixel. The rule of conversion is that a background

pixel will be converted into a foreground pixel if the number of foreground neighbors surpass the

number of background neighbors by the majority value. For example, in a 2D image, with neigh-

borhood of radius 1, the neighborhood will have size 3× 3. If we set the majority value to 2, then

we are requiring that the number of foreground neighbors should be at least (3x3 -1)/2 + majority.

This is done with the SetMajorityThreshold() method.

2.7. Smoothing Filters 101

filter->SetMajorityThreshold(2);

Finally we specify the maximum number of iterations for which this filter should run. The number

of iterations will determine the maximum size of holes and cavities that this filter will be able to fill.

The more iterations you run, the larger the cavities that will be filled in.

filter->SetMaximumNumberOfIterations(numberOfIterations);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example, a writer. An update call on any downstream

filter will trigger the execution of the median filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.19 illustrates the effect of the VotingBinaryIterativeHoleFillingImageFilter filter on a

thresholded slice of MRI brain image using neighborhood radii of 1,1, 2,2 and 3,3 that corre-

spond respectively to neighborhoods of size 3×3, 5×5, 7×7. The filtered image demonstrates the

capability of this filter for reducing noise both in the background and foreground of the image, as

well as smoothing the contours of the regions.

2.7 Smoothing Filters

Real image data has a level of uncertainty which is manifested in the variability of measures assigned

to pixels. This uncertainty is usually interpreted as noise and considered an undesirable component

of the image data. This section describes several methods that can be applied to reduce noise on

images.

2.7.1 Blurring

Blurring is the traditional approach for removing noise from images. It is usually implemented in

the form of a convolution with a kernel. The effect of blurring on the image spectrum is to attenuate

high spatial frequencies. Different kernels attenuate frequencies in different ways. One of the most

commonly used kernels is the Gaussian. Two implementations of Gaussian smoothing are available

in the toolkit. The first one is based on a traditional convolution while the other is based on the

application of IIR filters that approximate the convolution with a Gaussian [15, 16].

102 Chapter 2. Filtering

Figure 2.19: Effect of the VotingBinaryIterativeHoleFillingImageFilter on a slice from a MRI proton density brain

image that has been thresholded in order to produce a binary image. The output images have used radius 1,2

and 3 respectively.

2.7. Smoothing Filters 103

Discrete Gaussian

The source code for this section can be found in the file

DiscreteGaussianImageFilter.cxx.

The itk::DiscreteGaussianImageFilter com-

KernelWidth

Error

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0.1

Figure 2.20: Discretized Gaussian.

putes the convolution of the input image with a Gaus-

sian kernel. This is done in ND by taking advantage

of the separability of the Gaussian kernel. A one-

dimensional Gaussian function is discretized on a con-

volution kernel. The size of the kernel is extended

until there are enough discrete points in the Gaussian

to ensure that a user-provided maximum error is not

exceeded. Since the size of the kernel is unknown a

priori, it is necessary to impose a limit to its growth.

The user can thus provide a value to be the maximum

admissible size of the kernel. Discretization error is

defined as the difference between the area under the

discrete Gaussian curve (which has finite support) and the area under the continuous Gaussian.

Gaussian kernels in ITK are constructed according to the theory of Tony Lindeberg [34] so that

smoothing and derivative operations commute before and after discretization. In other words, finite

difference derivatives on an image I that has been smoothed by convolution with the Gaussian are

equivalent to finite differences computed on I by convolving with a derivative of the Gaussian.

The first step required to use this filter is to include its header file. As with other examples, the

includes here are truncated to those specific for this example.

#include "itkDiscreteGaussianImageFilter.h"

Types should be chosen for the pixels of the input and output images. Image types can be instantiated

using the pixel type and dimension.

using InputPixelType = float;

using OutputPixelType = float;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The discrete Gaussian filter type is instantiated using the input and output image types. A corre-

sponding filter object is created.

using FilterType =

itk::DiscreteGaussianImageFilter<InputImageType, OutputImageType>;

https://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

104 Chapter 2. Filtering

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

its input.

filter->SetInput(reader->GetOutput());

The filter requires the user to provide a value for the variance associated with the Gaussian kernel.

The method SetVariance() is used for this purpose. The discrete Gaussian is constructed as a

convolution kernel. The maximum kernel size can be set by the user. Note that the combination of

variance and kernel-size values may result in a truncated Gaussian kernel.

filter->SetVariance(gaussianVariance);

filter->SetMaximumKernelWidth(maxKernelWidth);

Finally, the filter is executed by invoking the Update() method.

filter->Update();

If the output of this filter has been connected to other filters down the pipeline, updating any of the

downstream filters will trigger the execution of this one. For example, a writer could be used after

the filter.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

Figure 2.21 illustrates the effect of this filter on a MRI proton density image of the brain.

Note that large Gaussian variances will produce large convolution kernels and correspondingly

longer computation times. Unless a high degree of accuracy is required, it may be more desirable to

use the approximating itk::RecursiveGaussianImageFilter with large variances.

Binomial Blurring

The source code for this section can be found in the file

BinomialBlurImageFilter.cxx.

The itk::BinomialBlurImageFilter computes a nearest neighbor average along each dimen-

sion. The process is repeated a number of times, as specified by the user. In principle, after a large

number of iterations the result will approach the convolution with a Gaussian.

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BinomialBlurImageFilter.html

2.7. Smoothing Filters 105

Figure 2.21: Effect of the DiscreteGaussianImageFilter on a slice from a MRI proton density image of the brain.

The first step required to use this filter is to include its header file.

#include "itkBinomialBlurImageFilter.h"

Types should be chosen for the pixels of the input and output images. Image types can be instantiated

using the pixel type and dimension.

using InputPixelType = float;

using OutputPixelType = float;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types. Then a

filter object is created.

using FilterType =

itk::BinomialBlurImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used

as the source. The number of repetitions is set with the SetRepetitions() method. Computation

106 Chapter 2. Filtering

Figure 2.22: Effect of the BinomialBlurImageFilter on a slice from a MRI proton density image of the brain.

time will increase linearly with the number of repetitions selected. Finally, the filter can be executed

by calling the Update() method.

filter->SetInput(reader->GetOutput());

filter->SetRepetitions(repetitions);

filter->Update();

Figure 2.22 illustrates the effect of this filter on a MRI proton density image of the brain.

Note that the standard deviation σ of the equivalent Gaussian is fixed. In the spatial spectrum, the

effect of every iteration of this filter is like a multiplication with a sinus cardinal function.

Recursive Gaussian IIR

The source code for this section can be found in the file

SmoothingRecursiveGaussianImageFilter.cxx.

The classical method of smoothing an image by convolution with a Gaussian kernel has the draw-

back that it is slow when the standard deviation σ of the Gaussian is large. This is due to the larger

size of the kernel, which results in a higher number of computations per pixel.

The itk::RecursiveGaussianImageFilter implements an approximation of convolution with

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

2.7. Smoothing Filters 107

the Gaussian and its derivatives by using IIR2 filters. In practice this filter requires a constant number

of operations for approximating the convolution, regardless of the σ value [15, 16].

The first step required to use this filter is to include its header file.

#include "itkRecursiveGaussianImageFilter.h"

Types should be selected on the desired input and output pixel types.

using InputPixelType = float;

using OutputPixelType = float;

The input and output image types are instantiated using the pixel types.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types.

using FilterType =

itk::RecursiveGaussianImageFilter<InputImageType, OutputImageType>;

This filter applies the approximation of the convolution along a single dimension. It is therefore

necessary to concatenate several of these filters to produce smoothing in all directions. In this

example, we create a pair of filters since we are processing a 2D image. The filters are created by

invoking the New() method and assigning the result to a itk::SmartPointer.

auto filterX = FilterType::New();

auto filterY = FilterType::New();

Since each one of the newly created filters has the potential to perform filtering along any dimension,

we have to restrict each one to a particular direction. This is done with the SetDirection() method.

filterX->SetDirection(0); // 0 --> X direction

filterY->SetDirection(1); // 1 --> Y direction

The itk::RecursiveGaussianImageFilter can approximate the convolution with the Gaussian

or with its first and second derivatives. We select one of these options by using the SetOrder()

method. Note that the argument is an enum whose values can be ZeroOrder, FirstOrder and

SecondOrder. For example, to compute the x partial derivative we should select FirstOrder for

x and ZeroOrder for y. Here we want only to smooth in x and y, so we select ZeroOrder in both

directions.

2Infinite Impulse Response

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html
https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

108 Chapter 2. Filtering

filterX->SetOrder(itk::GaussianOrderEnum::ZeroOrder);

filterY->SetOrder(itk::GaussianOrderEnum::ZeroOrder);

There are two typical ways of normalizing Gaussians depending on their application. For scale-

space analysis it is desirable to use a normalization that will preserve the maximum value of the

input. This normalization is represented by the following equation.

1

σ
√

2π
(2.4)

In applications that use the Gaussian as a solution of the diffusion equation it is desirable to use a

normalization that preserve the integral of the signal. This last approach can be seen as a conserva-

tion of mass principle. This is represented by the following equation.

1

σ2
√

2π
(2.5)

The itk::RecursiveGaussianImageFilter has a boolean flag that allows users to select between

these two normalization options. Selection is done with the method SetNormalizeAcrossScale().

Enable this flag to analyzing an image across scale-space. In the current example, this setting has

no impact because we are actually renormalizing the output to the dynamic range of the reader, so

we simply disable the flag.

filterX->SetNormalizeAcrossScale(false);

filterY->SetNormalizeAcrossScale(false);

The input image can be obtained from the output of another filter. Here, an image reader is used as

the source. The image is passed to the x filter and then to the y filter. The reason for keeping these

two filters separate is that it is usual in scale-space applications to compute not only the smoothing

but also combinations of derivatives at different orders and smoothing. Some factorization is pos-

sible when separate filters are used to generate the intermediate results. Here this capability is less

interesting, though, since we only want to smooth the image in all directions.

filterX->SetInput(reader->GetOutput());

filterY->SetInput(filterX->GetOutput());

It is now time to select the σ of the Gaussian used to smooth the data. Note that σ must be passed to

both filters and that sigma is considered to be in millimeters. That is, at the moment of applying the

smoothing process, the filter will take into account the spacing values defined in the image.

filterX->SetSigma(sigma);

filterY->SetSigma(sigma);

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

2.7. Smoothing Filters 109

Figure 2.23: Effect of the SmoothingRecursiveGaussianImageFilter on a slice from a MRI proton density image

of the brain.

Finally the pipeline is executed by invoking the Update() method.

filterY->Update();

Figure 2.23 illustrates the effect of this filter on a MRI proton density image of the brain using σ
values of 3 (left) and 5 (right). The figure shows how the attenuation of noise can be regulated by se-

lecting the appropriate standard deviation. This type of scale-tunable filter is suitable for performing

scale-space analysis.

The RecursiveGaussianFilters can also be applied on multi-component images. For instance, the

above filter could have applied with RGBPixel as the pixel type. Each component is then indepen-

dently filtered. However the RescaleIntensityImageFilter will not work on RGBPixels since it does

not mathematically make sense to rescale the output of multi-component images.

2.7.2 Local Blurring

In some cases it is desirable to compute smoothing in restricted regions of the image, or to do it

using different parameters that are computed locally. The following sections describe options for

applying local smoothing in images.

110 Chapter 2. Filtering

Gaussian Blur Image Function

The source code for this section can be found in the file

GaussianBlurImageFunction.cxx.

2.7.3 Edge Preserving Smoothing

Introduction to Anisotropic Diffusion

The drawback of image denoising (smoothing) is that it tends to blur away the sharp boundaries in

the image that help to distinguish between the larger-scale anatomical structures that one is trying

to characterize (which also limits the size of the smoothing kernels in most applications). Even in

cases where smoothing does not obliterate boundaries, it tends to distort the fine structure of the

image and thereby changes subtle aspects of the anatomical shapes in question.

Perona and Malik [45] introduced an alternative to linear-filtering that they called anisotropic diffu-

sion. Anisotropic diffusion is closely related to the earlier work of Grossberg [22], who used similar

nonlinear diffusion processes to model human vision. The motivation for anisotropic diffusion (also

called nonuniform or variable conductance diffusion) is that a Gaussian smoothed image is a single

time slice of the solution to the heat equation, that has the original image as its initial conditions.

Thus, the solution to
∂g(x,y, t)

∂t
= ∇ ·∇g(x,y, t), (2.6)

where g(x,y,0) = f (x,y) is the input image, is g(x,y, t) = G(
√

2t)⊗ f (x,y), where G(σ) is a Gaus-

sian with standard deviation σ.

Anisotropic diffusion includes a variable conductance term that, in turn, depends on the differential

structure of the image. Thus, the variable conductance can be formulated to limit the smoothing at

“edges” in images, as measured by high gradient magnitude, for example.

gt = ∇ · c(|∇g|)∇g, (2.7)

where, for notational convenience, we leave off the independent parameters of g and use the sub-

scripts with respect to those parameters to indicate partial derivatives. The function c(|∇g|) is a

fuzzy cutoff that reduces the conductance at areas of large |∇g|, and can be any one of a number of

functions. The literature has shown

c(|∇g|) = e
− |∇g|2

2k2 (2.8)

to be quite effective. Notice that conductance term introduces a free parameter k, the conductance

parameter, that controls the sensitivity of the process to edge contrast. Thus, anisotropic diffu-

sion entails two free parameters: the conductance parameter, k, and the time parameter, t, that is

analogous to σ, the effective width of the filter when using Gaussian kernels.

Equation 2.7 is a nonlinear partial differential equation that can be solved on a discrete grid using

finite forward differences. Thus, the smoothed image is obtained only by an iterative process, not a

2.7. Smoothing Filters 111

convolution or non-stationary, linear filter. Typically, the number of iterations required for practical

results are small, and large 2D images can be processed in several tens of seconds using carefully

written code running on modern, general purpose, single-processor computers. The technique ap-

plies readily and effectively to 3D images, but requires more processing time.

In the early 1990’s several research groups [21, 67] demonstrated the effectiveness of anisotropic

diffusion on medical images. In a series of papers on the subject [71, 69, 70, 67, 68, 65], Whitaker

described a detailed analytical and empirical analysis, introduced a smoothing term in the conduc-

tance that made the process more robust, invented a numerical scheme that virtually eliminated

directional artifacts in the original algorithm, and generalized anisotropic diffusion to vector-valued

images, an image processing technique that can be used on vector-valued medical data (such as the

color cryosection data of the Visible Human Project).

For a vector-valued input ~F : U 7→ ℜm the process takes the form

~Ft = ∇ · c(D~F)~F , (2.9)

where D~F is a dissimilarity measure of ~F , a generalization of the gradient magnitude to vector-

valued images, that can incorporate linear and nonlinear coordinate transformations on the range of
~F . In this way, the smoothing of the multiple images associated with vector-valued data is coupled

through the conductance term, that fuses the information in the different images. Thus vector-

valued, nonlinear diffusion can combine low-level image features (e.g. edges) across all “channels”

of a vector-valued image in order to preserve or enhance those features in all of image “channels”.

Vector-valued anisotropic diffusion is useful for denoising data from devices that produce multiple

values such as MRI or color photography. When performing nonlinear diffusion on a color image,

the color channels are diffused separately, but linked through the conductance term. Vector-valued

diffusion is also useful for processing registered data from different devices or for denoising higher-

order geometric or statistical features from scalar-valued images [65, 72].

The output of anisotropic diffusion is an image or set of images that demonstrates reduced noise and

texture but preserves, and can also enhance, edges. Such images are useful for a variety of processes

including statistical classification, visualization, and geometric feature extraction. Previous work

has shown [68] that anisotropic diffusion, over a wide range of conductance parameters, offers

quantifiable advantages over linear filtering for edge detection in medical images.

Since the effectiveness of nonlinear diffusion was first demonstrated, numerous variations of this ap-

proach have surfaced in the literature [60]. These include alternatives for constructing dissimilarity

measures [53], directional (i.e., tensor-valued) conductance terms [64, 3] and level set interpretations

[66].

Gradient Anisotropic Diffusion

The source code for this section can be found in the file

GradientAnisotropicDiffusionImageFilter.cxx.

112 Chapter 2. Filtering

The itk::GradientAnisotropicDiffusionImageFilter implements an N-dimensional version

of the classic Perona-Malik anisotropic diffusion equation for scalar-valued images [45].

The conductance term for this implementation is chosen as a function of the gradient magnitude of

the image at each point, reducing the strength of diffusion at edge pixels.

C(x) = e−(
‖∇U(x)‖

K)2
(2.10)

The numerical implementation of this equation is similar to that described in the Perona-Malik paper

[45], but uses a more robust technique for gradient magnitude estimation and has been generalized

to N-dimensions.

The first step required to use this filter is to include its header file.

#include "itkGradientAnisotropicDiffusionImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The

image types are defined using the pixel type and the dimension.

using InputPixelType = float;

using OutputPixelType = float;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types. The filter

object is created by the New() method.

using FilterType =

itk::GradientAnisotropicDiffusionImageFilter<InputImageType,

OutputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

filter->SetInput(reader->GetOutput());

This filter requires three parameters: the number of iterations to be performed, the time

step and the conductance parameter used in the computation of the level set evolution.

These parameters are set using the methods SetNumberOfIterations(), SetTimeStep() and

SetConductanceParameter() respectively. The filter can be executed by invoking Update().

https://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

2.7. Smoothing Filters 113

Figure 2.24: Effect of the GradientAnisotropicDiffusionImageFilter on a slice from a MRI Proton Density image

of the brain.

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(conductance);

filter->Update();

Typical values for the time step are 0.25 in 2D images and 0.125 in 3D images. The number of

iterations is typically set to 5; more iterations result in further smoothing and will increase the

computing time linearly.

Figure 2.24 illustrates the effect of this filter on a MRI proton density image of the brain. In this

example the filter was run with a time step of 0.25, and 5 iterations. The figure shows how homoge-

neous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::BilateralImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::CurvatureFlowImageFilter

https://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

114 Chapter 2. Filtering

Curvature Anisotropic Diffusion

The source code for this section can be found in the file

CurvatureAnisotropicDiffusionImageFilter.cxx.

The itk::CurvatureAnisotropicDiffusionImageFilter performs anisotropic diffusion on an

image using a modified curvature diffusion equation (MCDE).

MCDE does not exhibit the edge enhancing properties of classic anisotropic diffusion, which can un-

der certain conditions undergo a “negative” diffusion, which enhances the contrast of edges. Equa-

tions of the form of MCDE always undergo positive diffusion, with the conductance term only

varying the strength of that diffusion.

Qualitatively, MCDE compares well with other non-linear diffusion techniques. It is less sensitive to

contrast than classic Perona-Malik style diffusion, and preserves finer detailed structures in images.

There is a potential speed trade-off for using this function in place of itkGradientNDAnisotrop-

icDiffusionFunction. Each iteration of the solution takes roughly twice as long. Fewer iterations,

however, may be required to reach an acceptable solution.

The MCDE equation is given as:

ft =| ∇ f | ∇ · c(| ∇ f |) ∇ f

| ∇ f | (2.11)

where the conductance modified curvature term is

∇ · ∇ f

| ∇ f | (2.12)

The first step required for using this filter is to include its header file.

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The

image types are defined using the pixel type and the dimension.

using InputPixelType = float;

using OutputPixelType = float;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types. The filter

object is created by the New() method.

https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html

2.7. Smoothing Filters 115

using FilterType =

itk::CurvatureAnisotropicDiffusionImageFilter<InputImageType,

OutputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

filter->SetInput(reader->GetOutput());

This filter requires three parameters: the number of iterations to be performed, the time step used in

the computation of the level set evolution and the value of conductance. These parameters are set

using the methods SetNumberOfIterations(), SetTimeStep() and SetConductance() respec-

tively. The filter can be executed by invoking Update().

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(conductance);

if (useImageSpacing)

{

filter->UseImageSpacingOn();

}

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number of

iterations can be usually around 5, more iterations will result in further smoothing and will increase

the computing time linearly. The conductance parameter is usually around 3.0.

Figure 2.25 illustrates the effect of this filter on a MRI proton density image of the brain. In this

example the filter was run with a time step of 0.125, 5 iterations and a conductance value of 3.0.

The figure shows how homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::BilateralImageFilter

• itk::CurvatureFlowImageFilter

• itk::GradientAnisotropicDiffusionImageFilter

Curvature Flow

The source code for this section can be found in the file

CurvatureFlowImageFilter.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html

116 Chapter 2. Filtering

Figure 2.25: Effect of the CurvatureAnisotropicDiffusionImageFilter on a slice from a MRI Proton Density image

of the brain.

The itk::CurvatureFlowImageFilter performs edge-preserving smoothing in a similar fashion

to the classical anisotropic diffusion. The filter uses a level set formulation where the iso-intensity

contours in an image are viewed as level sets, where pixels of a particular intensity form one level

set. The level set function is then evolved under the control of a diffusion equation where the speed

is proportional to the curvature of the contour:

It = κ|∇I| (2.13)

where κ is the curvature.

Areas of high curvature will diffuse faster than areas of low curvature. Hence, small jagged noise

artifacts will disappear quickly, while large scale interfaces will be slow to evolve, thereby preserv-

ing sharp boundaries between objects. However, it should be noted that although the evolution at

the boundary is slow, some diffusion will still occur. Thus, continual application of this curvature

flow scheme will eventually result in the removal of information as each contour shrinks to a point

and disappears.

The first step required to use this filter is to include its header file.

#include "itkCurvatureFlowImageFilter.h"

Types should be selected based on the pixel types required for the input and output images.

https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

2.7. Smoothing Filters 117

using InputPixelType = float;

using OutputPixelType = float;

With them, the input and output image types can be instantiated.

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The CurvatureFlow filter type is now instantiated using both the input image and the output image

types.

using FilterType =

itk::CurvatureFlowImageFilter<InputImageType, OutputImageType>;

A filter object is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

filter->SetInput(reader->GetOutput());

The CurvatureFlow filter requires two parameters: the number of iterations to be performed and the

time step used in the computation of the level set evolution. These two parameters are set using

the methods SetNumberOfIterations() and SetTimeStep() respectively. Then the filter can be

executed by invoking Update().

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number

of iterations can be usually around 10, more iterations will result in further smoothing and will

increase the computing time linearly. Edge-preserving behavior is not guaranteed by this filter.

Some degradation will occur on the edges and will increase as the number of iterations is increased.

If the output of this filter has been connected to other filters down the pipeline, updating any of the

downstream filters will trigger the execution of this one. For example, a writer filter could be used

after the curvature flow filter.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

118 Chapter 2. Filtering

Figure 2.26: Effect of the CurvatureFlowImageFilter on a slice from a MRI proton density image of the brain.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

Figure 2.26 illustrates the effect of this filter on a MRI proton density image of the brain. In this

example the filter was run with a time step of 0.25 and 10 iterations. The figure shows how homo-

geneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::GradientAnisotropicDiffusionImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::BilateralImageFilter

MinMaxCurvature Flow

The source code for this section can be found in the file

MinMaxCurvatureFlowImageFilter.cxx.

The MinMax curvature flow filter applies a variant of the curvature flow algorithm where diffusion

is turned on or off depending of the scale of the noise that one wants to remove. The evolution speed

is switched between min(κ,0) and max(κ,0) such that:

https://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

2.7. Smoothing Filters 119

Gradient

Iso−curves

Figure 2.27: Elements involved in the computation of min-max curvature flow.

It = F |∇I| (2.14)

where F is defined as

F =

{

max(κ,0) : Average < T hreshold

min(κ,0) : Average ≥ T hreshold
(2.15)

The Average is the average intensity computed over a neighborhood of a user-specified radius of

the pixel. The choice of the radius governs the scale of the noise to be removed. The T hreshold is

calculated as the average of pixel intensities along the direction perpendicular to the gradient at the

extrema of the local neighborhood.

A speed of F = max(κ,0) will cause small dark regions in a predominantly light region to shrink.

Conversely, a speed of F = min(κ,0), will cause light regions in a predominantly dark region to

shrink. Comparison between the neighborhood average and the threshold is used to select the the

right speed function to use. This switching prevents the unwanted diffusion of the simple curvature

flow method.

Figure 2.27 shows the main elements involved in the computation. The set of square pixels represent

the neighborhood over which the average intensity is being computed. The gray pixels are those ly-

ing close to the direction perpendicular to the gradient. The pixels which intersect the neighborhood

bounds are used to compute the threshold value in the equation above. The integer radius of the

neighborhood is selected by the user.

120 Chapter 2. Filtering

The first step required to use the itk::MinMaxCurvatureFlowImageFilter is to include its header

file.

#include "itkMinMaxCurvatureFlowImageFilter.h"

Types should be selected based on the pixel types required for the input and output images. The

input and output image types are instantiated.

using InputPixelType = float;

using OutputPixelType = float;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The itk::MinMaxCurvatureFlowImageFilter type is now instantiated using both the input im-

age and the output image types. The filter is then created using the New() method.

using FilterType =

itk::MinMaxCurvatureFlowImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

filter->SetInput(reader->GetOutput());

The itk::MinMaxCurvatureFlowImageFilter requires the two normal parameters of the Curva-

tureFlow image, the number of iterations to be performed and the time step used in the computation

of the level set evolution. In addition, the radius of the neighborhood is also required. This last

parameter is passed using the SetStencilRadius() method. Note that the radius is provided as

an integer number since it is referring to a number of pixels from the center to the border of the

neighborhood. Then the filter can be executed by invoking Update().

filter->SetTimeStep(timeStep);

filter->SetNumberOfIterations(numberOfIterations);

filter->SetStencilRadius(radius);

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number of

iterations can be usually around 10, more iterations will result in further smoothing and will increase

the computing time linearly. The radius of the stencil can be typically 1. The edge-preserving

characteristic is not perfect on this filter. Some degradation will occur on the edges and will increase

as the number of iterations is increased.

https://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1MinMaxCurvatureFlowImageFilter.html

2.7. Smoothing Filters 121

Figure 2.28: Effect of the MinMaxCurvatureFlowImageFilter on a slice from a MRI proton density image of the

brain.

If the output of this filter has been connected to other filters down the pipeline, updating any of the

downstream filters will trigger the execution of this one. For example, a writer filter can be used

after the curvature flow filter.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

Figure 2.28 illustrates the effect of this filter on a MRI proton density image of the brain. In this

example the filter was run with a time step of 0.125, 10 iterations and a radius of 1. The figure shows

how homogeneous regions are smoothed and edges are preserved. Notice also, that the result in the

figure has sharper edges than the same example using simple curvature flow in Figure 2.26.

The following classes provide similar functionality:

• itk::CurvatureFlowImageFilter

Bilateral Filter

The source code for this section can be found in the file

BilateralImageFilter.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

122 Chapter 2. Filtering

The itk::BilateralImageFilter performs smoothing by using both domain and range neigh-

borhoods. Pixels that are close to a pixel in the image domain and similar to a pixel in the image

range are used to calculate the filtered value. Two Gaussian kernels (one in the image domain and

one in the image range) are used to smooth the image. The result is an image that is smoothed in

homogeneous regions yet has edges preserved. The result is similar to anisotropic diffusion but the

implementation is non-iterative. Another benefit to bilateral filtering is that any distance metric can

be used for kernel smoothing the image range. Bilateral filtering is capable of reducing the noise in

an image by an order of magnitude while maintaining edges. The bilateral operator used here was

described by Tomasi and Manduchi (Bilateral Filtering for Gray and Color Images. IEEE ICCV.

1998.)

The filtering operation can be described by the following equation

h(x) = k(x)−1
∫

ω
f (w)c(x,w)s(f (x), f (w))dw (2.16)

where x holds the coordinates of a ND point, f (x) is the input image and h(x) is the output image.

The convolution kernels c() and s() are associated with the spatial and intensity domain respec-

tively. The ND integral is computed over ω which is a neighborhood of the pixel located at x. The

normalization factor k(x) is computed as

k(x) =

∫
ω

c(x,w)s(f (x), f (w))dw (2.17)

The default implementation of this filter uses Gaussian kernels for both c() and s(). The c kernel

can be described as

c(x,w) = e
(− ||x−w||2

σ2
c

)
(2.18)

where σc is provided by the user and defines how close pixel neighbors should be in order to be

considered for the computation of the output value. The s kernel is given by

s(f (x), f (w)) = e
(− (f (x)− f (w))2

σ2
s

)
(2.19)

where σs is provided by the user and defines how close the neighbor’s intensity be in order to be

considered for the computation of the output value.

The first step required to use this filter is to include its header file.

#include "itkBilateralImageFilter.h"

The image types are instantiated using pixel type and dimension.

https://www.itk.org/Doxygen/html/classitk_1_1BilateralImageFilter.html

2.7. Smoothing Filters 123

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

The bilateral filter type is now instantiated using both the input image and the output image types

and the filter object is created.

using FilterType =

itk::BilateralImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

a source.

filter->SetInput(reader->GetOutput());

The Bilateral filter requires two parameters. First, we must specify the standard deviation σ to be

used for the Gaussian kernel on image intensities. Second, the set of σs to be used along each

dimension in the space domain. This second parameter is supplied as an array of float or double

values. The array dimension matches the image dimension. This mechanism makes it possible to

enforce more coherence along some directions. For example, more smoothing can be done along

the X direction than along the Y direction.

In the following code example, the σ values are taken from the command line. Note the use of

ImageType::ImageDimension to get access to the image dimension at compile time.

const unsigned int Dimension = InputImageType::ImageDimension;

double domainSigmas[Dimension];

for (double & domainSigma : domainSigmas)

{

domainSigma = std::stod(argv[3]);

}

const double rangeSigma = std::stod(argv[4]);

The filter parameters are set with the methods SetRangeSigma() and SetDomainSigma().

filter->SetDomainSigma(domainSigmas);

filter->SetRangeSigma(rangeSigma);

The output of the filter is connected here to an intensity rescaler filter and then to a writer. Invoking

Update() on the writer triggers the execution of both filters.

124 Chapter 2. Filtering

Figure 2.29: Effect of the BilateralImageFilter on a slice from a MRI proton density image of the brain.

rescaler->SetInput(filter->GetOutput());

writer->SetInput(rescaler->GetOutput());

writer->Update();

Figure 2.29 illustrates the effect of this filter on a MRI proton density image of the brain. In this

example the filter was run with a range σ of 5.0 and a domain σ of 6.0. The figure shows how

homogeneous regions are smoothed and edges are preserved.

The following classes provide similar functionality:

• itk::GradientAnisotropicDiffusionImageFilter

• itk::CurvatureAnisotropicDiffusionImageFilter

• itk::CurvatureFlowImageFilter

2.7.4 Edge Preserving Smoothing in Vector Images

Anisotropic diffusion can also be applied to images whose pixels are vectors. In this case the dif-

fusion is computed independently for each vector component. The following classes implement

versions of anisotropic diffusion on vector images.

https://www.itk.org/Doxygen/html/classitk_1_1GradientAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

2.7. Smoothing Filters 125

Vector Gradient Anisotropic Diffusion

The source code for this section can be found in the file

VectorGradientAnisotropicDiffusionImageFilter.cxx.

The itk::VectorGradientAnisotropicDiffusionImageFilter implements an N-dimensional

version of the classic Perona-Malik anisotropic diffusion equation for vector-valued images. Typi-

cally in vector-valued diffusion, vector components are diffused independently of one another using

a conductance term that is linked across the components. The diffusion equation was illustrated in

2.7.3.

This filter is designed to process images of itk::Vector type. The code relies on various type

alias and overloaded operators defined in itk::Vector. It is perfectly reasonable, however, to

apply this filter to images of other, user-defined types as long as the appropriate type alias and

operator overloads are in place. As a general rule, follow the example of itk::Vector in defining

your data types.

The first step required to use this filter is to include its header file.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"

Types should be selected based on required pixel type for the input and output images. The image

types are defined using the pixel type and the dimension.

using InputPixelType = float;

using VectorPixelType = itk::CovariantVector<float, 2>;

using InputImageType = itk::Image<InputPixelType, 2>;

using VectorImageType = itk::Image<VectorPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types. The filter

object is created by the New() method.

using FilterType =

itk::VectorGradientAnisotropicDiffusionImageFilter<VectorImageType,

VectorImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source and its data is passed through a gradient filter in order to generate an image of vectors.

gradient->SetInput(reader->GetOutput());

filter->SetInput(gradient->GetOutput());

This filter requires two parameters: the number of iterations to be performed and the time step

used in the computation of the level set evolution. These parameters are set using the methods

https://www.itk.org/Doxygen/html/classitk_1_1VectorGradientAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

126 Chapter 2. Filtering

Figure 2.30: Effect of the VectorGradientAnisotropicDiffusionImageFilter on the X component of the gradient

from a MRI proton density brain image.

SetNumberOfIterations() and SetTimeStep() respectively. The filter can be executed by in-

voking Update().

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(1.0);

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number of

iterations can be usually around 5, however more iterations will result in further smoothing and will

linearly increase the computing time.

Figure 2.30 illustrates the effect of this filter on a MRI proton density image of the brain. The images

show the X component of the gradient before (left) and after (right) the application of the filter. In

this example the filter was run with a time step of 0.25, and 5 iterations.

Vector Curvature Anisotropic Diffusion

The source code for this section can be found in the file

VectorCurvatureAnisotropicDiffusionImageFilter.cxx.

The itk::VectorCurvatureAnisotropicDiffusionImageFilter performs anisotropic diffu-

https://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html

2.7. Smoothing Filters 127

sion on a vector image using a modified curvature diffusion equation (MCDE). The MCDE is the

same described in 2.7.3.

Typically in vector-valued diffusion, vector components are diffused independently of one another

using a conductance term that is linked across the components.

This filter is designed to process images of itk::Vector type. The code relies on various type

alias and overloaded operators defined in itk::Vector. It is perfectly reasonable, however, to

apply this filter to images of other, user-defined types as long as the appropriate type alias and

operator overloads are in place. As a general rule, follow the example of the itk::Vector class in

defining your data types.

The first step required to use this filter is to include its header file.

#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"

Types should be selected based on required pixel type for the input and output images. The image

types are defined using the pixel type and the dimension.

using InputPixelType = float;

using VectorPixelType = itk::CovariantVector<float, 2>;

using InputImageType = itk::Image<InputPixelType, 2>;

using VectorImageType = itk::Image<VectorPixelType, 2>;

The filter type is now instantiated using both the input image and the output image types. The filter

object is created by the New() method.

using FilterType =

itk::VectorCurvatureAnisotropicDiffusionImageFilter<VectorImageType,

VectorImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source and its data is passed through a gradient filter in order to generate an image of vectors.

gradient->SetInput(reader->GetOutput());

filter->SetInput(gradient->GetOutput());

This filter requires two parameters: the number of iterations to be performed and the time step

used in the computation of the level set evolution. These parameters are set using the methods

SetNumberOfIterations() and SetTimeStep() respectively. The filter can be executed by in-

voking Update().

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

128 Chapter 2. Filtering

Figure 2.31: Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on the X component of the gradient

from a MRI proton density brain image.

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(1.0);

filter->Update();

Typical values for the time step are 0.125 in 2D images and 0.0625 in 3D images. The number of

iterations can be usually around 5, however more iterations will result in further smoothing and will

increase the computing time linearly.

Figure 2.31 illustrates the effect of this filter on a MRI proton density image of the brain. The images

show the X component of the gradient before (left) and after (right) the application of the filter. In

this example the filter was run with a time step of 0.25, and 5 iterations.

2.7.5 Edge Preserving Smoothing in Color Images

Gradient Anisotropic Diffusion

The source code for this section can be found in the file

RGBGradientAnisotropicDiffusionImageFilter.cxx.

The vector anisotropic diffusion approach applies to color images equally well. As in the vector

2.7. Smoothing Filters 129

case, each RGB component is diffused independently. The following example illustrates the use of

the Vector curvature anisotropic diffusion filter on an image with itk::RGBPixel type.

The first step required to use this filter is to include its header file.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"

Also the headers for Image and RGBPixel type are required.

#include "itkRGBPixel.h"

#include "itkImage.h"

It is desirable to perform the computation on the RGB image using float representation. However

for input and output purposes unsigned char RGB components are commonly used. It is nec-

essary to cast the type of color components along the pipeline before writing them to a file. The

itk::CastImageFilter is used to achieve this goal.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkCastImageFilter.h"

The image type is defined using the pixel type and the dimension.

using InputPixelType = itk::RGBPixel<float>;

using InputImageType = itk::Image<InputPixelType, 2>;

The filter type is now instantiated and a filter object is created by the New() method.

using FilterType =

itk::VectorGradientAnisotropicDiffusionImageFilter<InputImageType,

InputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

source.

using ReaderType = itk::ImageFileReader<InputImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

filter->SetInput(reader->GetOutput());

This filter requires two parameters: the number of iterations to be performed and the time step

used in the computation of the level set evolution. These parameters are set using the methods

https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

130 Chapter 2. Filtering

SetNumberOfIterations() and SetTimeStep() respectively. The filter can be executed by in-

voking Update().

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(1.0);

filter->Update();

The filter output is now cast to unsigned char RGB components by using the

itk::CastImageFilter .

using WritePixelType = itk::RGBPixel<unsigned char>;

using WriteImageType = itk::Image<WritePixelType, 2>;

using CasterType = itk::CastImageFilter<InputImageType, WriteImageType>;

auto caster = CasterType::New();

Finally, the writer type can be instantiated. One writer is created and connected to the output of the

cast filter.

using WriterType = itk::ImageFileWriter<WriteImageType>;

auto writer = WriterType::New();

caster->SetInput(filter->GetOutput());

writer->SetInput(caster->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

Figure 2.32 illustrates the effect of this filter on a RGB image from a cryogenic section of the Visible

Woman data set. In this example the filter was run with a time step of 0.125, and 20 iterations. The

input image has 570× 670 pixels and the processing took 4 minutes on a Pentium 4 2GHz.

Curvature Anisotropic Diffusion

The source code for this section can be found in the file

RGBCurvatureAnisotropicDiffusionImageFilter.cxx.

The vector anisotropic diffusion approach can be applied equally well to color images. As in the

vector case, each RGB component is diffused independently. The following example illustrates

the use of the itk::VectorCurvatureAnisotropicDiffusionImageFilter on an image with

itk::RGBPixel type.

The first step required to use this filter is to include its header file.

#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"

Also the headers for Image and RGBPixel type are required.

https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorCurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html

2.7. Smoothing Filters 131

Figure 2.32: Effect of the VectorGradientAnisotropicDiffusionImageFilter on a RGB image from a cryogenic

section of the Visible Woman data set.

#include "itkRGBPixel.h"

#include "itkImage.h"

It is desirable to perform the computation on the RGB image using float representation. How-

ever for input and output purposes unsigned char RGB components are commonly used. It is

necessary to cast the type of color components in the pipeline before writing them to a file. The

itk::CastImageFilter is used to achieve this goal.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkCastImageFilter.h"

The image type is defined using the pixel type and the dimension.

using InputPixelType = itk::RGBPixel<float>;

using InputImageType = itk::Image<InputPixelType, 2>;

The filter type is now instantiated and a filter object is created by the New() method.

using FilterType =

itk::VectorCurvatureAnisotropicDiffusionImageFilter<InputImageType,

https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

132 Chapter 2. Filtering

InputImageType>;

auto filter = FilterType::New();

The input image can be obtained from the output of another filter. Here, an image reader is used as

a source.

using ReaderType = itk::ImageFileReader<InputImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

filter->SetInput(reader->GetOutput());

This filter requires two parameters: the number of iterations to be performed and the time step

used in the computation of the level set evolution. These parameters are set using the methods

SetNumberOfIterations() and SetTimeStep() respectively. The filter can be executed by in-

voking Update().

filter->SetNumberOfIterations(numberOfIterations);

filter->SetTimeStep(timeStep);

filter->SetConductanceParameter(1.0);

filter->Update();

The filter output is now cast to unsigned char RGB components by using the

itk::CastImageFilter .

using WritePixelType = itk::RGBPixel<unsigned char>;

using WriteImageType = itk::Image<WritePixelType, 2>;

using CasterType = itk::CastImageFilter<InputImageType, WriteImageType>;

auto caster = CasterType::New();

Finally, the writer type can be instantiated. One writer is created and connected to the output of the

cast filter.

using WriterType = itk::ImageFileWriter<WriteImageType>;

auto writer = WriterType::New();

caster->SetInput(filter->GetOutput());

writer->SetInput(caster->GetOutput());

writer->SetFileName(argv[2]);

writer->Update();

Figure 2.33 illustrates the effect of this filter on a RGB image from a cryogenic section of the Visible

Woman data set. In this example the filter was run with a time step of 0.125, and 20 iterations. The

input image has 570× 670 pixels and the processing took 4 minutes on a Pentium 4 at 2GHz.

Figure 2.34 compares the effect of the gradient and curvature anisotropic diffusion filters on a small

region of the same cryogenic slice used in Figure 2.33. The region used in this figure is only 127×
162 pixels and took 14 seconds to compute on the same platform.

https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

2.7. Smoothing Filters 133

Figure 2.33: Effect of the VectorCurvatureAnisotropicDiffusionImageFilter on a RGB image from a cryogenic

section of the Visible Woman data set.

Figure 2.34: Comparison between the gradient (center) and curvature (right) Anisotropic Diffusion filters. Orig-

inal image at left.

134 Chapter 2. Filtering

2.8 Distance Map

The source code for this section can be found in the file

DanielssonDistanceMapImageFilter.cxx.

This example illustrates the use of the itk::DanielssonDistanceMapImageFilter . This filter

generates a distance map from the input image using the algorithm developed by Danielsson [13].

As secondary outputs, a Voronoi partition of the input elements is produced, as well as a vector

image with the components of the distance vector to the closest point. The input to the map is

assumed to be a set of points on the input image. The label of each group of pixels is assigned by

the itk::ConnectedComponentImageFilter .

The first step required to use this filter is to include its header file.

#include "itkDanielssonDistanceMapImageFilter.h"

Then we must decide what pixel types to use for the input and output images. Since the output will

contain distances measured in pixels, the pixel type should be able to represent at least the width

of the image, or said in N-dimensional terms, the maximum extension along all the dimensions.

The input, output (distance map), and voronoi partition image types are now defined using their

respective pixel type and dimension.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned short;

using VoronoiPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, 2>;

using OutputImageType = itk::Image<OutputPixelType, 2>;

using VoronoiImageType = itk::Image<VoronoiPixelType, 2>;

The filter type can be instantiated using the input and output image types defined above. A filter

object is created with the New() method.

using FilterType = itk::DanielssonDistanceMapImageFilter<InputImageType,

OutputImageType,

VoronoiImageType>;

auto filter = FilterType::New();

The input to the filter is taken from a reader and its output is passed to a

itk::RescaleIntensityImageFilter and then to a writer. The scaler and writer are both

templated over the image type, so we instantiate a separate pipeline for the voronoi partition map

starting at the scaler.

labeler->SetInput(reader->GetOutput());

filter->SetInput(labeler->GetOutput());

scaler->SetInput(filter->GetOutput());

writer->SetInput(scaler->GetOutput());

https://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ConnectedComponentImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

2.8. Distance Map 135

Figure 2.35: DanielssonDistanceMapImageFilter output. Set of pixels, distance map and Voronoi partition.

The Voronoi map is obtained with the GetVoronoiMap() method. In the lines below we connect

this output to the intensity rescaler.

voronoiScaler->SetInput(filter->GetVoronoiMap());

voronoiWriter->SetInput(voronoiScaler->GetOutput());

Figure 2.35 illustrates the effect of this filter on a binary image with a set of points. The input image

is shown at the left, and the distance map at the center and the Voronoi partition at the right. This

filter computes distance maps in N-dimensions and is therefore capable of producing N-dimensional

Voronoi partitions.

The distance filter also produces an image of itk::Offset pixels representing the vectorial distance

to the closest object in the scene. The type of this output image is defined by the VectorImageType

trait of the filter type.

using OffsetImageType = FilterType::VectorImageType;

We can use this type for instantiating an itk::ImageFileWriter type and creating an object of

this class in the following lines.

using WriterOffsetType = itk::ImageFileWriter<OffsetImageType>;

auto offsetWriter = WriterOffsetType::New();

The output of the distance filter can be connected as input to the writer.

offsetWriter->SetInput(filter->GetVectorDistanceMap());

Execution of the writer is triggered by the invocation of the Update() method. Since this method

can potentially throw exceptions it must be placed in a try/catch block.

https://www.itk.org/Doxygen/html/classitk_1_1Offset.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

136 Chapter 2. Filtering

try

{

offsetWriter->Update();

}

catch (const itk::ExceptionObject & exp)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << exp << std::endl;

}

Note that only the itk::MetaImageIO class supports reading and writing images of pixel type

itk::Offset.

The source code for this section can be found in the file

SignedDanielssonDistanceMapImageFilter.cxx.

This example illustrates the use of the itk::SignedDanielssonDistanceMapImageFilter. This

filter generates a distance map by running Danielsson distance map twice, once on the input image

and once on the flipped image.

The first step required to use this filter is to include its header file.

#include "itkSignedDanielssonDistanceMapImageFilter.h"

Then we must decide what pixel types to use for the input and output images. Since the output will

contain distances measured in pixels, the pixel type should be able to represent at least the width of

the image, or said in N-dimensional terms, the maximum extension along all the dimensions. The

input and output image types are now defined using their respective pixel type and dimension.

using InputPixelType = unsigned char;

using OutputPixelType = float;

using VoronoiPixelType = unsigned short;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

using VoronoiImageType = itk::Image<VoronoiPixelType, Dimension>;

The only change with respect to the previous example is to replace the DanielssonDistanceMapIm-

ageFilter with the SignedDanielssonDistanceMapImageFilter.

using FilterType =

itk::SignedDanielssonDistanceMapImageFilter<InputImageType,

OutputImageType,

VoronoiImageType>;

auto filter = FilterType::New();

https://www.itk.org/Doxygen/html/classitk_1_1MetaImageIO.html
https://www.itk.org/Doxygen/html/classitk_1_1Offset.html
https://www.itk.org/Doxygen/html/classitk_1_1SignedDanielssonDistanceMapImageFilter.html

2.9. Geometric Transformations 137

Figure 2.36: SignedDanielssonDistanceMapImageFilter applied on a binary circle image. The intensity has

been rescaled for purposes of display.

The distances inside the circle are defined to be negative, while the distances outside the circle are

positive. To change the convention, use the InsideIsPositive(bool) function.

Figure 2.36 illustrates the effect of this filter. The input image and the distance map are shown.

2.9 Geometric Transformations

2.9.1 Filters You Should be Afraid to Use

2.9.2 Change Information Image Filter

This one is the scariest and most dangerous filter in the entire toolkit. You should not use this filter

unless you are entirely certain that you know what you are doing. In fact if you decide to use this

filter, you should write your code, then go for a long walk, get more coffee and ask yourself if you

really needed to use this filter. If the answer is yes, then you should discuss this issue with someone

you trust and get his/her opinion in writing. In general, if you need to use this filter, it means that

you have a poor image provider that is putting your career at risk along with the life of any potential

patient whose images you may end up processing.

2.9.3 Flip Image Filter

The source code for this section can be found in the file

FlipImageFilter.cxx.

The itk::FlipImageFilter is used for flipping the image content in any of the coordinate axes.

This filter must be used with EXTREME caution. You probably don’t want to appear in the news-

papers as responsible for a surgery mistake in which a doctor extirpates the left kidney when he

https://www.itk.org/Doxygen/html/classitk_1_1FlipImageFilter.html

138 Chapter 2. Filtering

should have extracted the right one3 . If that prospect doesn’t scare you, maybe it is time for you to

reconsider your career in medical image processing. Flipping effects which seem innocuous at first

view may still have dangerous consequences. For example, flipping the cranio-caudal axis of a CT

scan forces an observer to flip the left-right axis in order to make sense of the image.

The header file corresponding to this filter should be included first.

#include "itkFlipImageFilter.h"

Then the pixel types for input and output image must be defined and, with them, the image types

can be instantiated.

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, 2>;

Using the image types it is now possible to instantiate the filter type and create the filter object.

using FilterType = itk::FlipImageFilter<ImageType>;

auto filter = FilterType::New();

The axes to flip are specified in the form of an Array. In this case we take them from the command

line arguments.

using FlipAxesArrayType = FilterType::FlipAxesArrayType;

FlipAxesArrayType flipArray;

flipArray[0] = std::stoi(argv[3]);

flipArray[1] = std::stoi(argv[4]);

filter->SetFlipAxes(flipArray);

The input to the filter can be taken from any other filter, for example a reader. The output can

be passed down the pipeline to other filters, for example, a writer. Invoking Update() on any

downstream filter will trigger the execution of the FlipImage filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.37 illustrates the effect of this filter on a slice of an MRI brain image using a flip array [0,1]
which means that the Y axis was flipped while the X axis was conserved.

3Wrong side surgery accounts for 2% of the reported medical errors in the United States. Trivial... but equally dangerous.

2.9. Geometric Transformations 139

Figure 2.37: Effect of the FlipImageFilter on a slice from a MRI proton density brain image.

2.9.4 Resample Image Filter

Introduction

The source code for this section can be found in the file

ResampleImageFilter.cxx.

Resampling an image is a very important task in image analysis. It is especially important in the

frame of image registration. The itk::ResampleImageFilter implements image resampling

through the use of itk::Transforms. The inputs expected by this filter are an image, a trans-

form and an interpolator. The space coordinates of the image are mapped through the transform in

order to generate a new image. The extent and spacing of the resulting image are selected by the

user. Resampling is performed in space coordinates, not pixel/grid coordinates. It is quite important

to ensure that image spacing is properly set on the images involved. The interpolator is required

since the mapping from one space to the other will often require evaluation of the intensity of the

image at non-grid positions.

The header file corresponding to this filter should be included first.

#include "itkResampleImageFilter.h"

The header files corresponding to the transform and interpolator must also be included.

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Transform.html

140 Chapter 2. Filtering

#include "itkAffineTransform.h"

#include "itkNearestNeighborInterpolateImageFunction.h"

The dimension and pixel types for input and output image must be defined and with them the image

types can be instantiated.

constexpr unsigned int Dimension = 2;

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

Using the image and transform types it is now possible to instantiate the filter type and create the

filter object.

using FilterType =

itk::ResampleImageFilter<InputImageType, OutputImageType>;

auto filter = FilterType::New();

The transform type is typically defined using the image dimension and the type used for representing

space coordinates.

using TransformType = itk::AffineTransform<double, Dimension>;

An instance of the transform object is instantiated and passed to the resample filter. By default, the

parameters of the transform are set to represent the identity transform.

auto transform = TransformType::New();

filter->SetTransform(transform);

The interpolator type is defined using the full image type and the type used for representing space

coordinates.

using InterpolatorType =

itk::NearestNeighborInterpolateImageFunction<InputImageType, double>;

An instance of the interpolator object is instantiated and passed to the resample filter.

auto interpolator = InterpolatorType::New();

filter->SetInterpolator(interpolator);

Given that some pixels of the output image may end up being mapped outside the extent of the

input image it is necessary to decide what values to assign to them. This is done by invoking the

SetDefaultPixelValue() method.

2.9. Geometric Transformations 141

filter->SetDefaultPixelValue(0);

The sampling grid of the output space is specified with the spacing along each dimension and the

origin.

// pixel spacing in millimeters along X and Y

const double spacing[Dimension] = { 1.0, 1.0 };

filter->SetOutputSpacing(spacing);

// Physical space coordinate of origin for X and Y

const double origin[Dimension] = { 0.0, 0.0 };

filter->SetOutputOrigin(origin);

InputImageType::DirectionType direction;

direction.SetIdentity();

filter->SetOutputDirection(direction);

The extent of the sampling grid on the output image is defined by a SizeType and is set using the

SetSize() method.

InputImageType::SizeType size;

size[0] = 300; // number of pixels along X

size[1] = 300; // number of pixels along Y

filter->SetSize(size);

The input to the filter can be taken from any other filter, for example a reader. The output can be

passed down the pipeline to other filters, for example a writer. An update call on any downstream

filter will trigger the execution of the resampling filter.

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

writer->Update();

Figure 2.38 illustrates the effect of this filter on a slice of MRI brain image using an affine transform

containing an identity transform. Note that any analysis of the behavior of this filter must be done

on the space coordinate system in millimeters, not with respect to the sampling grid in pixels. The

figure shows the resulting image in the lower left quarter of the extent. This may seem odd if

analyzed in terms of the image grid but is quite clear when seen with respect to space coordinates.

Figure 2.38 is particularly misleading because the images are rescaled to fit nicely on the text of this

book. Figure 2.39 clarifies the situation. It shows the two same images placed on an equally-scaled

coordinate system. It becomes clear here that an identity transform is being used to map the image

142 Chapter 2. Filtering

Figure 2.38: Effect of the resample filter.

0 10050 150 200

0

50

100

150

200

250

300

Identity
Transform

0 10050 150 200 250 300

0

50

100

150

200

250

300

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels

Figure 2.39: Analysis of the resample image done in a common coordinate system.

2.9. Geometric Transformations 143

Figure 2.40: ResampleImageFilter with a translation by (−30,−50).

data, and that simply, we have requested to resample additional empty space around the image. The

input image is 181×217 pixels in size and we have requested an output of 300×300 pixels. In this

case, the input and output images both have spacing of 1mm× 1mm and origin of (0.0,0.0).

Let’s now set values on the transform. Note that the supplied transform represents the mapping of

points from the output space to the input space. The following code sets up a translation.

TransformType::OutputVectorType translation;

translation[0] = -30; // X translation in millimeters

translation[1] = -50; // Y translation in millimeters

transform->Translate(translation);

The output image resulting from the translation can be seen in Figure 2.40. Again, it is better to

interpret the result in a common coordinate system as illustrated in Figure 2.41.

Probably the most important thing to keep in mind when resampling images is that the transform is

used to map points from the output image space into the input image space. In this case, Figure

2.41 shows that the translation is applied to every point of the output image and the resulting position

is used to read the intensity from the input image. In this way, the gray level of the point P in the

output image is taken from the point T (P) in the input image. Where T is the transformation.

In the specific case of the Figure 2.41, the value of point (105,188) in the output image is taken

from the point (75,138) of the input image because the transformation applied was a translation of

(−30,−50).

144 Chapter 2. Filtering

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Translation
Transform

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels

(105,188)

(75,138)

T={−30,−50}

Figure 2.41: ResampleImageFilter. Analysis of a translation by (−30,−50).

It is sometimes useful to intentionally set the default output value to a distinct gray value in order

to highlight the mapping of the image borders. For example, the following code sets the default

external value of 100. The result is shown in the right side of Figure 2.42.

filter->SetDefaultPixelValue(100);

With this change we can better appreciate the effect of the previous translation transform on the

image resampling. Figure 2.42 illustrates how the point (30,50) of the output image gets its gray

value from the point (0,0) of the input image.

Importance of Spacing and Origin

The source code for this section can be found in the file

ResampleImageFilter2.cxx.

During the computation of the resampled image all the pixels in the output region are visited. This

visit is performed using ImageIterators which walk in the integer grid-space of the image. For

each pixel, we need to convert grid position to space coordinates using the image spacing and origin.

For example, the pixel of index I = (20,50) in an image of origin O = (19.0,29.0) and pixel spacing

S = (1.3,1.5) corresponds to the spatial position

P[i] = I[i]× S[i]+O[i] (2.20)

2.9. Geometric Transformations 145

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Translation
Transform

Input Image Resampled Image

300 x 300 pixels

181 x 217 pixels
T={−30,−50}

(0,0)

(30,50)

Figure 2.42: ResampleImageFilter highlighting image borders with SetDefaultPixelValue().

which in this case leads to P = (20× 1.3+ 19.0,50×1.5+ 29.0) and finally P = (45.0,104.0)

The space coordinates of P are mapped using the transform T supplied to the

itk::ResampleImageFilter in order to map the point P to the input image space point

Q = T (P).

The whole process is illustrated in Figure 2.43. In order to correctly interpret the process of the

ResampleImageFilter you should be aware of the origin and spacing settings of both the input and

output images.

In order to facilitate the interpretation of the transform we set the default pixel value to a value

distinct from the image background.

filter->SetDefaultPixelValue(50);

Let’s set up a uniform spacing for the output image.

// pixel spacing in millimeters along X & Y

const double spacing[Dimension] = { 1.0, 1.0 };

filter->SetOutputSpacing(spacing);

We will preserve the orientation of the input image by using the following call.

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

146 Chapter 2. Filtering

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Resampled ImageInput Image

DefaultPixelValue

Origin=(30,40)
Index=(0,0)Index=(0,0)

Origin=(0,0)

Size=181x217 Spacing=(1.0,1.0)

Size=300x300 Spacing=(1.0,1.0)

Figure 2.43: ResampleImageFilter selecting the origin of the output image.

filter->SetOutputDirection(reader->GetOutput()->GetDirection());

Additionally, we will specify a non-zero origin. Note that the values provided here will be those of

the space coordinates for the pixel of index (0,0).

// space coordinate of origin

const double origin[Dimension] = { 30.0, 40.0 };

filter->SetOutputOrigin(origin);

We set the transform to identity in order to better appreciate the effect of the origin selection.

transform->SetIdentity();

filter->SetTransform(transform);

The output resulting from these filter settings is analyzed in Figure 2.43.

In the figure, the output image point with index I = (0,0) has space coordinates P = (30,40). The

identity transform maps this point to Q = (30,40) in the input image space. Because the input image

in this case happens to have spacing (1.0,1.0) and origin (0.0,0.0), the physical point Q = (30,40)
maps to the pixel with index I = (30,40).

The code for a different selection of origin and image size is illustrated below. The resulting output

is presented in Figure 2.44.

2.9. Geometric Transformations 147

DefaultPixelValue

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Origin=(60,30)
Index=(0,0)

Size=150x200

Size=181x217

Spacing=(1.0,1.0)

Spacing=(1.0,1.0)

Resampled ImageInput Image

Origin=(0,0)
Index=(0,0)

Figure 2.44: ResampleImageFilter origin in the output image.

size[0] = 150; // number of pixels along X

size[1] = 200; // number of pixels along Y

filter->SetSize(size);

// space coordinate of origin

const double origin[Dimension] = { 60.0, 30.0 };

filter->SetOutputOrigin(origin);

The output image point with index I = (0,0) now has space coordinates P = (60,30). The identity

transform maps this point to Q = (60,30) in the input image space. Because the input image in this

case happens to have spacing (1.0,1.0) and origin (0.0,0.0), the physical point Q = (60,30) maps

to the pixel with index I = (60,30).

Let’s now analyze the effect of a non-zero origin in the input image. Keeping the output image

settings of the previous example, we modify only the origin values on the file header of the input

image. The new origin assigned to the input image is O = (50,70). An identity transform is still

used as input for the ResampleImageFilter. The result of executing the filter with these parameters

is presented in Figure 2.45.

The pixel with index I = (56,120) on the output image has coordinates P = (116,150) in physical

space. The identity transform maps P to the point Q = (116,150) on the input image space. The

coordinates of Q are associated with the pixel of index I = (66,80) on the input image.

Now consider the effect of the output spacing on the process of image resampling. In order to

148 Chapter 2. Filtering

Size=150x200

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Index=(0,0)
Origin=(50,70)

Index=(0,0)

Origin=(60,30)

DefaultPixelValue

I=(56,120)I=(66,80)

Spacing=(1.0,1.0)

Size=181x217

Resampled ImageInput Image

Spacing=(1.0,1.0)

Figure 2.45: Effect of selecting the origin of the input image with ResampleImageFilter.

simplify the analysis, let’s set the origin back to zero in both the input and output images.

// space coordinate of origin

const double origin[Dimension] = { 0.0, 0.0 };

filter->SetOutputOrigin(origin);

We then specify a non-unit spacing for the output image.

// pixel spacing in millimeters

const double spacing[Dimension] = { 2.0, 3.0 };

filter->SetOutputSpacing(spacing);

Additionally, we reduce the output image extent, since the new pixels are now covering a larger area

of 2.0mm× 3.0mm.

size[0] = 80; // number of pixels along X

size[1] = 50; // number of pixels along Y

filter->SetSize(size);

With these new parameters the physical extent of the output image is 160 millimeters by 150 mil-

limeters.

Before attempting to analyze the effect of the resampling image filter it is important to make sure

that the image viewer used to display the input and output images takes the spacing into account

and appropriately scales the images on the screen. Please note that images in formats like PNG are

2.9. Geometric Transformations 149

Figure 2.46: Resampling with different spacing seen by a naive viewer (center) and a correct viewer (right),

input image (left).

not capable of representing origin and spacing. The toolkit assumes trivial default values for them.

Figure 2.46 (center) illustrates the effect of using a naive viewer that does not take pixel spacing into

account. A correct display is presented at the right in the same figure4.

The filter output is analyzed in a common coordinate system with the input from Figure 2.47. In this

figure, pixel I =(33,27) of the output image is located at coordinates P=(66.0,81.0) of the physical

space. The identity transform maps this point to Q = (66.0,81.0) in the input image physical space.

The point Q is then associated to the pixel of index I = (66,81) on the input image, because this

image has zero origin and unit spacing.

The input image spacing is also an important factor in the process of resampling an image. The

following example illustrates the effect of non-unit pixel spacing on the input image. An input

image similar to the those used in Figures 2.43 to 2.47 has been resampled to have pixel spacing

of 2mm× 3mm. The input image is presented in Figure 2.48 as viewed with a naive image viewer

(left) and with a correct image viewer (right).

The following code is used to transform this non-unit spacing input image into another non-unit

spacing image located at a non-zero origin. The comparison between input and output in a common

reference system is presented in figure 2.49.

Here we start by selecting the origin of the output image.

// space coordinate of origin

const double origin[Dimension] = { 25.0, 35.0 };

filter->SetOutputOrigin(origin);

We then select the number of pixels along each dimension.

4A viewer is provided with ITK under the name of MetaImageViewer. This viewer takes into account pixel spacing.

150 Chapter 2. Filtering

P=(66.0,81.0)

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Physical extent=(160.0,150.0)

I=(66,81)
Q=(66.0,81.0)

I=(33,27)

Resampled ImageInput Image

Spacing=(1.0,1.0)

Size=181x217

Spacing=(2.0,3.0)

Size=80x50

Physical extent=(181.0,217.0)

Figure 2.47: Effect of selecting the spacing on the output image.

Figure 2.48: Input image with 2×3mm spacing as seen with a naive viewer (left) and a correct viewer (right).

2.9. Geometric Transformations 151

Origin=(25.0,35.0)

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

Identity
Transform

Size=40x45

Spacing=(4.0,4.5)

Physical extent=(160.0,202.5)

Size=90x72

Spacing=(2.0,3.0)

Physical extent=(180.0,216.0)

Input Image

I=(10,10)

P=(65.0,80.0)

Q=(65.0,80.0)
I=(32.5,26.6)

Resampled Image

Figure 2.49: Effect of non-unit spacing on the input and output images.

size[0] = 40; // number of pixels along X

size[1] = 45; // number of pixels along Y

filter->SetSize(size);

Finally, we set the output pixel spacing.

const double spacing[Dimension] = { 4.0, 4.5 };

filter->SetOutputSpacing(spacing);

Figure 2.49 shows the analysis of the filter output under these conditions. First, notice that the origin

of the output image corresponds to the settings O = (25.0,35.0) millimeters, spacing (4.0,4.5)
millimeters and size (40,45) pixels. With these parameters the pixel of index I = (10,10) in the

output image is associated with the spatial point of coordinates P = (10× 4.0+ 25.0,10× 4.5+
35.0)) = (65.0,80.0). This point is mapped by the transform—identity in this particular case—to

the point Q = (65.0,80.0) in the input image space. The point Q is then associated with the pixel

of index I = ((65.0− 0.0)/2.0− (80.0− 0.0)/3.0) = (32.5,26.6). Note that the index does not

fall on a grid position. For this reason the value to be assigned to the output pixel is computed by

interpolating values on the input image around the non-integer index I = (32.5,26.6).

Note also that the discretization of the image is more visible on the output presented on the right

side of Figure 2.49 due to the choice of a low resolution—just 40× 45 pixels.

152 Chapter 2. Filtering

Figure 2.50: Effect of a rotation on the resampling filter. Input image at left, output image at right.

A Complete Example

The source code for this section can be found in the file

ResampleImageFilter3.cxx.

Previous examples have described the basic principles behind the itk::ResampleImageFilter.

Now it’s time to have some fun with it.

Figure 2.51 illustrates the general case of the resampling process. The origin and spacing of the

output image has been selected to be different from those of the input image. The circles represent

the center of pixels. They are inscribed in a rectangle representing the coverage of this pixel. The

spacing specifies the distance between pixel centers along every dimension.

The transform applied is a rotation of 30 degrees. It is important to note here that the transform

supplied to the itk::ResampleImageFilter is a clockwise rotation. This transform rotates the

coordinate system of the output image 30 degrees clockwise. When the two images are relocated in

a common coordinate system—as in Figure 2.51—the result is that the frame of the output image

appears rotated 30 degrees clockwise. If the output image is seen with its coordinate system verti-

cally aligned—as in Figure 2.50—the image content appears rotated 30 degrees counter-clockwise.

Before continuing to read this section, you may want to meditate a bit on this fact while enjoying a

cup of (Colombian) coffee.

The following code implements the conditions illustrated in Figure 2.51 with two differences: the

output spacing is 40 times smaller and there are 40 times more pixels in both dimensions. Without

these changes, few details will be recognizable in the images. Note that the spacing and origin of

the input image should be prepared in advance by using other means since this filter cannot alter the

actual content of the input image in any way.

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

2.9. Geometric Transformations 153

0 10050 150 200

0

50

100

150

200

250

300

0 10050 150 200 250 300

0

50

100

150

200

250

300

30.0

20.0

Size=5x4

Spacing=(40.0, 30.0)

Physical extent=(200.0, 120.0)

Size=7x6

Spacing=(20.0, 30.0)

Physical extent=(140.0, 180.0)

Rotation 30
Transform

Resampled ImageInput Image

Origin=(60.0,70.0) Origin=(50.0,130.0)

30.0

40.0

Figure 2.51: Input and output image placed in a common reference system.

In order to facilitate the interpretation of the transform we set the default pixel value to value be

distinct from the image background.

filter->SetDefaultPixelValue(100);

The spacing is selected here to be 40 times smaller than the one illustrated in Figure 2.51.

double spacing[Dimension];

spacing[0] = 40.0 / 40.0; // pixel spacing in millimeters along X

spacing[1] = 30.0 / 40.0; // pixel spacing in millimeters along Y

filter->SetOutputSpacing(spacing);

We will preserve the orientation of the input image by using the following call.

filter->SetOutputDirection(reader->GetOutput()->GetDirection());

Let us now set up the origin of the output image. Note that the values provided here will be those of

the space coordinates for the output image pixel of index (0,0).

double origin[Dimension];

origin[0] = 50.0; // X space coordinate of origin

origin[1] = 130.0; // Y space coordinate of origin

filter->SetOutputOrigin(origin);

154 Chapter 2. Filtering

The output image size is defined to be 40 times the one illustrated on the Figure 2.51.

InputImageType::SizeType size;

size[0] = 5 * 40; // number of pixels along X

size[1] = 4 * 40; // number of pixels along Y

filter->SetSize(size);

Rotations are performed around the origin of physical coordinates—not the image origin nor the

image center. Hence, the process of positioning the output image frame as it is shown in Figure 2.51

requires three steps. First, the image origin must be moved to the origin of the coordinate system.

This is done by applying a translation equal to the negative values of the image origin.

TransformType::OutputVectorType translation1;

translation1[0] = -origin[0];

translation1[1] = -origin[1];

transform->Translate(translation1);

In a second step, a rotation of 30 degrees is performed. In the itk::AffineTransform, angles are

specified in radians. Also, a second boolean argument is used to specify if the current modification

of the transform should be pre-composed or post-composed with the current transform content. In

this case the argument is set to false to indicate that the rotation should be applied after the current

transform content.

const double degreesToRadians = std::atan(1.0) / 45.0;

transform->Rotate2D(-30.0 * degreesToRadians, false);

The third and final step implies translating the image origin back to its previous location. This is be

done by applying a translation equal to the origin values.

TransformType::OutputVectorType translation2;

translation2[0] = origin[0];

translation2[1] = origin[1];

transform->Translate(translation2, false);

filter->SetTransform(transform);

Figure 2.50 presents the actual input and output images of this example as shown by a correct viewer

which takes spacing into account. Note the clockwise versus counter-clockwise effect discussed

previously between the representation in Figure 2.51 and Figure 2.50.

As a final exercise, let’s track the mapping of an individual pixel. Keep in mind that the trans-

formation is initiated by walking through the pixels of the output image. This is the only way to

ensure that the image will be generated without holes or redundant values. When you think about

transformation it is always useful to analyze things from the output image towards the input image.

Let’s take the pixel with index I = (1,2) from the output image. The physical coordinates of

https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

2.9. Geometric Transformations 155

this point in the output image reference system are P = (1 × 40.0 + 50.0,2 × 30.0 + 130.0) =
(90.0,190.0) millimeters.

This point P is now mapped through the itk::AffineTransform into the input image space.

The operation subtracts the origin, applies a 30 degrees rotation and adds the origin back. Let’s

follow those steps. Subtracting the origin from P leads to P1 = (40.0,60.0), the rotation maps P1 to

P2 = (40.0× cos(30.0)+ 60.0× sin(30.0),40.0× sin(30.0)− 60.0× cos(30.0)) = (64.64,31.96).
Finally this point is translated back by the amount of the image origin. This moves P2 to P3 =
(114.64,161.96).

The point P3 is now in the coordinate system of the input image. The pixel of the input image

associated with this physical position is computed using the origin and spacing of the input image.

I = ((114.64− 60.0)/20.0,(161− 70.0)/30.0) which results in I = (2.7,3.0). Note that this is a

non-grid position since the values are non-integers. This means that the gray value to be assigned to

the output image pixel I = (1,2) must be computed by interpolation of the input image values.

In this particular code the interpolator used is simply a

itk::NearestNeighborInterpolateImageFunction which will assign the value of the closest

pixel. This ends up being the pixel of index I = (3,3) and can be seen from Figure 2.51.

Rotating an Image

The source code for this section can be found in the file

ResampleImageFilter4.cxx.

The following example illustrates how to rotate an image around its center. In this particular case an

itk::AffineTransform is used to map the input space into the output space.

The header of the affine transform is included below.

#include "itkAffineTransform.h"

The transform type is instantiated using the coordinate representation type and the space di-

mension. Then a transform object is constructed with the New() method and passed to a

itk::SmartPointer.

using TransformType = itk::AffineTransform<double, Dimension>;

auto transform = TransformType::New();

The parameters of the output image are taken from the input image.

reader->Update();

const InputImageType * inputImage = reader->GetOutput();

const InputImageType::SpacingType & spacing = inputImage->GetSpacing();

https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

156 Chapter 2. Filtering

Figure 2.52: Effect of the resample filter rotating an image.

const InputImageType::PointType & origin = inputImage->GetOrigin();

InputImageType::SizeType size =

inputImage->GetLargestPossibleRegion().GetSize();

filter->SetOutputOrigin(origin);

filter->SetOutputSpacing(spacing);

filter->SetOutputDirection(inputImage->GetDirection());

filter->SetSize(size);

Rotations are performed around the origin of physical coordinates—not the image origin nor the

image center. Hence, the process of positioning the output image frame as it is shown in Figure 2.52

requires three steps. First, the image origin must be moved to the origin of the coordinate system.

This is done by applying a translation equal to the negative values of the image origin.

TransformType::OutputVectorType translation1;

const double imageCenterX = origin[0] + spacing[0] * size[0] / 2.0;

const double imageCenterY = origin[1] + spacing[1] * size[1] / 2.0;

translation1[0] = -imageCenterX;

translation1[1] = -imageCenterY;

transform->Translate(translation1);

In a second step, the rotation is specified using the method Rotate2D().

2.9. Geometric Transformations 157

const double degreesToRadians = std::atan(1.0) / 45.0;

const double angle = angleInDegrees * degreesToRadians;

transform->Rotate2D(-angle, false);

The third and final step requires translating the image origin back to its previous location. This is be

done by applying a translation equal to the origin values.

TransformType::OutputVectorType translation2;

translation2[0] = imageCenterX;

translation2[1] = imageCenterY;

transform->Translate(translation2, false);

filter->SetTransform(transform);

The output of the resampling filter is connected to a writer and the execution of the pipeline is

triggered by a writer update.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Rotating and Scaling an Image

The source code for this section can be found in the file

ResampleImageFilter5.cxx.

This example illustrates the use of the itk::Similarity2DTransform. A similarity transform

involves rotation, translation and scaling. Since the parameterization of rotations is difficult to get

in a generic ND case, a particular implementation is available for 2D.

The header file of the transform is included below.

#include "itkSimilarity2DTransform.h"

The transform type is instantiated using the coordinate representation type as the single template

parameter.

using TransformType = itk::Similarity2DTransform<double>;

https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html

158 Chapter 2. Filtering

A transform object is constructed by calling New() and passing the result to a itk::SmartPointer.

auto transform = TransformType::New();

The parameters of the output image are taken from the input image.

The Similarity2DTransform allows the user to select the center of rotation. This center is used for

both rotation and scaling operations.

TransformType::InputPointType rotationCenter;

rotationCenter[0] = origin[0] + spacing[0] * size[0] / 2.0;

rotationCenter[1] = origin[1] + spacing[1] * size[1] / 2.0;

transform->SetCenter(rotationCenter);

The rotation is specified with the method SetAngle().

const double degreesToRadians = std::atan(1.0) / 45.0;

const double angle = angleInDegrees * degreesToRadians;

transform->SetAngle(angle);

The scale change is defined using the method SetScale().

transform->SetScale(scale);

A translation to be applied after the rotation and scaling can be specified with the method

SetTranslation().

TransformType::OutputVectorType translation;

translation[0] = 13.0;

translation[1] = 17.0;

transform->SetTranslation(translation);

filter->SetTransform(transform);

Note that the order in which rotation, scaling and translation are defined is irrelevant in this trans-

form. This is not the case in the Affine transform which is very generic and allows different combi-

nations for initialization. In the Similarity2DTransform class the rotation and scaling will always be

applied before the translation.

Figure 2.53 shows the effect of this rotation, translation and scaling on a slice of a brain MRI. The

scale applied for producing this figure was 1.2 and the rotation angle was 10◦.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

2.9. Geometric Transformations 159

Figure 2.53: Effect of the resample filter rotating and scaling an image.

Resampling using a deformation field

The source code for this section can be found in the file

WarpImageFilter1.cxx.

This example illustrates how to use the WarpImageFilter and a deformation field for resampling an

image. This is typically done as the last step of a deformable registration algorithm.

#include "itkWarpImageFilter.h"

The deformation field is represented as an image of vector pixel types. The dimension of the vectors

is the same as the dimension of the input image. Each vector in the deformation field represents the

distance between a geometric point in the input space and a point in the output space such that:

pin = pout + distance (2.21)

using VectorComponentType = float;

using VectorPixelType = itk::Vector<VectorComponentType, Dimension>;

using DisplacementFieldType = itk::Image<VectorPixelType, Dimension>;

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, Dimension>;

The field is read from a file, through a reader instantiated over the vector pixel types.

160 Chapter 2. Filtering

using FieldReaderType = itk::ImageFileReader<DisplacementFieldType>;

auto fieldReader = FieldReaderType::New();

fieldReader->SetFileName(argv[2]);

fieldReader->Update();

DisplacementFieldType::ConstPointer deformationField =

fieldReader->GetOutput();

The itk::WarpImageFilter is templated over the input image type, output image type and the

deformation field type.

using FilterType =

itk::WarpImageFilter<ImageType, ImageType, DisplacementFieldType>;

auto filter = FilterType::New();

Typically the mapped position does not correspond to an integer pixel position in the input image.

Interpolation via an image function is used to compute values at non-integer positions. This is done

via the SetInterpolator() method.

using InterpolatorType =

itk::LinearInterpolateImageFunction<ImageType, double>;

auto interpolator = InterpolatorType::New();

filter->SetInterpolator(interpolator);

The output image spacing and origin may be set via SetOutputSpacing(), SetOutputOrigin(). This is

taken from the deformation field.

filter->SetOutputSpacing(deformationField->GetSpacing());

filter->SetOutputOrigin(deformationField->GetOrigin());

filter->SetOutputDirection(deformationField->GetDirection());

filter->SetDisplacementField(deformationField);

Subsampling and image in the same space

The source code for this section can be found in the file

SubsampleVolume.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1WarpImageFilter.html

2.9. Geometric Transformations 161

This example illustrates how to perform subsampling of a volume using ITK classes. In order

to avoid aliasing artifacts, the volume must be processed by a low-pass filter before resampling.

Here we use the itk::RecursiveGaussianImageFilter as a low-pass filter. The image is then

resampled by using three different factors, one per dimension of the image.

The most important headers to include here are those corresponding to the resampling image filter,

the transform, the interpolator and the smoothing filter.

#include "itkResampleImageFilter.h"

#include "itkIdentityTransform.h"

#include "itkRecursiveGaussianImageFilter.h"

We explicitly instantiate the pixel type and dimension of the input image, and the images that will

be used internally for computing the resampling.

constexpr unsigned int Dimension = 3;

using InputPixelType = unsigned char;

using InternalPixelType = float;

using OutputPixelType = unsigned char;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

In this particular case we take the factors for resampling directly from the command line arguments.

const double factorX = std::stod(argv[3]);

const double factorY = std::stod(argv[4]);

const double factorZ = std::stod(argv[5]);

A casting filter is instantiated in order to convert the pixel type of the input image into the pixel type

desired for computing the resampling.

using CastFilterType =

itk::CastImageFilter<InputImageType, InternalImageType>;

auto caster = CastFilterType::New();

caster->SetInput(inputImage);

The smoothing filter of choice is the RecursiveGaussianImageFilter. We create three of them

in order to have the freedom of performing smoothing with different sigma values along each di-

mension.

https://www.itk.org/Doxygen/html/classitk_1_1RecursiveGaussianImageFilter.html

162 Chapter 2. Filtering

using GaussianFilterType =

itk::RecursiveGaussianImageFilter<InternalImageType, InternalImageType>;

auto smootherX = GaussianFilterType::New();

auto smootherY = GaussianFilterType::New();

auto smootherZ = GaussianFilterType::New();

The smoothing filters are connected in a cascade in the pipeline.

smootherX->SetInput(caster->GetOutput());

smootherY->SetInput(smootherX->GetOutput());

smootherZ->SetInput(smootherY->GetOutput());

The sigma values to use in the smoothing filters are computed based on the pixel spacing of the input

image and the factors provided as arguments.

const InputImageType::SpacingType & inputSpacing = inputImage->GetSpacing();

const double sigmaX = inputSpacing[0] * factorX;

const double sigmaY = inputSpacing[1] * factorY;

const double sigmaZ = inputSpacing[2] * factorZ;

smootherX->SetSigma(sigmaX);

smootherY->SetSigma(sigmaY);

smootherZ->SetSigma(sigmaZ);

We instruct each one of the smoothing filters to act along a particular direction of the image, and set

them to use normalization across scale space in order to account for the reduction of intensity that

accompanies the diffusion process associated with the Gaussian smoothing.

smootherX->SetDirection(0);

smootherY->SetDirection(1);

smootherZ->SetDirection(2);

smootherX->SetNormalizeAcrossScale(false);

smootherY->SetNormalizeAcrossScale(false);

smootherZ->SetNormalizeAcrossScale(false);

The type of the resampling filter is instantiated using the internal image type and the output image

type.

using ResampleFilterType =

itk::ResampleImageFilter<InternalImageType, OutputImageType>;

auto resampler = ResampleFilterType::New();

2.9. Geometric Transformations 163

Since the resampling is performed in the same physical extent of the input image, we select the

IdentityTransform as the one to be used by the resampling filter.

using TransformType = itk::IdentityTransform<double, Dimension>;

auto transform = TransformType::New();

transform->SetIdentity();

resampler->SetTransform(transform);

The Linear interpolator is selected because it provides a good run-time performance.

For applications that require better precision you may want to replace this interpo-

lator with the itk::BSplineInterpolateImageFunction interpolator or with the

itk::WindowedSincInterpolateImageFunction interpolator.

using InterpolatorType =

itk::LinearInterpolateImageFunction<InternalImageType, double>;

auto interpolator = InterpolatorType::New();

resampler->SetInterpolator(interpolator);

The spacing to be used in the grid of the resampled image is computed using the input image spacing

and the factors provided in the command line arguments.

OutputImageType::SpacingType spacing;

spacing[0] = inputSpacing[0] * factorX;

spacing[1] = inputSpacing[1] * factorY;

spacing[2] = inputSpacing[2] * factorZ;

resampler->SetOutputSpacing(spacing);

The origin and direction of the input image are both preserved and passed to the output image.

resampler->SetOutputOrigin(inputImage->GetOrigin());

resampler->SetOutputDirection(inputImage->GetDirection());

The number of pixels to use along each direction on the grid of the resampled image is computed

using the number of pixels in the input image and the sampling factors.

InputImageType::SizeType inputSize =

inputImage->GetLargestPossibleRegion().GetSize();

using SizeValueType = InputImageType::SizeType::SizeValueType;

InputImageType::SizeType size;

size[0] = static_cast<SizeValueType>(inputSize[0] / factorX);

https://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

164 Chapter 2. Filtering

size[1] = static_cast<SizeValueType>(inputSize[1] / factorY);

size[2] = static_cast<SizeValueType>(inputSize[2] / factorZ);

resampler->SetSize(size);

Finally, the input to the resampler is taken from the output of the smoothing filter.

resampler->SetInput(smootherZ->GetOutput());

At this point we can trigger the execution of the resampling by calling the Update() method, or we

can choose to pass the output of the resampling filter to another section of pipeline, for example, an

image writer.

Resampling an Anisotropic image to make it Isotropic

The source code for this section can be found in the file

ResampleVolumesToBeIsotropic.cxx.

It is unfortunate that it is still very common to find medical image datasets that have been acquired

with large inter-slice spacings that result in voxels with anisotropic shapes. In many cases these

voxels have ratios of [1 : 5] or even [1 : 10] between the resolution in the plane (x,y) and the res-

olution along the z axis. These datasets are close to useless for the purpose of computer-assisted

image analysis. The abundance of datasets acquired with anisotropic voxel sizes bespeaks a dearth

of understanding of the third dimension and its importance for medical image analysis in clinical

settings and radiology reading rooms. Datasets acquired with large anisotropies bring with them the

regressive message: “I do not think 3D is informative”. They stubbornly insist: “all that you need

to know, can be known by looking at individual slices, one by one”. However, the fallacy of this

statement is made evident by simply viewing the slices when reconstructed in any of the orthog-

onal planes. The rectangular pixel shape is ugly and distorted, and cripples any signal processing

algorithm not designed specifically for this type of image.

Image analysts have a long educational battle to fight in the radiological setting in order to bring the

message that 3D datasets acquired with anisotropies larger than [1 : 2] are simply dismissive of the

most fundamental concept of digital signal processing: The Shannon Sampling Theorem [57, 58].

Facing the inertia of many clinical imaging departments and their blithe insistence that these images

are “good enough” for image processing, some image analysts have stoically tried to deal with these

poor datasets. These image analysts usually proceed to subsample the high in-plane resolution and

to super-sample the inter-slice resolution with the purpose of faking the type of dataset that they

should have received in the first place: an isotropic dataset. This example is an illustration of how

such an operation can be performed using the filters available in the Insight Toolkit.

Note that this example is not presented here as a solution to the problem of anisotropic datasets. On

the contrary, this is simply a dangerous palliative which will only perpetuate the errant convictions

2.9. Geometric Transformations 165

of image acquisition departments. The real solution to the problem of the anisotropic dataset is to

educate radiologists regarding the principles of image processing. If you really care about the tech-

nical decency of the medical image processing field, and you really care about providing your best

effort to the patients who will receive health care directly or indirectly affected by your processed

images, then it is your duty to reject anisotropic datasets and to patiently explain to your radiol-

ogist why anisotropic data are problematic for processing, and require crude workarounds which

handicap your ability to draw accurate conclusions from the data and preclude his or her ability to

provide quality care. Any barbarity such as a [1 : 5] anisotropy ratio should be considered as a mere

collection of slices, and not an authentic 3D dataset.

Please, before employing the techniques covered in this section, do kindly invite your fellow radi-

ologist to see the dataset in an orthogonal slice. Magnify that image in a viewer without any linear

interpolation until you see the daunting reality of the rectangular pixels. Let her/him know how ab-

surd it is to process digital data which have been sampled at ratios of [1 : 5] or [1 : 10]. Then, inform

them that your only option is to throw away all that high in-plane resolution and to make up data

between the slices in order to compensate for the low resolution. Only then will you be justified in

using the following code.

Let’s now move into the code. It is appropriate for you to experience guilt5, because your use

the code below is the evidence that we have lost one more battle on the quest for real 3D dataset

processing.

This example performs subsampling on the in-plane resolution and performs super-sampling along

the inter-slices resolution. The subsampling process requires that we preprocess the data with a

smoothing filter in order to avoid the occurrence of aliasing effects due to overlap of the spectrum

in the frequency domain [57, 58]. The smoothing is performed here using the RecursiveGaussian

filter, because it provides a convenient run-time performance.

The first thing that you will need to do in order to resample this ugly anisotropic dataset is to include

the header files for the itk::ResampleImageFilter, and the Gaussian smoothing filter.

#include "itkResampleImageFilter.h"

#include "itkRecursiveGaussianImageFilter.h"

The resampling filter will need a Transform in order to map point coordinates and will need an

interpolator in order to compute intensity values for the new resampled image. In this particular case

we use the itk::IdentityTransform because the image is going to be resampled by preserving

the physical extent of the sampled region. The Linear interpolator is used as a common trade-off6.

5A feeling of regret or remorse for having committed some improper act; a recognition of one’s own responsibility for

doing something wrong.
6Although arguably we should use one type of interpolator for the in-plane subsampling process and another one for

the inter-slice supersampling. But again, one should wonder why we apply any technical sophistication here, when we are

covering up for an improper acquisition of medical data, trying to make it look as if it was correctly acquired.

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html

166 Chapter 2. Filtering

#include "itkIdentityTransform.h"

Note that, as part of the preprocessing of the image, in this example we are also rescaling the

range of intensities. This operation has already been described as Intensity Windowing. In a real

clinical application, this step requires careful consideration of the range of intensities that contain

information about the anatomical structures that are of interest for the current clinical application. It

practice you may want to remove this step of intensity rescaling.

#include "itkIntensityWindowingImageFilter.h"

We make explicit now our choices for the pixel type and dimension of the input image to be pro-

cessed, as well as the pixel type that we intend to use for the internal computation during the smooth-

ing and resampling.

constexpr unsigned int Dimension = 3;

using InputPixelType = unsigned short;

using InternalPixelType = float;

using InputImageType = itk::Image<InputPixelType, Dimension>;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

We instantiate the smoothing filter that will be used on the preprocessing for subsampling the in-

plane resolution of the dataset.

using GaussianFilterType =

itk::RecursiveGaussianImageFilter<InternalImageType, InternalImageType>;

We create two instances of the smoothing filter: one will smooth along the X direction while the

other will smooth along the Y direction. They are connected in a cascade in the pipeline, while

taking their input from the intensity windowing filter. Note that you may want to skip the intensity

windowing scale and simply take the input directly from the reader.

auto smootherX = GaussianFilterType::New();

auto smootherY = GaussianFilterType::New();

smootherX->SetInput(intensityWindowing->GetOutput());

smootherY->SetInput(smootherX->GetOutput());

We must now provide the settings for the resampling itself. This is done by searching for a value

of isotropic resolution that will provide a trade-off between the evil of subsampling and the evil

of supersampling. We advance here the conjecture that the geometrical mean between the in-plane

and the inter-slice resolutions should be a convenient isotropic resolution to use. This conjecture

2.9. Geometric Transformations 167

is supported on nothing other than intuition and common sense. You can rightfully argue that this

choice deserves a more technical consideration, but then, if you are so concerned about the technical

integrity of the image sampling process, you should not be using this code, and should discuss these

issues with the radiologist who acquired this ugly anisotropic dataset.

We take the image from the input and then request its array of pixel spacing values.

InputImageType::ConstPointer inputImage = reader->GetOutput();

const InputImageType::SpacingType & inputSpacing = inputImage->GetSpacing();

and apply our ad-hoc conjecture that the correct anisotropic resolution to use is the geometrical mean

of the in-plane and inter-slice resolutions. Then set this spacing as the Sigma value to be used for

the Gaussian smoothing at the preprocessing stage.

const double isoSpacing = std::sqrt(inputSpacing[2] * inputSpacing[0]);

smootherX->SetSigma(isoSpacing);

smootherY->SetSigma(isoSpacing);

We instruct the smoothing filters to act along the X and Y direction respectively.

smootherX->SetDirection(0);

smootherY->SetDirection(1);

Now that we have taken care of the smoothing in-plane, we proceed to instantiate the resampling

filter that will reconstruct an isotropic image. We start by declaring the pixel type to be used as the

output of this filter, then instantiate the image type and the type for the resampling filter. Finally we

construct an instantiation of the filter.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

using ResampleFilterType =

itk::ResampleImageFilter<InternalImageType, OutputImageType>;

auto resampler = ResampleFilterType::New();

The resampling filter requires that we provide a Transform, which in this particular case can simply

be an identity transform.

using TransformType = itk::IdentityTransform<double, Dimension>;

auto transform = TransformType::New();

transform->SetIdentity();

168 Chapter 2. Filtering

resampler->SetTransform(transform);

The filter also requires an interpolator to be passed to it. In this case we chose to use a linear

interpolator.

using InterpolatorType =

itk::LinearInterpolateImageFunction<InternalImageType, double>;

auto interpolator = InterpolatorType::New();

resampler->SetInterpolator(interpolator);

The pixel spacing of the resampled dataset is loaded in a SpacingType and passed to the resampling

filter.

OutputImageType::SpacingType spacing;

spacing[0] = isoSpacing;

spacing[1] = isoSpacing;

spacing[2] = isoSpacing;

resampler->SetOutputSpacing(spacing);

The origin and orientation of the output image is maintained, since we decided to resample the image

in the same physical extent of the input anisotropic image.

resampler->SetOutputOrigin(inputImage->GetOrigin());

resampler->SetOutputDirection(inputImage->GetDirection());

The number of pixels to use along each dimension in the grid of the resampled image is computed

using the ratio between the pixel spacings of the input image and those of the output image. Note that

the computation of the number of pixels along the Z direction is slightly different with the purpose

of making sure that we don’t attempt to compute pixels that are outside of the original anisotropic

dataset.

InputImageType::SizeType inputSize =

inputImage->GetLargestPossibleRegion().GetSize();

using SizeValueType = InputImageType::SizeType::SizeValueType;

const double dx = inputSize[0] * inputSpacing[0] / isoSpacing;

const double dy = inputSize[1] * inputSpacing[1] / isoSpacing;

const double dz = (inputSize[2] - 1) * inputSpacing[2] / isoSpacing;

2.10. Frequency Domain 169

Finally the values are stored in a SizeType and passed to the resampling filter. Note that this

process requires a casting since the computations are performed in double, while the elements of

the SizeType are integers.

InputImageType::SizeType size;

size[0] = static_cast<SizeValueType>(dx);

size[1] = static_cast<SizeValueType>(dy);

size[2] = static_cast<SizeValueType>(dz);

resampler->SetSize(size);

Our last action is to take the input for the resampling image filter from the output of the cascade of

smoothing filters, and then to trigger the execution of the pipeline by invoking the Update() method

on the resampling filter.

resampler->SetInput(smootherY->GetOutput());

resampler->Update();

At this point we should take a moment in silence to reflect on the circumstances that have led us to

accept this cover-up for the improper acquisition of medical data.

2.10 Frequency Domain

2.10.1 Computing a Fast Fourier Transform (FFT)

The source code for this section can be found in the file

FFTImageFilter.cxx.

In this section we assume that you are familiar with Spectral Analysis, in particular with the concepts

of the Fourier Transform and the numerical implementation of the Fast Fourier transform. If you are

not familiar with these concepts you may want to consult first any of the many available introductory

books to spectral analysis [8, 9].

This example illustrates how to use the Fast Fourier Transform filter (FFT) for processing an

image in the spectral domain. Given that FFT computation can be CPU intensive, there are

multiple hardware specific implementations of FFT. It is convenient in many cases to dele-

gate the actual computation of the transform to local available libraries. Particular examples

of those libraries are fftw7 and the VXL implementation of FFT. For this reason ITK pro-

vides a base abstract class that factorizes the interface to multiple specific implementations of

7https://www.fftw.org

170 Chapter 2. Filtering

FFT. This base class is the itk::ForwardFFTImageFilter, and two of its derived classes are

itk::VnlForwardFFTImageFilter and itk::FFTWRealToComplexConjugateImageFilter.

A typical application that uses FFT will need to include the following header files.

#include "itkImage.h"

#include "itkVnlForwardFFTImageFilter.h"

#include "itkComplexToRealImageFilter.h"

#include "itkComplexToImaginaryImageFilter.h"

The first decision to make is related to the pixel type and dimension of the images on which we want

to compute the Fourier transform.

using PixelType = float;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

We use the same image type in order to instantiate the FFT filter, in this case the

itk::VnlForwardFFTImageFilter. Once the filter type is instantiated, we can use it for creat-

ing one object by invoking the New() method and assigning the result to a SmartPointer.

using FFTFilterType = itk::VnlForwardFFTImageFilter<ImageType>;

auto fftFilter = FFTFilterType::New();

The input to this filter can be taken from a reader, for example.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

fftFilter->SetInput(reader->GetOutput());

The execution of the filter can be triggered by invoking the Update() method. Since this invocation

can eventually throw an exception, the call must be placed inside a try/catch block.

try

{

fftFilter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Error: " << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

https://www.itk.org/Doxygen/html/classitk_1_1ForwardFFTImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VnlForwardFFTImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1FFTWRealToComplexConjugateImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VnlForwardFFTImageFilter.html

2.10. Frequency Domain 171

In general the output of the FFT filter will be a complex image. We can proceed to save this image

in a file for further analysis. This can be done by simply instantiating an itk::ImageFileWriter

using the trait of the output image from the FFT filter. We construct one instance of the writer and

pass the output of the FFT filter as the input of the writer.

using ComplexImageType = FFTFilterType::OutputImageType;

using ComplexWriterType = itk::ImageFileWriter<ComplexImageType>;

auto complexWriter = ComplexWriterType::New();

complexWriter->SetFileName(argv[4]);

complexWriter->SetInput(fftFilter->GetOutput());

Finally we invoke the Update() method placed inside a try/catch block.

try

{

complexWriter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Error: " << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

In addition to saving the complex image into a file, we could also extract its real and imaginary

parts for further analysis. This can be done with the itk::ComplexToRealImageFilter and the

itk::ComplexToImaginaryImageFilter .

We instantiate first the ImageFilter that will help us to extract the real part from the complex image.

The ComplexToRealImageFilter takes as its first template parameter the type of the complex

image and as its second template parameter it takes the type of the output image pixel. We create

one instance of this filter and connect as its input the output of the FFT filter.

using RealFilterType =

itk::ComplexToRealImageFilter<ComplexImageType, ImageType>;

auto realFilter = RealFilterType::New();

realFilter->SetInput(fftFilter->GetOutput());

Since the range of intensities in the Fourier domain can be quite concentrated, it is con-

venient to rescale the image in order to visualize it. For this purpose we instantiate a

itk::RescaleIntensityImageFilter that will rescale the intensities of the real image into a

range suitable for writing in a file. We also set the minimum and maximum values of the output to

the range of the pixel type used for writing.

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1ComplexToRealImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

172 Chapter 2. Filtering

using RescaleFilterType =

itk::RescaleIntensityImageFilter<ImageType, WriteImageType>;

auto intensityRescaler = RescaleFilterType::New();

intensityRescaler->SetInput(realFilter->GetOutput());

intensityRescaler->SetOutputMinimum(0);

intensityRescaler->SetOutputMaximum(255);

We can now instantiate the ImageFilter that will help us to extract the imaginary part from the

complex image. The filter that we use here is the itk::ComplexToImaginaryImageFilter. It

takes as first template parameter the type of the complex image and as second template parameter it

takes the type of the output image pixel. An instance of the filter is created, and its input is connected

to the output of the FFT filter.

using ComplexImageType = FFTFilterType::OutputImageType;

using ImaginaryFilterType =

itk::ComplexToImaginaryImageFilter<ComplexImageType, ImageType>;

auto imaginaryFilter = ImaginaryFilterType::New();

imaginaryFilter->SetInput(fftFilter->GetOutput());

The Imaginary image can then be rescaled and saved into a file, just as we did with the Real part.

For the sake of illustrating the use of a itk::ImageFileReader on Complex images, here we

instantiate a reader that will load the Complex image that we just saved. Note that nothing special

is required in this case. The instantiation is done just the same as for any other type of image, which

once again illustrates the power of Generic Programming.

using ComplexReaderType = itk::ImageFileReader<ComplexImageType>;

auto complexReader = ComplexReaderType::New();

complexReader->SetFileName(argv[4]);

complexReader->Update();

2.10.2 Filtering on the Frequency Domain

The source code for this section can be found in the file

FFTImageFilterFourierDomainFiltering.cxx.

One of the most common image processing operations performed in the Fourier Domain is the

masking of the spectrum in order to eliminate a range of spatial frequencies from the input image.

https://www.itk.org/Doxygen/html/classitk_1_1ComplexToImaginaryImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

2.10. Frequency Domain 173

This operation is typically performed by taking the input image, computing its Fourier transform

using a FFT filter, masking the resulting image in the Fourier domain with a mask, and finally

taking the result of the masking and computing its inverse Fourier transform.

This typical process is illustrated in the example below.

We start by including the headers of the FFT filters and the Mask image filter. Note that we use two

different types of FFT filters here. The first one expects as input an image of real pixel type (real

in the sense of complex numbers) and produces as output a complex image. The second FFT filter

expects as in put a complex image and produces a real image as output.

#include "itkVnlForwardFFTImageFilter.h"

#include "itkVnlInverseFFTImageFilter.h"

#include "itkMaskImageFilter.h"

The first decision to make is related to the pixel type and dimension of the images on which we want

to compute the Fourier transform.

using InputPixelType = float;

constexpr unsigned int Dimension = 2;

using InputImageType = itk::Image<InputPixelType, Dimension>;

Then we select the pixel type to use for the mask image and instantiate the image type of the mask.

using MaskPixelType = unsigned char;

using MaskImageType = itk::Image<MaskPixelType, Dimension>;

Both the input image and the mask image can be read from files or could be obtained as the output

of a preprocessing pipeline. We omit here the details of reading the image since the process is quite

standard.

Now the itk::VnlForwardFFTImageFilter can be instantiated. Like most ITK filters, the FFT

filter is instantiated using the full image type. By not setting the output image type, we decide to use

the default one provided by the filter. Using this type we construct one instance of the filter.

using FFTFilterType = itk::VnlForwardFFTImageFilter<InputImageType>;

auto fftFilter = FFTFilterType::New();

fftFilter->SetInput(inputReader->GetOutput());

Since our purpose is to perform filtering in the frequency domain by altering the weights of the

image spectrum, we need a filter that will mask the Fourier transform of the input image with a

binary image. Note that the type of the spectral image is taken here from the traits of the FFT filter.

https://www.itk.org/Doxygen/html/classitk_1_1VnlForwardFFTImageFilter.html

174 Chapter 2. Filtering

using SpectralImageType = FFTFilterType::OutputImageType;

using MaskFilterType =

itk::MaskImageFilter<SpectralImageType, MaskImageType, SpectralImageType>;

auto maskFilter = MaskFilterType::New();

We connect the inputs to the mask filter by taking the outputs from the first FFT filter and from the

reader of the Mask image.

maskFilter->SetInput1(fftFilter->GetOutput());

maskFilter->SetInput2(maskReader->GetOutput());

For the purpose of verifying the aspect of the spectrum after being filtered with the mask, we can

write out the output of the Mask filter to a file.

using SpectralWriterType = itk::ImageFileWriter<SpectralImageType>;

auto spectralWriter = SpectralWriterType::New();

spectralWriter->SetFileName("filteredSpectrum.mhd");

spectralWriter->SetInput(maskFilter->GetOutput());

spectralWriter->Update();

The output of the mask filter will contain the filtered spectrum of the input image. We must then

apply an inverse Fourier transform on it in order to obtain the filtered version of the input image.

For that purpose we create another instance of the FFT filter.

using IFFTFilterType = itk::VnlInverseFFTImageFilter<SpectralImageType>;

auto fftInverseFilter = IFFTFilterType::New();

fftInverseFilter->SetInput(maskFilter->GetOutput());

The execution of the pipeline can be triggered by invoking the Update() method in this last filter.

Since this invocation can eventually throw an exception, the call must be placed inside a try/catch

block.

try

{

fftInverseFilter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Error: " << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

2.11. Extracting Surfaces 175

The result of the filtering can now be saved into an image file, or be passed to a subsequent process-

ing pipeline. Here we simply write it out to an image file.

using WriterType = itk::ImageFileWriter<InputImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[3]);

writer->SetInput(fftInverseFilter->GetOutput());

Note that this example is just a minimal illustration of the multiple types of processing that are

possible in the Fourier domain.

2.11 Extracting Surfaces

2.11.1 Surface extraction

The source code for this section can be found in the file

SurfaceExtraction.cxx.

Surface extraction has attracted continuous interest since the early days of image analysis, especially

in the context of medical applications. Although it is commonly associated with image segmenta-

tion, surface extraction is not in itself a segmentation technique, instead it is a transformation that

changes the way a segmentation is represented. In its most common form, isosurface extraction is

the equivalent of image thresholding followed by surface extraction.

Probably the most widely known method of surface extraction is the Marching Cubes algorithm [36].

Although it has been followed by a number of variants [54], Marching Cubes has become an icon in

medical image processing. The following example illustrates how to perform surface extraction in

ITK using an algorithm similar to Marching Cubes 8.

The representation of unstructured data in ITK is done with the itk::Mesh. This class enables us

to represent N-Dimensional grids of varied topology. It is natural for the filter that extracts surfaces

from an image to produce a mesh as its output.

We initiate our example by including the header files of the surface extraction filter, the image and

the mesh.

#include "itkBinaryMask3DMeshSource.h"

#include "itkImage.h"

We define then the pixel type and dimension of the image from which we are going to extract the

surface.

8Note that the Marching Cubes algorithm is covered by a patent that expired on June 5th 2005.

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

176 Chapter 2. Filtering

constexpr unsigned int Dimension = 3;

using PixelType = unsigned char;

using ImageType = itk::Image<PixelType, Dimension>;

With the same image type we instantiate the type of an ImageFileReader and construct one with the

purpose of reading in the input image.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

The type of the itk::Mesh is instantiated by specifying the type to be associated with the pixel

value of the Mesh nodes. This particular pixel type happens to be irrelevant for the purpose of

extracting the surface.

using MeshType = itk::Mesh<double>;

Having declared the Image and Mesh types we can now instantiate the surface extraction filter, and

construct one by invoking its New() method.

using MeshSourceType = itk::BinaryMask3DMeshSource<ImageType, MeshType>;

auto meshSource = MeshSourceType::New();

In this example, the pixel value associated with the object to be extracted is read from the command

line arguments and it is passed to the filter by using the SetObjectValue() method. Note that this

is different from the traditional isovalue used in the Marching Cubes algorithm. In the case of the

BinaryMask3DMeshSource filter, the object values define the membership of pixels to the object

from which the surface will be extracted. In other words, the surface will be surrounding all pixels

with value equal to the ObjectValue parameter.

const auto objectValue = static_cast<PixelType>(std::stod(argv[2]));

meshSource->SetObjectValue(objectValue);

The input to the surface extraction filter is taken from the output of the image reader.

meshSource->SetInput(reader->GetOutput());

Finally we trigger the execution of the pipeline by invoking the Update() method. Given that the

pipeline may throw an exception this call must be place inside a try/catch block.

https://www.itk.org/Doxygen/html/classitk_1_1Mesh.html

2.11. Extracting Surfaces 177

try

{

meshSource->Update();

}

catch (const itk::ExceptionObject & exp)

{

std::cerr << "Exception thrown during Update() " << std::endl;

std::cerr << exp << std::endl;

return EXIT_FAILURE;

}

We print out the number of nodes and cells in order to inspect the output mesh.

std::cout << "Nodes = " << meshSource->GetNumberOfNodes() << std::endl;

std::cout << "Cells = " << meshSource->GetNumberOfCells() << std::endl;

This resulting Mesh could be used as input for a deformable model segmentation algorithm, or it

could be converted to a format suitable for visualization in an interactive application.

CHAPTER

THREE

REGISTRATION

This chapter introduces ITK’s capabili-

Tp q

Figure 3.1: Image registration is the task of finding a spa-

tial transform mapping one image into another.

ties for performing image registration.

Image registration is the process of

determining the spatial transform that

maps points from one image to homol-

ogous points on a object in the second

image. This concept is schematically

represented in Figure 3.1. In ITK, regis-

tration is performed within a framework

of pluggable components that can easily

be interchanged. This flexibility means that a combinatorial variety of registration methods can be

created, allowing users to pick and choose the right tools for their specific application.

3.1 Registration Framework

Let’s begin with a simplified typical registration framework where its components and their inter-

connections are shown in Figure 3.2. The basic input data to the registration process are two images:

one is defined as the fixed image f (X) and the other as the moving image m(X), where X represents

a position in N-dimensional space. Registration is treated as an optimization problem with the goal

of finding the spatial mapping that will bring the moving image into alignment with the fixed image.

The transform component T (X) represents the spatial mapping of points from the fixed image space

to points in the moving image space. The interpolator is used to evaluate moving image intensities

at non-grid positions. The metric component S(f ,m◦T) provides a measure of how well the fixed

image is matched by the transformed moving image. This measure forms a quantitative criterion to

be optimized by the optimizer over the search space defined by the parameters of the transform.

ITKv4 registration framework provides more flexibility to the above traditional registration concept.

In this new framework, the registration computations can happen on a physical grid completely

different than the fixed image domain having different sampling density. This “sampling domain” is

180 Chapter 3. Registration

parameters

Optimizer

Transform

Interpolator

Metric

Moving Image

Fixed Image
fitness value

points

pixels

pixels

pixels

Transform

Figure 3.2: The basic components of a typical registration framework are two input images, a transform, a

metric, an interpolator and an optimizer.

Figure 3.3: The basic components of the ITKv4 registration framework.

considered as a new component in the registration framework known as virtual image that can be

an arbitrary set of physical points, not necessarily a uniform grid of points.

Various ITKv4 registration components are illustrated in Figure 3.3. Boxes with dashed borders

show data objects, while those with solid borders show process objects.

The matching Metric class is a key component that controls most parts of the registration process

since it handles fixed, moving and virtual images as well as fixed and moving transforms and inter-

polators.

Fixed and moving transforms and interpolators are used by the metric to evaluate the intensity values

of the fixed and moving images at each physical point of the virtual space. Those intensity values

are then used by the metric cost function to evaluate the fitness value and derivatives, which are

passed to the optimizer that asks the moving transform to update its parameters based on the outputs

of the cost function. Since the moving transform is shared between metric and optimizer, the above

3.2. ”Hello World” Registration 181

process will be repeated till the convergence criteria are met.

Later in section 3.3 you will get a better understanding of the behind-the-scenes processes of ITKv4

registration framework. First, we begin with some simple registration examples.

3.2 ”Hello World” Registration

The source code for this section can be found in the file

ImageRegistration1.cxx.

This example illustrates the use of the image registration framework in Insight. It should be read as

a “Hello World” for ITK registration. Instead of means to an end, this example should be read as a

basic introduction to the elements typically involved when solving a problem of image registration.

A registration method requires the following set of components: two input images, a transform, a

metric and an optimizer. Some of these components are parameterized by the image type for which

the registration is intended. The following header files provide declarations of common types used

for these components.

#include "itkImageRegistrationMethodv4.h"

#include "itkTranslationTransform.h"

#include "itkMeanSquaresImageToImageMetricv4.h"

#include "itkRegularStepGradientDescentOptimizerv4.h"

The type of each registration component should be instantiated first. We start by selecting the image

dimension and the types to be used for representing image pixels.

constexpr unsigned int Dimension = 2;

using PixelType = float;

The types of the input images are instantiated by the following lines.

using FixedImageType = itk::Image<PixelType, Dimension>;

using MovingImageType = itk::Image<PixelType, Dimension>;

The transform that will map the fixed image space into the moving image space is defined below.

using TransformType = itk::TranslationTransform<double, Dimension>;

An optimizer is required to explore the parameter space of the transform in search of optimal values

of the metric.

182 Chapter 3. Registration

using OptimizerType = itk::RegularStepGradientDescentOptimizerv4<double>;

The metric will compare how well the two images match each other. Metric types are usually

templated over the image types as seen in the following type declaration.

using MetricType =

itk::MeanSquaresImageToImageMetricv4<FixedImageType, MovingImageType>;

The registration method type is instantiated using the types of the fixed and moving images as well

as the output transform type. This class is responsible for interconnecting all the components that

we have described so far.

using RegistrationType = itk::

ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;

Each one of the registration components is created using its New() method and is assigned to its

respective itk::SmartPointer.

auto metric = MetricType::New();

auto optimizer = OptimizerType::New();

auto registration = RegistrationType::New();

Each component is now connected to the instance of the registration method.

registration->SetMetric(metric);

registration->SetOptimizer(optimizer);

In this example the transform object does not need to be created and passed to the registration

method like above since the registration filter will instantiate an internal transform object using the

transform type that is passed to it as a template parameter.

Metric needs an interpolator to evaluate the intensities of the fixed and moving images at non-grid

positions. The types of fixed and moving interpolators are declared here.

using FixedLinearInterpolatorType =

itk::LinearInterpolateImageFunction<FixedImageType, double>;

using MovingLinearInterpolatorType =

itk::LinearInterpolateImageFunction<MovingImageType, double>;

Then, fixed and moving interpolators are created and passed to the metric. Since linear interpolators

are used as default, we could skip the following step in this example.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

3.2. ”Hello World” Registration 183

auto fixedInterpolator = FixedLinearInterpolatorType::New();

auto movingInterpolator = MovingLinearInterpolatorType::New();

metric->SetFixedInterpolator(fixedInterpolator);

metric->SetMovingInterpolator(movingInterpolator);

In this example, the fixed and moving images are read from files. This requires the

itk::ImageRegistrationMethodv4 to acquire its inputs from the output of the readers.

registration->SetFixedImage(fixedImageReader->GetOutput());

registration->SetMovingImage(movingImageReader->GetOutput());

Now the registration process should be initialized. ITKv4 registration framework provides initial

transforms for both fixed and moving images. These transforms can be used to setup an initial

known correction of the misalignment between the virtual domain and fixed/moving image spaces.

In this particular case, a translation transform is being used for initialization of the moving image

space. The array of parameters for the initial moving transform is simply composed of the translation

values along each dimension. Setting the values of the parameters to zero initializes the transform to

an Identity transform. Note that the array constructor requires the number of elements to be passed

as an argument.

auto movingInitialTransform = TransformType::New();

TransformType::ParametersType initialParameters(

movingInitialTransform->GetNumberOfParameters());

initialParameters[0] = 0.0; // Initial offset in mm along X

initialParameters[1] = 0.0; // Initial offset in mm along Y

movingInitialTransform->SetParameters(initialParameters);

registration->SetMovingInitialTransform(movingInitialTransform);

In the registration filter this moving initial transform will be added to a composite transform that

already includes an instantiation of the output optimizable transform; then, the resultant composite

transform will be used by the optimizer to evaluate the metric values at each iteration.

Despite this, the fixed initial transform does not contribute to the optimization process. It is only

used to access the fixed image from the virtual image space where the metric evaluation happens.

Virtual images are a new concept added to the ITKv4 registration framework, which potentially lets

us to do the registration process in a physical domain totally different from the fixed and moving

image domains. In fact, the region over which metric evaluation is performed is called virtual image

domain. This domain defines the resolution at which the evaluation is performed, as well as the

physical coordinate system.

The virtual reference domain is taken from the “virtual image” buffered region, and the input images

should be accessed from this reference space using the fixed and moving initial transforms.

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

184 Chapter 3. Registration

The legacy intuitive registration framework can be considered as a special case where the virtual

domain is the same as the fixed image domain. As this case practically happens in most of the real

life applications, the virtual image is set to be the same as the fixed image by default. However,

the user can define the virtual domain differently than the fixed image domain by calling either

SetVirtualDomain or SetVirtualDomainFromImage.

In this example, like the most examples of this chapter, the virtual image is considered the same as

the fixed image. Since the registration process happens in the fixed image physical domain, the fixed

initial transform maintains its default value of identity and does not need to be set.

However, a “Hello World!” example should show all the basics, so all the registration components

are explicitly set here.

In the next section of this chapter, you will get a better understanding from behind the scenes of the

registration process when the initial fixed transform is not identity.

auto identityTransform = TransformType::New();

identityTransform->SetIdentity();

registration->SetFixedInitialTransform(identityTransform);

Note that the above process shows only one way of initializing the registration configura-

tion. Another option is to initialize the output optimizable transform directly. In this ap-

proach, a transform object is created, initialized, and then passed to the registration method via

SetInitialTransform(). This approach is shown in section 3.6.1.

At this point the registration method is ready for execution. The optimizer is the component that

drives the execution of the registration. However, the ImageRegistrationMethodv4 class orchestrates

the ensemble to make sure that everything is in place before control is passed to the optimizer.

It is usually desirable to fine tune the parameters of the optimizer. Each optimizer has particular

parameters that must be interpreted in the context of the optimization strategy it implements. The

optimizer used in this example is a variant of gradient descent that attempts to prevent it from taking

steps that are too large. At each iteration, this optimizer will take a step along the direction of

the itk::ImageToImageMetricv4 derivative. Each time the direction of the derivative abruptly

changes, the optimizer assumes that a local extrema has been passed and reacts by reducing the step

length by a relaxation factor. The reducing factor should have a value between 0 and 1. This factor

is set to 0.5 by default, and it can be changed to a different value via SetRelaxationFactor().

Also, the default value for the initial step length is 1, and this value can be changed manually with

the method SetLearningRate().

In addition to manual settings, the initial step size can also be estimated automatically, either at

each iteration or only at the first iteration, by assigning a ScalesEstimator (as will be seen in later

examples).

After several reductions of the step length, the optimizer may be moving in a very restricted area of

the transform parameter space. By the method SetMinimumStepLength(), the user can define how

https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetricv4.html

3.2. ”Hello World” Registration 185

small the step length should be to consider convergence to have been reached. This is equivalent to

defining the precision with which the final transform should be known. User can also set some other

stop criteria manually like maximum number of iterations.

In other gradient descent-based optimizers of the ITKv4 frame-

work, such as itk::GradientDescentLineSearchOptimizerv4 and

itk::ConjugateGradientLineSearchOptimizerv4 , the convergence criteria are set via

SetMinimumConvergenceValue() which is computed based on the results of the last few itera-

tions. The number of iterations involved in computations are defined by the convergence window

size via SetConvergenceWindowSize() which is shown in later examples of this chapter.

Also note that unlike the previous versions, ITKv4 optimizers do not have a “maximize/minimize”

option to modify the effect of the metric derivatives. Each assigned metric is assumed to return a

parameter derivative result that ”improves” the optimization.

optimizer->SetLearningRate(4);

optimizer->SetMinimumStepLength(0.001);

optimizer->SetRelaxationFactor(0.5);

In case the optimizer never succeeds reaching the desired precision tolerance, it is prudent to estab-

lish a limit on the number of iterations to be performed. This maximum number is defined with the

method SetNumberOfIterations().

optimizer->SetNumberOfIterations(200);

ITKv4 facilitates a multi-level registration framework whereby each stage is different in the resolu-

tion of its virtual space and the smoothness of the fixed and moving images. These criteria need to

be defined before registration starts. Otherwise, the default values will be used. In this example, we

run a simple registration in one level with no space shrinking or smoothing on the input data.

constexpr unsigned int numberOfLevels = 1;

RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;

shrinkFactorsPerLevel.SetSize(1);

shrinkFactorsPerLevel[0] = 1;

RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;

smoothingSigmasPerLevel.SetSize(1);

smoothingSigmasPerLevel[0] = 0;

registration->SetNumberOfLevels(numberOfLevels);

registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);

registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);

The registration process is triggered by an invocation of the Update() method. If something goes

wrong during the initialization or execution of the registration an exception will be thrown. We

https://www.itk.org/Doxygen/html/classitk_1_1GradientDescentLineSearchOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ConjugateGradientLineSearchOptimizerv4.html

186 Chapter 3. Registration

should therefore place the Update() method inside a try/catch block as illustrated in the following

lines.

try

{

registration->Update();

std::cout << "Optimizer stop condition: "

<< registration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

In a real life application, you may attempt to recover from the error by taking more effective actions

in the catch block. Here we are simply printing out a message and then terminating the execution of

the program.

The result of the registration process is obtained using the GetTransform() method that returns a

constant pointer to the output transform.

TransformType::ConstPointer transform = registration->GetTransform();

In the case of the itk::TranslationTransform, there is a straightforward interpretation of the

parameters. Each element of the array corresponds to a translation along one spatial dimension.

TransformType::ParametersType finalParameters = transform->GetParameters();

const double TranslationAlongX = finalParameters[0];

const double TranslationAlongY = finalParameters[1];

The optimizer can be queried for the actual number of iterations performed to reach convergence.

The GetCurrentIteration() method returns this value. A large number of iterations may be an

indication that the learning rate has been set too small, which is undesirable since it results in long

computational times.

const unsigned int numberOfIterations = optimizer->GetCurrentIteration();

The value of the image metric corresponding to the last set of parameters can be obtained with the

GetValue() method of the optimizer.

const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided in Examples/Data:

https://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html

3.2. ”Hello World” Registration 187

Figure 3.4: Fixed and Moving image provided as input to the registration method.

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

The second image is the result of intentionally translating the first image by (13,17) millimeters.

Both images have unit-spacing and are shown in Figure 3.4. The registration takes 20 iterations and

the resulting transform parameters are:

Translation X = 13.0012

Translation Y = 16.9999

As expected, these values match quite well the misalignment that we intentionally introduced in the

moving image.

It is common, as the last step of a registration task, to use the resulting transform to map the moving

image into the fixed image space.

Before the mapping process, notice that we have not used the direct initialization of the output

transform in this example, so the parameters of the moving initial transform are not reflected in the

output parameters of the registration filter. Hence, a composite transform is needed to concatenate

both initial and output transforms together.

188 Chapter 3. Registration

using CompositeTransformType = itk::CompositeTransform<double, Dimension>;

auto outputCompositeTransform = CompositeTransformType::New();

outputCompositeTransform->AddTransform(movingInitialTransform);

outputCompositeTransform->AddTransform(

registration->GetModifiableTransform());

Now the mapping process is easily done with the itk::ResampleImageFilter. Please refer to

Section 2.9.4 for details on the use of this filter. First, a ResampleImageFilter type is instantiated

using the image types. It is convenient to use the fixed image type as the output type since it is likely

that the transformed moving image will be compared with the fixed image.

using ResampleFilterType =

itk::ResampleImageFilter<MovingImageType, FixedImageType>;

A resampling filter is created and the moving image is connected as its input.

auto resampler = ResampleFilterType::New();

resampler->SetInput(movingImageReader->GetOutput());

The created output composite transform is also passed as input to the resampling filter.

resampler->SetTransform(outputCompositeTransform);

As described in Section 2.9.4, the ResampleImageFilter requires additional parameters to be spec-

ified, in particular, the spacing, origin and size of the output image. The default pixel value is also

set to a distinct gray level in order to highlight the regions that are mapped outside of the moving

image.

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());

resampler->SetOutputOrigin(fixedImage->GetOrigin());

resampler->SetOutputSpacing(fixedImage->GetSpacing());

resampler->SetOutputDirection(fixedImage->GetDirection());

resampler->SetDefaultPixelValue(100);

The output of the filter is passed to a writer that will store the image in a file. An

itk::CastImageFilter is used to convert the pixel type of the resampled image to the final type

used by the writer. The cast and writer filters are instantiated below.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

using CastFilterType =

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

3.2. ”Hello World” Registration 189

Figure 3.5: Mapped moving image and its difference with the fixed image before and after registration

ParametersOptimizer

Transform

Interpolator

MetricFixed Image

Reader

Reader

Moving Image

Filter
Resample

Transform

Subtract
Filter Writer

Subtract
Filter WriterFilter

Resample

Registration Method

Figure 3.6: Pipeline structure of the registration example.

itk::CastImageFilter<FixedImageType, OutputImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The filters are created by invoking their New() method.

auto writer = WriterType::New();

auto caster = CastFilterType::New();

The filters are connected together and the Update() method of the writer is invoked in order to

trigger the execution of the pipeline.

caster->SetInput(resampler->GetOutput());

writer->SetInput(caster->GetOutput());

writer->Update();

The fixed image and the transformed moving image can easily be compared using the

190 Chapter 3. Registration

itk::SubtractImageFilter. This pixel-wise filter computes the difference between homologous

pixels of its two input images.

using DifferenceFilterType =

itk::SubtractImageFilter<FixedImageType, FixedImageType, FixedImageType>;

auto difference = DifferenceFilterType::New();

difference->SetInput1(fixedImageReader->GetOutput());

difference->SetInput2(resampler->GetOutput());

Note that the use of subtraction as a method for comparing the images is appropriate here because

we chose to represent the images using a pixel type float. A different filter would have been used

if the pixel type of the images were any of the unsigned integer types.

Since the differences between the two images may correspond to very low values of intensity, we

rescale those intensities with a itk::RescaleIntensityImageFilter in order to make them more

visible. This rescaling will also make it possible to visualize the negative values even if we save the

difference image in a file format that only supports unsigned pixel values1. We also reduce the

DefaultPixelValue to “1” in order to prevent that value from absorbing the dynamic range of the

differences between the two images.

using RescalerType =

itk::RescaleIntensityImageFilter<FixedImageType, OutputImageType>;

auto intensityRescaler = RescalerType::New();

intensityRescaler->SetInput(difference->GetOutput());

intensityRescaler->SetOutputMinimum(0);

intensityRescaler->SetOutputMaximum(255);

resampler->SetDefaultPixelValue(1);

Its output can be passed to another writer.

auto writer2 = WriterType::New();

writer2->SetInput(intensityRescaler->GetOutput());

For the purpose of comparison, the difference between the fixed image and the moving image before

registration can also be computed by simply setting the transform to an identity transform. Note

that the resampling is still necessary because the moving image does not necessarily have the same

spacing, origin and number of pixels as the fixed image. Therefore a pixel-by-pixel operation cannot

in general be performed. The resampling process with an identity transform will ensure that we have

a representation of the moving image in the grid of the fixed image.

1This is the case of PNG, BMP, JPEG and TIFF among other common file formats.

https://www.itk.org/Doxygen/html/classitk_1_1SubtractImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1RescaleIntensityImageFilter.html

3.2. ”Hello World” Registration 191

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20

M
ea

n
S

qu
ar

es
 M

et
ric

Iteration No.

Figure 3.7: The sequence of translations and metric values at each iteration of the optimizer.

resampler->SetTransform(identityTransform);

The complete pipeline structure of the current example is presented in Figure 3.6. The components

of the registration method are depicted as well. Figure 3.5 (left) shows the result of resampling the

moving image in order to map it onto the fixed image space. The top and right borders of the image

appear in the gray level selected with the SetDefaultPixelValue() in the ResampleImageFilter.

The center image shows the difference between the fixed image and the original moving image

(i.e. the difference before the registration is performed). The right image shows the difference

between the fixed image and the transformed moving image (i.e. after the registration has been

performed). Both difference images have been rescaled in intensity in order to highlight those pixels

where differences exist. Note that the final registration is still off by a fraction of a pixel, which

causes bands around edges of anatomical structures to appear in the difference image. A perfect

registration would have produced a null difference image.

It is always useful to keep in mind that registration is essentially an optimization problem. Figure

3.7 helps to reinforce this notion by showing the trace of translations and values of the image metric

at each iteration of the optimizer. It can be seen from the top figure that the step length is reduced

progressively as the optimizer gets closer to the metric extrema. The bottom plot clearly shows how

the metric value decreases as the optimization advances. The log plot helps to highlight the normal

oscillations of the optimizer around the extrema value.

In this section, we used a very simple example to introduce the basic components of a registra-

tion process in ITKv4. However, studying this example alone is not enough to start using the

itk::ImageRegistrationMethodv4. In order to choose the best registration practice for a spe-

cific application, knowledge of other registration method instantiations and their capabilities are

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

192 Chapter 3. Registration

required. For example, direct initialization of the output optimizable transform is shown in sec-

tion 3.6.1. This method can simplify the registration process in many cases. Also, multi-resolution

and multistage registration approaches are illustrated in sections 3.7 and 3.8. These examples illus-

trate the flexibility in the usage of ITKv4 registration method framework that can help to provide

faster and more reliable registration processes.

3.3 Features of the Registration Framework

This section presents internals of the registration process in ITKv4. Understanding what actually

happens is necessary to have a correct interpretation of the results of a registration filter. It also

helps to understand the most common difficulties that users encounter when they start using the

ITKv4 registration framework:

• Registration is done in physical coordinates

• The direction of the transform maps from the space of the virtual image to that of the moving

image

These two topics tend to create confusion because they are implemented in different ways in other

systems, and community members tend to have different expectations regarding how registration

should work in ITKv4. The situation is further complicated by the way most people describe image

operations, as if they were manually performed on a continuous picture on a piece of paper.

These concepts are discussed in this section through a general example shown in Figure 3.8.

Recall that ITKv4 does the registration in “physical” space where fixed, moving and virtual images

are placed. Also, note that the term of virtual image is deceptive here since it does not refer to

any actual image. In fact, the virtual image defines the origin, direction and the spacing of a space

lattice that holds the output resampled image of the registration process. The virtual pixel lattice is

illustrated in green at the top left side of Figure 3.8.

As shown in this figure, generally there are two transforms involved in the registration process even

though only one of them is being optimized. Tvm maps points from physical virtual space onto the

physical space of the moving image, and in the same way Tv f finds homologous points between

physical virtual space and the physical space of the fixed image. Note that only Tvm is optimized

during the registration process. Tv f cannot be optimized. The fixed transform usually is an identity

transform since the virtual image lattice is commonly defined as the fixed image lattice.

When the registration starts, the algorithm goes through each grid point of the virtual lattice in a

raster sweep. At each point the fixed and moving transforms find coordinates of the homologous

points in the fixed and moving image physical spaces, and interpolators are used to find the pixel

intensities if mapped points are in non-grid positions. These intensity values are passed to a cost

function to find the current metric value.

3.3. Features of the Registration Framework 193

Figure 3.8: Different coordinate systems involved in the image registration process. Note that the transform

being optimized is the one mapping from the physical space of the virtual image into the physical space of the

moving image.

194 Chapter 3. Registration

Note the direction of the mapping transforms here. For example, if you consider the Tvm transform,

confusion often occurs since the transform shifts a virtual lattice point on the positive X direction.

The visual effect of this mapping, once the moving image is resampled, is equivalent to manually

shifting the moving image along the negative X direction. In the same way, when the Tvm transform

applies a clock-wise rotation to the virtual space points, the visual effect of this mapping, once the

moving image has been resampled, is equivalent to manually rotating the moving image counter-

clock-wise. The same relationships also occur with the Tv f transform between the virtual space and

the fixed image space.

This mapping direction is chosen because the moving image is resampled on the grid of the virtual

image. In the resampling process, an algorithm iterates through every pixel of the output image and

computes the intensity assigned to this pixel by mapping to its location in the moving image.

Instead, if we were to use the transform mapping coordinates from the moving image physical space

into the virtual image physical space, then the resampling process would not guarantee that every

pixel in the grid of the virtual image would receive one and only one value. In other words, the

resampling would result in an image with holes and redundant or overlapping pixel values.

As seen in the previous examples, and as corroborated in the remaining examples in this chapter,

the transform computed by the registration framework can be used directly in the resampling filter

in order to map the moving image onto the discrete grid of the virtual image.

There are exceptional cases in which the transform desired is actually the inverse transform of the

one computed by the ITK registration framework. Only those cases may require invoking the

GetInverse() method that most transforms offer. Before attempting this, read the examples on

resampling illustrated in section 2.9 in order to familiarize yourself with the correct interpretation of

the transforms.

Now we come back to the situation illustrated in Figure 3.8. This figure shows the flexibility of

the ITKv4 registration framework. We can register two images with different scales, sizes and

resolutions. Also, we can create the output warped image with any desired size and resolution.

Nevertheless, note that the spatial transform computed during the registration process does not need

to be concerned about a different number of pixels and different pixel sizes between fixed, moving

and output images because the conversion from index space to the physical space implicitly takes

care of the required scaling factor between the involved images.

One important consequence of this fact is that having the correct image origin, image pixel size, and

image direction is fundamental for the success of the registration process in ITK, since we need this

information to compute the exact location of each pixel lattice in the physical space; we must make

sure that the correct values for the origin, spacing, and direction of all fixed, moving and virtual

images are provided.

In this example, the spatial transform computed will physically map the brain from the moving

image onto the virtual space and minimize its difference with the resampled brain from the fixed

image into the virtual space. Fortunately in practice there is no need to resample the fixed image

since the virtual image physical domain is often assumed to be the same as physical domain of the

fixed image.

3.4. Monitoring Registration 195

3.4 Monitoring Registration

The source code for this section can be found in the file

ImageRegistration3.cxx.

Given the numerous parameters involved in tuning a registration method for a particular applica-

tion, it is not uncommon for a registration process to run for several minutes and still produce a

useless result. To avoid this situation it is quite helpful to track the evolution of the registration as

it progresses. The following section illustrates the mechanisms provided in ITK for monitoring the

activity of the ImageRegistrationMethodv4 class.

Insight implements the Observer/Command design pattern [20]. The classes involved in this imple-

mentation are the itk::Object, itk::Command and itk::EventObject classes. The Object is

the base class of most ITK objects. This class maintains a linked list of pointers to event observers.

The role of observers is played by the Command class. Observers register themselves with an Ob-

ject, declaring that they are interested in receiving notification when a particular event happens. A

set of events is represented by the hierarchy of the Event class. Typical events are Start, End,

Progress and Iteration.

Registration is controlled by an itk::Optimizer, which generally executes an iterative process.

Most Optimizer classes invoke an itk::IterationEvent at the end of each iteration. When an

event is invoked by an object, this object goes through its list of registered observers (Commands)

and checks whether any one of them has expressed interest in the current event type. Whenever such

an observer is found, its corresponding Execute() method is invoked. In this context, Execute()

methods should be considered callbacks. As such, some of the common sense rules of callbacks

should be respected. For example, Execute() methods should not perform heavy computational

tasks. They are expected to execute rapidly, for example, printing out a message or updating a value

in a GUI.

The following code illustrates a simple way of creating a Observer/Command to monitor a registra-

tion process. This new class derives from the Command class and provides a specific implementation

of the Execute() method. First, the header file of the Command class must be included.

#include "itkCommand.h"

Our custom command class is called CommandIterationUpdate. It derives from the Command

class and declares for convenience the types Self and Superclass. This facilitates the use of

standard macros later in the class implementation.

class CommandIterationUpdate : public itk::Command

{

public:

using Self = CommandIterationUpdate;

using Superclass = itk::Command;

The following type alias declares the type of the SmartPointer capable of holding a reference to this

https://www.itk.org/Doxygen/html/classitk_1_1Object.html
https://www.itk.org/Doxygen/html/classitk_1_1Command.html
https://www.itk.org/Doxygen/html/classitk_1_1EventObject.html
https://www.itk.org/Doxygen/html/classitk_1_1Optimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1IterationEvent.html

196 Chapter 3. Registration

object.

using Pointer = itk::SmartPointer<Self>;

The itkNewMacro takes care of defining all the necessary code for the New() method. Those

with curious minds are invited to see the details of the macro in the file itkMacro.h in the

Insight/Code/Common directory.

itkNewMacro(Self);

In order to ensure that the New() method is used to instantiate the class (and not the C++ new

operator), the constructor is declared protected.

protected:

CommandIterationUpdate() = default;

Since this Command object will be observing the optimizer, the following type alias are useful

for converting pointers when the Execute() method is invoked. Note the use of const on the

declaration of OptimizerPointer. This is relevant since, in this case, the observer is not intending

to modify the optimizer in any way. A const interface ensures that all operations invoked on the

optimizer are read-only.

using OptimizerType = itk::RegularStepGradientDescentOptimizerv4<double>;

using OptimizerPointer = const OptimizerType *;

ITK enforces const-correctness. There is hence a distinction between the Execute() method that

can be invoked from a const object and the one that can be invoked from a non-const object. In

this particular example the non-const version simply invoke the const version. In a more elaborate

situation the implementation of both Execute() methods could be quite different. For example,

you could imagine a non-const interaction in which the observer decides to stop the optimizer

in response to a divergent behavior. A similar case could happen when a user is controlling the

registration process from a GUI.

void

Execute(itk::Object * caller, const itk::EventObject & event) override

{

Execute((const itk::Object *)caller, event);

}

Finally we get to the heart of the observer, the Execute() method. Two arguments are passed to this

method. The first argument is the pointer to the object that invoked the event. The second argument

is the event that was invoked.

3.4. Monitoring Registration 197

void

Execute(const itk::Object * object, const itk::EventObject & event) override

{

Note that the first argument is a pointer to an Object even though the actual object invoking the event

is probably a subclass of Object. In our case we know that the actual object is an optimizer. Thus

we can perform a dynamic cast to the real type of the object.

auto optimizer = static_cast<OptimizerPointer>(object);

The next step is to verify that the event invoked is actually the one in which we are interested. This is

checked using the RTTI2 support. The CheckEvent() method allows us to compare the actual type

of two events. In this case we compare the type of the received event with an IterationEvent. The

comparison will return true if event is of type IterationEvent or derives from IterationEvent.

If we find that the event is not of the expected type then the Execute() method of this command

observer should return without any further action.

if (!itk::IterationEvent().CheckEvent(&event))

{

return;

}

If the event matches the type we are looking for, we are ready to query data from the optimizer.

Here, for example, we get the current number of iterations, the current value of the cost function and

the current position on the parameter space. All of these values are printed to the standard output.

You could imagine more elaborate actions like updating a GUI or refreshing a visualization pipeline.

std::cout << optimizer->GetCurrentIteration() << " = ";

std::cout << optimizer->GetValue() << " : ";

std::cout << optimizer->GetCurrentPosition() << std::endl;

This concludes our implementation of a minimal Command class capable of observing our registra-

tion method. We can now move on to configuring the registration process.

Once all the registration components are in place we can create one instance of our observer. This

is done with the standard New() method and assigned to a SmartPointer.

auto observer = CommandIterationUpdate::New();

The newly created command is registered as observer on the optimizer, using the AddObserver()

method. Note that the event type is provided as the first argument to this method. In order for the

2RTTI stands for: Run-Time Type Information

198 Chapter 3. Registration

Figure 3.9: Interaction between the Command/Observer and the Registration Method.

RTTI mechanism to work correctly, a newly created event of the desired type must be passed as

the first argument. The second argument is simply the smart pointer to the observer. Figure 3.9

illustrates the interaction between the Command/Observer class and the registration method.

optimizer->AddObserver(itk::IterationEvent(), observer);

At this point, we are ready to execute the registration. The typical call to Update() will do it. Note

again the use of the try/catch block around the Update() method in case an exception is thrown.

try

{

registration->Update();

std::cout << "Optimizer stop condition: "

<< registration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

The registration process is applied to the following images in Examples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

3.5. Multi-Modality Registration 199

It produces the following output.

0 = 4499.45 : [2.9286959512455857, 2.7244705953923805]

1 = 3860.84 : [6.135143776902402, 5.115849348610004]

2 = 3508.02 : [8.822660051952475, 8.078492808653918]

3 = 3117.31 : [10.968558473732326, 11.454158663474674]

4 = 2125.43 : [13.105290365964755, 14.835634202454191]

5 = 911.308 : [12.75173580401588, 18.819978461140323]

6 = 741.417 : [13.139053510563274, 16.857840597942413]

7 = 16.8918 : [12.356787624301035, 17.480785285045815]

8 = 233.714 : [12.79212443526829, 17.234854683011704]

9 = 39.8027 : [13.167510875734614, 16.904574468172815]

10 = 16.5731 : [12.938831371165355, 17.005597654570586]

11 = 1.68763 : [13.063495692092735, 16.996443033457986]

12 = 1.79437 : [13.001061362657559, 16.999307384689935]

13 = 0.000762481 : [12.945418587211314, 17.0277701944711]

14 = 1.74802 : [12.974454390534774, 17.01621663980765]

15 = 0.430253 : [13.002439510423766, 17.002309966416835]

16 = 0.00531816 : [12.989877586882951, 16.99301810428082]

17 = 0.0721346 : [12.996759235073881, 16.996716492365685]

18 = 0.00996773 : [13.00288423694971, 17.00156618393022]

19 = 0.00516378 : [12.99928608126834, 17.000045636412015]

20 = 0.000228075 : [13.00123653240422, 16.999943471681494]

You can verify from the code in the Execute() method that the first column is the iteration num-

ber, the second column is the metric value and the third and fourth columns are the parameters of

the transform, which is a 2D translation transform in this case. By tracking these values as the

registration progresses, you will be able to determine whether the optimizer is advancing in the

right direction and whether the step-length is reasonable or not. That will allow you to interrupt

the registration process and fine-tune parameters without having to wait until the optimizer stops by

itself.

3.5 Multi-Modality Registration

Some of the most challenging cases of image registration arise when images of different modalities

are involved. In such cases, metrics based on direct comparison of gray levels are not applicable.

It has been extensively shown that metrics based on the evaluation of mutual information are well

suited for overcoming the difficulties of multi-modality registration.

The concept of Mutual Information is derived from Information Theory and its application to image

registration has been proposed in different forms by different groups [12, 37, 63]; a more detailed

review can be found in [23, 46]. The Insight Toolkit currently provides two different implementa-

200 Chapter 3. Registration

tions of Mutual Information metrics (see section 3.11 for details). The following example illustrates

the practical use of one of these metrics.

3.5.1 Mattes Mutual Information

The source code for this section can be found in the file

ImageRegistration4.cxx.

In this example, we will solve a simple multi-modality problem using an implementation of mutual

information. This implementation was published by Mattes et. al [40].

First, we include the header files of the components used in this example.

#include "itkImageRegistrationMethodv4.h"

#include "itkTranslationTransform.h"

#include "itkMattesMutualInformationImageToImageMetricv4.h"

#include "itkRegularStepGradientDescentOptimizerv4.h"

In this example the image types and all registration components, except the metric, are declared as

in Section 3.2. The Mattes mutual information metric type is instantiated using the image types.

using MetricType =

itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,

MovingImageType>;

The metric is created using the New() method and then connected to the registration object.

auto metric = MetricType::New();

registration->SetMetric(metric);

The metric requires the user to specify the number of bins used to compute the entropy. In a typical

application, 50 histogram bins are sufficient. Note however, that the number of bins may have

dramatic effects on the optimizer’s behavior.

unsigned int numberOfBins = 24;

metric->SetNumberOfHistogramBins(numberOfBins);

To calculate the image gradients, an image gradient calculator based on ImageFunction is

used instead of image gradient filters. Image gradient methods are defined in the superclass

ImageToImageMetricv4.

3.5. Multi-Modality Registration 201

metric->SetUseMovingImageGradientFilter(false);

metric->SetUseFixedImageGradientFilter(false);

Notice that in the ITKv4 registration framework, optimizers always try to minimize the cost function,

and the metrics always return a parameter and derivative result that improves the optimization, so

this metric computes the negative mutual information. The optimization parameters are tuned for

this example, so they are not exactly the same as the parameters used in Section 3.2.

optimizer->SetLearningRate(8.00);

optimizer->SetMinimumStepLength(0.001);

optimizer->SetNumberOfIterations(200);

optimizer->ReturnBestParametersAndValueOn();

Note that large values of the learning rate will make the optimizer unstable. Small values, on the

other hand, may result in the optimizer needing too many iterations in order to walk to the extrema of

the cost function. The easy way of fine tuning this parameter is to start with small values, probably

in the range of {1.0,5.0}. Once the other registration parameters have been tuned for producing

convergence, you may want to revisit the learning rate and start increasing its value until you observe

that the optimization becomes unstable. The ideal value for this parameter is the one that results in

a minimum number of iterations while still keeping a stable path on the parametric space of the

optimization. Keep in mind that this parameter is a multiplicative factor applied on the gradient of

the metric. Therefore, its effect on the optimizer step length is proportional to the metric values

themselves. Metrics with large values will require you to use smaller values for the learning rate in

order to maintain a similar optimizer behavior.

Whenever the regular step gradient descent optimizer encounters change in the direction of move-

ment in the parametric space, it reduces the size of the step length. The rate at which the step length

is reduced is controlled by a relaxation factor. The default value of the factor is 0.5. This value,

however may prove to be inadequate for noisy metrics since they tend to induce erratic movements

on the optimizers and therefore result in many directional changes. In those conditions, the opti-

mizer will rapidly shrink the step length while it is still too far from the location of the extrema in

the cost function. In this example we set the relaxation factor to a number higher than the default in

order to prevent the premature shrinkage of the step length.

optimizer->SetRelaxationFactor(0.8);

Instead of using the whole virtual domain (usually fixed image domain) for the registra-

tion, we can use a spatial sampled point set by supplying an arbitrary point list over which

to evaluate the metric. The point list is expected to be in the fixed image domain, and

the points are transformed into the virtual domain internally as needed. The user can de-

fine the point set via SetFixedSampledPointSet(), and the point set is used by calling

SetUsedFixedSampledPointSet().

Also, instead of dealing with the metric directly, the user may define the sampling percentage and

202 Chapter 3. Registration

sampling strategy for the registration framework at each level. In this case, the registration filter

manages the sampling operation over the fixed image space based on the input strategy (REGULAR,

RANDOM) and passes the sampled point set to the metric internally.

RegistrationType::MetricSamplingStrategyEnum samplingStrategy =

RegistrationType::MetricSamplingStrategyEnum::RANDOM;

The number of spatial samples to be used depends on the content of the image. If the images are

smooth and do not contain many details, the number of spatial samples can usually be as low as

1% of the total number of pixels in the fixed image. On the other hand, if the images are detailed,

it may be necessary to use a much higher proportion, such as 20% to 50%. Increasing the number

of samples improves the smoothness of the metric, and therefore helps when this metric is used in

conjunction with optimizers that rely of the continuity of the metric values. The trade-off, of course,

is that a larger number of samples results in longer computation times per every evaluation of the

metric.

One mechanism for bringing the metric to its limit is to disable the sampling and use all the pixels

present in the FixedImageRegion. This can be done with the SetUseSampledPointSet(false)

method. You may want to try this option only while you are fine tuning all other parameters of your

registration. We don’t use this method in this current example though.

It has been demonstrated empirically that the number of samples is not a critical parameter for the

registration process. When you start fine tuning your own registration process, you should start

using high values of number of samples, for example in the range of 20% to 50% of the number of

pixels in the fixed image. Once you have succeeded to register your images you can then reduce the

number of samples progressively until you find a good compromise on the time it takes to compute

one evaluation of the metric. Note that it is not useful to have very fast evaluations of the metric

if the noise in their values results in more iterations being required by the optimizer to converge.

You must then study the behavior of the metric values as the iterations progress, just as illustrated in

section 3.4.

double samplingPercentage = 0.20;

In ITKv4, a single virtual domain or spatial sample point set is used for the all iterations of the

registration process. The use of a single sample set results in a smooth cost function that can improve

the functionality of the optimizer.

The spatial point set is pseudo randomly generated. For reproducible results an integer seed should

set.

registration->SetMetricSamplingStrategy(samplingStrategy);

registration->SetMetricSamplingPercentage(samplingPercentage);

registration->MetricSamplingReinitializeSeed(121213);

3.5. Multi-Modality Registration 203

Figure 3.10: A T1 MRI (fixed image) and a proton density MRI (moving image) are provided as input to the

registration method.

Let’s execute this example over two of the images provided in Examples/Data:

• BrainT1SliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

The second image is the result of intentionally translating the image BrainProtonDensitySlice-

Border20.png by (13,17) millimeters. Both images have unit-spacing and are shown in Figure

3.10. The registration process converges after 46 iterations and produces the following results:

Translation X = 13.0204

Translation Y = 17.0006

These values are a very close match to the true misalignment introduced in the moving image.

The result of resampling the moving image is presented on the left of Figure 3.11. The center and

right parts of the figure present a checkerboard composite of the fixed and moving images before

and after registration respectively.

Figure 3.12 (upper-left) shows the sequence of translations followed by the optimizer as it searched

the parameter space. The upper-right figure presents a closer look at the convergence basin for the

last iterations of the optimizer. The bottom of the same figure shows the sequence of metric values

computed as the optimizer searched the parameter space.

204 Chapter 3. Registration

Figure 3.11: The mapped moving image (left) and the composition of fixed and moving images before (center)

and after (right) registration with Mattes mutual information.

You must note however that there are a number of non-trivial issues involved in the fine tuning of

parameters for the optimization. For example, the number of bins used in the estimation of Mutual

Information has a dramatic effect on the performance of the optimizer. In order to illustrate this

effect, the same example has been executed using a range of different values for the number of

bins, from 10 to 30. If you repeat this experiment, you will notice that depending on the number

of bins used, the optimizer’s path may get trapped early on in local minima. Figure 3.13 shows the

multiple paths that the optimizer took in the parametric space of the transform as a result of different

selections on the number of bins used by the Mattes Mutual Information metric. Note that many of

the paths die in local minima instead of reaching the extrema value on the upper right corner.

Effects such as the one illustrated here highlight how useless is to compare different algorithms based

on a non-exhaustive search of their parameter setting. It is quite difficult to be able to claim that a

particular selection of parameters represent the best combination for running a particular algorithm.

Therefore, when comparing the performance of two or more different algorithms, we are faced with

the challenge of proving that none of the algorithms involved in the comparison are being run with

a sub-optimal set of parameters.

The plots in Figures 3.12 and 3.13 were generated using Gnuplot3. The scripts used for this purpose

are available in the ITKSoftwareGuide Git repository under the directory

ITKSoftwareGuide/SoftwareGuide/Art.

Data for the plots were taken directly from the output that the Command/Observer in this example

prints out to the console. The output was processed with the UNIX editor sed4 in order to remove

commas and brackets that were confusing for Gnuplot’s parser. Both the shell script for running sed

and for running Gnuplot are available in the directory indicated above. You may find useful to run

3http://www.gnuplot.info/
4https://www.gnu.org/software/sed/sed.html

http://www.gnuplot.info/
https://www.gnu.org/software/sed/sed.html

3.5. Multi-Modality Registration 205

 4

 6

 8

 10

 12

 14

 16

 18

 6 7 8 9 10 11 12 13 14 15 16 17

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

 16.6

 16.8

 17

 17.2

 17.4

 12.6 12.8 13 13.2 13.4

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0 5 10 15 20 25 30 35 40 45 50

Mu
tual

 Inf
orm

atio
n M

atte
s

Iteration No.

Figure 3.12: Sequence of translations and metric values at each iteration of the optimizer.

206 Chapter 3. Registration

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

-2 0 2 4 6 8 10 12 14 16

Y
 T

ra
n
sl

at
io

n
s

(m
m

)

X Translations (mm)

Figure 3.13: Sensitivity of the optimization path to the number of Bins used for estimating the value of Mutual

Information with Mattes et al. approach.

3.6. Center Initialization 207

them in order to verify the results presented here, and to eventually modify them for profiling your

own registrations.

Open Science is not just an abstract concept. Open Science is something to be practiced every day

with the simple gesture of sharing information with your peers, and by providing all the tools that

they need for replicating the results that you are reporting. In Open Science, the only bad results are

those that can not be replicated5. Science is dead when people blindly trust authorities 6 instead of

verifying their statements by performing their own experiments [47, 48].

3.6 Center Initialization

The ITK image coordinate origin is typically located in one of the image corners (see the Defin-

ing Origin and Spacing section of Book 1 for details). This results in counter-intuitive transform

behavior when rotations and scaling are involved. Users tend to assume that rotations and scaling

are performed around a fixed point at the center of the image. In order to compensate for this dif-

ference in expected interpretation, the concept of center of transform has been introduced into the

toolkit. This parameter is generally a fixed parameter that is not optimized during registration, so

initialization is crucial to get efficient and accurate results. The following sections describe the main

characteristics and effects of initializing the center of a transform.

3.6.1 Rigid Registration in 2D

The source code for this section can be found in the file

ImageRegistration5.cxx.

This example illustrates the use of the itk::Euler2DTransform for performing rigid registration

in 2D. The example code is for the most part identical to that presented in Section 3.2. The main

difference is the use of the Euler2DTransform here instead of the itk::TranslationTransform .

In addition to the headers included in previous examples, the following header must also be included.

#include "itkEuler2DTransform.h"

The transform type is instantiated using the code below. The only template parameter for this class

is the representation type of the space coordinates.

using TransformType = itk::Euler2DTransform<double>;

In the Hello World! example, we used Fixed/Moving initial transforms to initialize the registration

configuration. That approach was good to get an intuition of the registration method, specifically

5http://science.creativecommons.org/
6For example: Reviewers of Scientific Journals.

https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
http://science.creativecommons.org/

208 Chapter 3. Registration

when we aim to run a multistage registration process, from which the output of each stage can be

used to initialize the next registration stage.

To get a better understanding of the registration process in such situations, consider an example of 3

stages registration process that is started using an initial moving transform (Γmi). Multiple stages are

handled by linking multiple instantiations of the itk::ImageRegistrationMethodv4 class. Inside

the registration filter of the first stage, the initial moving transform is added to an internal composite

transform along with an updatable identity transform (Γu). Although the whole composite transform

is used for metric evaluation, only the Γu is set to be updated by the optimizer at each iteration. The

Γu will be considered as the output transform of the current stage when the optimization process is

converged. This implies that the output of this stage does not include the initialization parameters,

so we need to concatenate the output and the initialization transform into a composite transform to

be considered as the final transform of the first registration stage.

T1(x) = Γmi(Γstage1
(x))

Consider that, as explained in section 3.3, the above transform is a mapping from the virtual domain

(i.e. fixed image space, when no fixed initial transform) to the moving image space.

Then, the result transform of the first stage will be used as the initial moving transform for the second

stage of the registration process, and this approach goes on until the last stage of the registration

process.

At the end of the registration process, the Γmi and the outputs of each stage can be concatenated into

a final composite transform that is considered to be the final output of the whole registration process.

I′m(x) = Im(Γmi(Γstage1
(Γstage2

(Γstage3
(x)))))

The above approach is especially useful if individual stages are characterized by different types of

transforms, e.g. when we run a rigid registration process that is proceeded by an affine registration

which is completed by a BSpline registration at the end.

In addition to the above method, there is also a direct initialization method in which the initial

transform will be optimized directly. In this way the initial transform will be modified during the

registration process, so it can be used as the final transform when the registration process is com-

pleted. This direct approach is conceptually close to what was happening in ITKv3 registration.

Using this method is very simple and efficient when we have only one level of registration, which is

the case in this example. Also, a good application of this initialization method in a multi-stage sce-

nario is when two consequent stages have the same transform types, or at least the initial parameters

can easily be inferred from the result of the previous stage, such as when a translation transform is

followed by a rigid transform.

The direct initialization approach is shown by the current example in which we try to initialize the

parameters of the optimizable transform (Γu) directly.

For this purpose, first, the initial transform object is constructed below. This transform will be

initialized, and its initial parameters will be used when the registration process starts.

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

3.6. Center Initialization 209

auto initialTransform = TransformType::New();

In this example, the input images are taken from readers. The code below updates the readers in

order to ensure that the image parameters (size, origin and spacing) are valid when used to initialize

the transform. We intend to use the center of the fixed image as the rotation center and then use the

vector between the fixed image center and the moving image center as the initial translation to be

applied after the rotation.

fixedImageReader->Update();

movingImageReader->Update();

The center of rotation is computed using the origin, size and spacing of the fixed image.

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

const SpacingType fixedSpacing = fixedImage->GetSpacing();

const OriginType fixedOrigin = fixedImage->GetOrigin();

const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();

const SizeType fixedSize = fixedRegion.GetSize();

TransformType::InputPointType centerFixed;

centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;

centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;

The center of the moving image is computed in a similar way.

MovingImageType::Pointer movingImage = movingImageReader->GetOutput();

const SpacingType movingSpacing = movingImage->GetSpacing();

const OriginType movingOrigin = movingImage->GetOrigin();

const RegionType movingRegion = movingImage->GetLargestPossibleRegion();

const SizeType movingSize = movingRegion.GetSize();

TransformType::InputPointType centerMoving;

centerMoving[0] = movingOrigin[0] + movingSpacing[0] * movingSize[0] / 2.0;

centerMoving[1] = movingOrigin[1] + movingSpacing[1] * movingSize[1] / 2.0;

Then, we initialize the transform by passing the center of the fixed image as the rotation center

with the SetCenter() method. Also, the translation is set as the vector relating the center of

the moving image to the center of the fixed image. This last vector is passed with the method

SetTranslation().

210 Chapter 3. Registration

initialTransform->SetCenter(centerFixed);

initialTransform->SetTranslation(centerMoving - centerFixed);

Let’s finally initialize the rotation with a zero angle.

initialTransform->SetAngle(0.0);

Now the current parameters of the initial transform will be set to a registration method, so they can

be assigned to the Γu directly. Note that you should not confuse the following function with the

SetMoving(Fixed)InitialTransform() methods that were used in Hello World! example.

registration->SetInitialTransform(initialTransform);

Keep in mind that the scale of units in rotation and translation is quite different. For example, here

we know that the first element of the parameters array corresponds to the angle that is measured in

radians, while the other parameters correspond to the translations that are measured in millimeters,

so a naive application of gradient descent optimizer will not produce a smooth change of parameters,

because a similar change of δ to each parameter will produce a different magnitude of impact on

the transform. As the result, we need “parameter scales” to customize the learning rate for each

parameter. We can take advantage of the scaling functionality provided by the optimizers.

In this example we use small factors in the scales associated with translations. However, for the

transforms with larger parameters sets, it is not intuitive for a user to set the scales. Fortunately, a

framework for automated estimation of parameter scales is provided by ITKv4 that will be discussed

later in the example of section 3.8.

using OptimizerScalesType = OptimizerType::ScalesType;

OptimizerScalesType optimizerScales(

initialTransform->GetNumberOfParameters());

const double translationScale = 1.0 / 1000.0;

optimizerScales[0] = 1.0;

optimizerScales[1] = translationScale;

optimizerScales[2] = translationScale;

optimizer->SetScales(optimizerScales);

Next we set the normal parameters of the optimization method. In this case we are using an

itk::RegularStepGradientDescentOptimizerv4. Below, we define the optimization param-

eters like the relaxation factor, learning rate (initial step length), minimal step length and number of

iterations. These last two act as stopping criteria for the optimization.

https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html

3.6. Center Initialization 211

double initialStepLength = 0.1;

optimizer->SetRelaxationFactor(0.6);

optimizer->SetLearningRate(initialStepLength);

optimizer->SetMinimumStepLength(0.001);

optimizer->SetNumberOfIterations(200);

Let’s execute this example over two of the images provided in Examples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceRotated10.png

The second image is the result of intentionally rotating the first image by 10 degrees around the

geometrical center of the image. Both images have unit-spacing and are shown in Figure 3.14. The

registration takes 17 iterations and produces the results:

[0.177612, 0.00681015, 0.00396471]

These results are interpreted as

• Angle = 0.177612 radians

• Translation = (0.00681015,0.00396471)millimeters

As expected, these values match the misalignment intentionally introduced into the moving image

quite well, since 10 degrees is about 0.174532 radians.

Figure 3.15 shows from left to right the resampled moving image after registration, the difference

between the fixed and moving images before registration, and the difference between the fixed and

resampled moving image after registration. It can be seen from the last difference image that the

rotational component has been solved but that a small centering misalignment persists.

Figure 3.16 shows plots of the main output parameters produced from the registration process. This

includes the metric values at every iteration, the angle values at every iteration, and the translation

components of the transform as the registration progresses.

Let’s now consider the case in which rotations and translations are present in the initial registration,

as in the following pair of images:

• BrainProtonDensitySliceBorder20.png

212 Chapter 3. Registration

Figure 3.14: Fixed and moving images are provided as input to the registration method using the Centered-

Rigid2D transform.

Figure 3.15: Resampled moving image (left). Differences between the fixed and moving images, before (cen-

ter) and after (right) registration using the Euler2D transform.

3.6. Center Initialization 213

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 2 4 6 8 10 12 14 16 18

R
ot

at
io

n
A

ng
le

 (
ra

di
an

s)

Iteration No.

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

-0.05 0 0.05 0.1 0.15 0.2

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.16: Metric values, rotation angle and translations during registration with the Euler2D transform.

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating the first image by 10 degrees and then trans-

lating it 13mm in X and 17mm in Y . Both images have unit-spacing and are shown in Figure 3.17.

In order to accelerate convergence it is convenient to use a larger step length as shown here.

optimizer->SetMaximumStepLength(1.3);

The registration now takes 37 iterations and produces the following results:

[0.174582, 13.0002, 16.0007]

These parameters are interpreted as

• Angle = 0.174582 radians

• Translation = (13.0002,16.0007) millimeters

These values approximately match the initial misalignment intentionally introduced into the moving

image, since 10 degrees is about 0.174532 radians. The horizontal translation is well resolved while

the vertical translation ends up being off by about one millimeter.

Figure 3.18 shows the output of the registration. The rightmost image of this figure shows the

difference between the fixed image and the resampled moving image after registration.

Figure 3.19 shows plots of the main output registration parameters when the rotation and translations

are combined. These results include the metric values at every iteration, the angle values at every

iteration, and the translation components of the registration as the registration converges. It can be

seen from the smoothness of these plots that a larger step length could have been supported easily

by the optimizer. You may want to modify this value in order to get a better idea of how to tune the

parameters.

214 Chapter 3. Registration

Figure 3.17: Fixed and moving images provided as input to the registration method using the CenteredRigid2D

transform.

Figure 3.18: Resampled moving image (left). Differences between the fixed and moving images, before (cen-

ter) and after (right) registration with the CenteredRigid2D transform.

3.6. Center Initialization 215

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 5 10 15 20 25 30 35

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35

R
ot

at
io

n
A

ng
le

 (
ra

di
an

s)

Iteration No.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.19: Metric values, rotation angle and translations during the registration using the Euler2D transform

on an image with rotation and translation mis-registration.

3.6.2 Initializing with Image Moments

The source code for this section can be found in the file

ImageRegistration6.cxx.

This example illustrates the use of the itk::Euler2DTransform for performing registration. The

example code is for the most part identical to the one presented in Section 3.6.1. Even though

this current example is done in 2D, the class itk::CenteredTransformInitializer is quite

generic and could be used in other dimensions. The objective of the initializer class is to simplify

the computation of the center of rotation and the translation required to initialize certain transforms

such as the Euler2DTransform. The initializer accepts two images and a transform as inputs. The

images are considered to be the fixed and moving images of the registration problem, while the

transform is the one used to register the images.

The CenteredTransformInitializer supports two modes of operation. In the first mode, the centers

of the images are computed as space coordinates using the image origin, size and spacing. The

center of the fixed image is assigned as the rotational center of the transform while the vector going

from the fixed image center to the moving image center is passed as the initial translation of the

transform. In the second mode, the image centers are not computed geometrically but by using

the moments of the intensity gray levels. The center of mass of each image is computed using the

helper class itk::ImageMomentsCalculator. The center of mass of the fixed image is passed as

the rotational center of the transform while the vector going from the fixed image center of mass to

the moving image center of mass is passed as the initial translation of the transform. This second

mode of operation is quite convenient when the anatomical structures of interest are not centered

in the image. In such cases the alignment of the centers of mass provides a better rough initial

registration than the simple use of the geometrical centers. The validity of the initial registration

should be questioned when the two images are acquired in different imaging modalities. In those

cases, the center of mass of intensities in one modality does not necessarily match the center of mass

of intensities in the other imaging modality.

https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageMomentsCalculator.html

216 Chapter 3. Registration

The following are the most relevant headers in this example.

#include "itkEuler2DTransform.h"

#include "itkCenteredTransformInitializer.h"

The transform type is instantiated using the code below. The only template parameter of this class

is the representation type of the space coordinates.

using TransformType = itk::Euler2DTransform<double>;

Like the previous section, a direct initialization method is used here. The transform object is con-

structed below. This transform will be initialized, and its initial parameters will be considered as the

parameters to be used when the registration process begins.

auto transform = TransformType::New();

The input images are taken from readers. It is not necessary to explicitly call Update() on the

readers since the CenteredTransformInitializer class will do it as part of its initialization. The fol-

lowing code instantiates the initializer. This class is templated over the fixed and moving images

type as well as the transform type. An initializer is then constructed by calling the New() method

and assigning the result to a itk::SmartPointer.

using TransformInitializerType =

itk::CenteredTransformInitializer<TransformType,

FixedImageType,

MovingImageType>;

auto initializer = TransformInitializerType::New();

The initializer is now connected to the transform and to the fixed and moving images.

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());

initializer->SetMovingImage(movingImageReader->GetOutput());

The use of the geometrical centers is selected by calling GeometryOn() while the use of center of

mass is selected by calling MomentsOn(). Below we select the center of mass mode.

initializer->MomentsOn();

Finally, the computation of the center and translation is triggered by the InitializeTransform()

method. The resulting values will be passed directly to the transform.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

3.6. Center Initialization 217

initializer->InitializeTransform();

The remaining parameters of the transform are initialized as before.

transform->SetAngle(0.0);

Now the initialized transform object will be set to the registration method, and the starting point of

the registration is defined by its initial parameters.

If the InPlaceOn() method is called, this initialized transform will be the output transform object

or “grafted” to the output. Otherwise, this “InitialTransform” will be deep-copied or “cloned” to the

output.

registration->SetInitialTransform(transform);

registration->InPlaceOn();

Since the registration filter has InPlace set, the transform object is grafted to the output and is

updated by the registration method.

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating the first image by 10 degrees around the

geometric center and shifting it 13mm in X and 17mm in Y . Both images have unit-spacing and are

shown in Figure 3.14. The registration takes 21 iterations and produces:

[0.174527, 12.4528, 16.0766]

These parameters are interpreted as

• Angle = 0.174527 radians

• Translation = (12.4528,16.0766) millimeters

Note that the reported translation is not the translation of (13,17) that might be expected. The

reason is that we used the center of mass (111.204,131.591) for the fixed center, while the input

was rotated about the geometric center (110.5,128.5). It is more illustrative in this case to take a

look at the actual rotation matrix and offset resulting from the five parameters.

218 Chapter 3. Registration

TransformType::MatrixType matrix = transform->GetMatrix();

TransformType::OffsetType offset = transform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;

std::cout << "Offset = " << std::endl << offset << std::endl;

Which produces the following output.

Matrix =

0.984809 -0.173642

0.173642 0.984809

Offset =

[36.9919, -1.23402]

This output illustrates how counter-intuitive the mix of center of rotation and translations can be.

Figure 3.20 will clarify this situation. The figure shows the original image on the left. A rotation of

10◦ around the center of the image is shown in the middle. The same rotation performed around the

origin of coordinates is shown on the right. It can be seen here that changing the center of rotation

introduces additional translations.

Let’s analyze what happens to the center of the image that we just registered. Under the point of view

of rotating 10◦ around the center and then applying a translation of (13mm,17mm). The image has

a size of (221×257) pixels and unit spacing. Hence its center has coordinates (110.5,128.5). Since

the rotation is done around this point, the center behaves as the fixed point of the transformation and

remains unchanged. Then with the (13mm,17mm) translation it is mapped to (123.5,145.5) which

becomes its final position.

The matrix and offset that we obtained at the end of the registration indicate that this should be

equivalent to a rotation of 10◦ around the origin, followed by a translation of (36.99,−1.23). Let’s

compute this in detail. First the rotation of the image center by 10◦ around the origin will move

the point (110.5,128.5) to (86.51,145.74). Now, applying a translation of (36.99,−1.23) maps this

point to (123.50,144.50), which is very close to the result of our previous computation.

It is unlikely that we could have chosen these translations as the initial guess, since we tend to think

about images in a coordinate system whose origin is in the center of the image.

This underscores the importance of using good initialization for the center for a transform fixed

parameter. By using either the center of geometry or center of mass for initialization the rotation

and translation parameters may have a more intuitive interpretation than if only the optimization

parameters of translation and rotation are initialized.

Figure 3.22 shows the output of the registration. The image on the right of this figure shows the

differences between the fixed image and the resampled moving image after registration.

Figure 3.23 plots the output parameters of the registration process. It includes the metric values at

every iteration, the angle values at every iteration, and the values of the translation components as

3.6. Center Initialization 219

Original Image

10

20

30

40

50

60

0

0 10 20 30 40 50 0 10 20 30 40 50

10

20

30

40

50

60

0

0 10 20 30 40 50

10

20

30

40

50

60

0

10
10

Rotation around image center Rotation around origin

Figure 3.20: Effect of changing the center of rotation.

Figure 3.21: Fixed and moving images provided as input to the registration method using CenteredTrans-

formInitializer.

220 Chapter 3. Registration

Figure 3.22: Resampled moving image (left). Differences between fixed and moving images, before registration

(center) and after registration (right) with the CenteredTransformInitializer.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20 25

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25

R
ot

at
io

n
A

ng
le

 (
ra

di
an

s)

Iteration No.

 15.8

 15.85

 15.9

 15.95

 16

 16.05

 16.1

 12.3 12.35 12.4 12.45 12.5 12.55 12.6 12.65 12.7 12.75 12.8 12.85

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.23: Plots of the Metric, rotation angle, center of rotation and translations during the registration using

CenteredTransformInitializer.

3.6. Center Initialization 221

the registration progresses. Note that this is the complementary translation as used in the transform,

not the actual total translation that is used in the transform offset. We could modify the observer to

print the total offset instead of printing the array of parameters. Let’s call that an exercise for the

reader!

3.6.3 Similarity Transform in 2D

The source code for this section can be found in the file

ImageRegistration7.cxx.

This example illustrates the use of the itk::Similarity2DTransform class for performing reg-

istration in 2D. The example code is for the most part identical to the code presented in Sec-

tion 3.6.2. The main difference is the use of itk::Similarity2DTransform here rather than the

itk::Euler2DTransform class.

A similarity transform can be seen as a composition of rotations, translations and uniform (isotropic)
scaling. It preserves angles and maps lines into lines. This transform is implemented in the toolkit

as deriving from a rigid 2D transform and with a scale parameter added.

When using this transform, attention should be paid to the fact that scaling and translations are not

independent. In the same way that rotations can locally be seen as translations, scaling also results

in local displacements. Scaling is performed in general with respect to the origin of coordinates.

However, we already saw how ambiguous that could be in the case of rotations. For this reason,

this transform also allows users to setup a specific center. This center is used both for rotation and

scaling.

In addition to the headers included in previous examples, here the following header must be included.

#include "itkSimilarity2DTransform.h"

The Transform class is instantiated using the code below. The only template parameter of this class

is the representation type of the space coordinates.

using TransformType = itk::Similarity2DTransform<double>;

As before, the transform object is constructed and initialized before it is passed to the registration

filter.

auto transform = TransformType::New();

In this example, we again use the helper class itk::CenteredTransformInitializer to compute

a reasonable value for the initial center of rotation and scaling along with an initial translation.

https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

222 Chapter 3. Registration

using TransformInitializerType =

itk::CenteredTransformInitializer<TransformType,

FixedImageType,

MovingImageType>;

auto initializer = TransformInitializerType::New();

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());

initializer->SetMovingImage(movingImageReader->GetOutput());

initializer->MomentsOn();

initializer->InitializeTransform();

The remaining parameters of the transform are initialized below.

transform->SetScale(initialScale);

transform->SetAngle(initialAngle);

Now the initialized transform object will be set to the registration method, and its initial parameters

are used to initialize the registration process.

Also, by calling the InPlaceOn() method, this initialized transform will be the output transform

object or “grafted” to the output of the registration process.

registration->SetInitialTransform(transform);

registration->InPlaceOn();

Keeping in mind that the scale of units in scaling, rotation and translation are quite different, we take

advantage of the scaling functionality provided by the optimizers. We know that the first element of

the parameters array corresponds to the scale factor, the second corresponds to the angle, third and

fourth are the remaining translation. We use henceforth small factors in the scales associated with

translations.

using OptimizerScalesType = OptimizerType::ScalesType;

OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

const double translationScale = 1.0 / 100.0;

optimizerScales[0] = 10.0;

optimizerScales[1] = 1.0;

optimizerScales[2] = translationScale;

optimizerScales[3] = translationScale;

optimizer->SetScales(optimizerScales);

We also set the ordinary parameters of the optimization method. In this case we are using a

3.6. Center Initialization 223

itk::RegularStepGradientDescentOptimizerv4. Below we define the optimization parame-

ters, i.e. initial learning rate (step length), minimal step length and number of iterations. The last

two act as stopping criteria for the optimization.

optimizer->SetLearningRate(steplength);

optimizer->SetMinimumStepLength(0.0001);

optimizer->SetNumberOfIterations(500);

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17S12.png

The second image is the result of intentionally rotating the first image by 10 degrees, scaling by

1/1.2 and then translating by (−13,−17). Both images have unit-spacing and are shown in Figure

3.24. The registration takes 53 iterations and produces:

[0.833237, -0.174511, -12.8065, -12.7244]

That are interpreted as

• Scale factor = 0.833237

• Angle = −0.174511 radians

• Translation = (−12.8065,−12.7244)millimeters

These values approximate the misalignment intentionally introduced into the moving image. Since

10 degrees is about 0.174532 radians.

Figure 3.25 shows the output of the registration. The right image shows the squared magnitude of

pixel differences between the fixed image and the resampled moving image.

Figure 3.26 shows the plots of the main output parameters of the registration process. The metric

values at every iteration are shown on the left. The rotation angle and scale factor values are shown

in the two center plots while the translation components of the registration are presented in the plot

on the right.

3.6.4 Rigid Transform in 3D

The source code for this section can be found in the file

ImageRegistration8.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html

224 Chapter 3. Registration

Figure 3.24: Fixed and Moving image provided as input to the registration method using the Similarity2D

transform.

Figure 3.25: Resampled moving image (left). Differences between fixed and moving images, before (center)

and after (right) registration with the Similarity2D transform.

3.6. Center Initialization 225

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 10 20 30 40 50 60

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

 0 10 20 30 40 50 60

R
ot

at
io

n
A

ng
le

 (
ra

di
an

s)

Iteration No.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 10 20 30 40 50 60

Sc
al

e
Fa

ct
or

Iteration No.

-14

-13.8

-13.6

-13.4

-13.2

-13

-12.8

-12.6

-13.1 -13 -12.9 -12.8 -12.7 -12.6 -12.5 -12.4 -12.3 -12.2 -12.1

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.26: Plots of the Metric, rotation angle, scale factor, and translations during the registration using

Similarity2D transform.

This example illustrates the use of the itk::VersorRigid3DTransform class for performing reg-

istration of two 3D images. The class itk::CenteredTransformInitializer is used to initialize

the center and translation of the transform. The case of rigid registration of 3D images is probably

one of the most common uses of image registration.

The following are the most relevant headers of this example.

#include "itkVersorRigid3DTransform.h"

#include "itkCenteredTransformInitializer.h"

The parameter space of the VersorRigid3DTransform is not a vector space, because addition is

not a closed operation in the space of versor components. Hence, we need to use Versor composi-

tion operation to update the first three components of the parameter array (rotation parameters), and

Vector addition for updating the last three components of the parameters array (translation parame-

ters) [24, 27].

In the previous version of ITK, a special optimizer, itk::VersorRigid3DTransformOptimizer

was needed for registration to deal with versor computations. Fortunately in ITKv4, the

itk::RegularStepGradientDescentOptimizerv4 can be used for both vector and versor trans-

form optimizations because, in the new registration framework, the task of updating parameters

is delegated to the moving transform itself. The UpdateTransformParameters method is imple-

mented in the itk::Transform class as a virtual function, and all the derived transform classes

can have their own implementations of this function. Due to this fact, the updating function is re-

implemented for versor transforms so it can handle versor composition of the rotation parameters.

#include "itkRegularStepGradientDescentOptimizerv4.h"

The Transform class is instantiated using the code below. The only template parameter to this class

is the representation type of the space coordinates.

https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransformOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1Transform.html

226 Chapter 3. Registration

using TransformType = itk::VersorRigid3DTransform<double>;

The initial transform object is constructed below. This transform will be initialized, and its initial

parameters will be used when the registration process starts.

auto initialTransform = TransformType::New();

The input images are taken from readers. It is not necessary here to explicitly call Update() on the

readers since the itk::CenteredTransformInitializer will do it as part of its computations.

The following code instantiates the type of the initializer. This class is templated over the fixed and

moving image types as well as the transform type. An initializer is then constructed by calling the

New() method and assigning the result to a smart pointer.

using TransformInitializerType =

itk::CenteredTransformInitializer<TransformType,

FixedImageType,

MovingImageType>;

auto initializer = TransformInitializerType::New();

The initializer is now connected to the transform and to the fixed and moving images.

initializer->SetTransform(initialTransform);

initializer->SetFixedImage(fixedImageReader->GetOutput());

initializer->SetMovingImage(movingImageReader->GetOutput());

The use of the geometrical centers is selected by calling GeometryOn() while the use of center of

mass is selected by calling MomentsOn(). Below we select the center of mass mode.

initializer->MomentsOn();

Finally, the computation of the center and translation is triggered by the InitializeTransform()

method. The resulting values will be passed directly to the transform.

initializer->InitializeTransform();

The rotation part of the transform is initialized using a itk::Versor which is simply a unit quater-

nion. The VersorType can be obtained from the transform traits. The versor itself defines the type

of the vector used to indicate the rotation axis. This trait can be extracted as VectorType. The

following lines create a versor object and initialize its parameters by passing a rotation axis and an

angle.

https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html
https://www.itk.org/Doxygen/html/classitk_1_1Versor.html

3.6. Center Initialization 227

using VersorType = TransformType::VersorType;

using VectorType = VersorType::VectorType;

VersorType rotation;

VectorType axis;

axis[0] = 0.0;

axis[1] = 0.0;

axis[2] = 1.0;

constexpr double angle = 0;

rotation.Set(axis, angle);

initialTransform->SetRotation(rotation);

Now the current initialized transform will be set to the registration method, so its initial parameters

can be used to initialize the registration process.

registration->SetInitialTransform(initialTransform);

Let’s execute this example over some of the images available in the following website

https://data.Kitware.com/#collection/57b5c9e58d777f126827f5a1/folder/57b769c08d777f10f269af3a

Note that the images in this website are compressed in .tgz files. You should download these files

and decompress them in your local system. After decompressing and extracting the files you could

take a pair of volumes, for example the pair:

• brainweb1e1a10f20.mha

• brainweb1e1a10f20Rot10Tx15.mha

The second image is the result of intentionally rotating the first image by 10 degrees around the

origin and shifting it 15mm in X .

Also, instead of doing the above steps manually, you can turn on the following flag in your build

environment:

ITK USE BRAINWEB DATA

Then, the above data will be loaded to your local ITK build directory.

The registration takes 21 iterations and produces:

[7.2295e-05, -7.20626e-05, -0.0872168, 2.64765, -17.4626, -0.00147153]

That are interpreted as

• Versor = (7.2295e− 05,−7.20626e−05,−0.0872168)

• Translation = (2.64765,−17.4626,−0.00147153)millimeters

https://data.Kitware.com/#collection/57b5c9e58d777f126827f5a1/folder/57b769c08d777f10f269af3a

228 Chapter 3. Registration

This Versor is equivalent to a rotation of 9.98 degrees around the Z axis.

Note that the reported translation is not the translation of (15.0,0.0,0.0) that we may be naively ex-

pecting. The reason is that the VersorRigid3DTransform is applying the rotation around the cen-

ter found by the CenteredTransformInitializer and then adding the translation vector shown

above.

It is more illustrative in this case to take a look at the actual rotation matrix and offset resulting from

the 6 parameters.

TransformType::MatrixType matrix = finalTransform->GetMatrix();

TransformType::OffsetType offset = finalTransform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;

std::cout << "Offset = " << std::endl << offset << std::endl;

The output of this print statements is

Matrix =

0.984786 0.173769 -0.000156187

-0.173769 0.984786 -0.000131469

0.000130965 0.000156609 1

Offset =

[-15, 0.0189186, -0.0305439]

From the rotation matrix it is possible to deduce that the rotation is happening in the X,Y plane and

that the angle is on the order of arcsin(0.173769) which is very close to 10 degrees, as we expected.

Figure 3.28 shows the output of the registration. The center image in this figure shows the differences

between the fixed image and the resampled moving image before the registration. The image on the

right side presents the difference between the fixed image and the resampled moving image after

the registration has been performed. Note that these images are individual slices extracted from the

actual volumes. For details, look at the source code of this example, where the ExtractImageFilter

is used to extract a slice from the the center of each one of the volumes. One of the main purposes

of this example is to illustrate that the toolkit can perform registration on images of any dimension.

The only limitations are, as usual, the amount of memory available for the images and the amount

of computation time that it will take to complete the optimization process.

Figure 3.29 shows the plots of the main output parameters of the registration process. The Z com-

ponent of the versor is plotted as an indication of how the rotation progresses. The X,Y translation

components of the registration are plotted at every iteration too.

Shell and Gnuplot scripts for generating the diagrams in Figure 3.29 are available in the

ITKSoftwareGuide Git repository under the directory

ITKSoftwareGuide/SoftwareGuide/Art.

3.6. Center Initialization 229

Figure 3.27: Fixed and moving image provided as input to the registration method using CenteredTransformIni-

tializer.

Figure 3.28: Resampled moving image (left). Differences between fixed and moving images, before (center)

and after (right) registration with the CenteredTransformInitializer.

230 Chapter 3. Registration

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0 5 10 15 20

Z
 V

er
so

r
C

om
po

ne
nt

Iteration No.

-17.6

-17.4

-17.2

-17

-16.8

-16.6

-16.4

-16.2

-16

-15.8

 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.29: Plots of the metric, rotation angle, center of rotation and translations during the registration using

CenteredTransformInitializer.

You are strongly encouraged to run the example code, since only in this way can you gain first-hand

experience with the behavior of the registration process. Once again, this is a simple reflection of

the philosophy that we put forward in this book:

If you can not replicate it, then it does not exist!

We have seen enough published papers with pretty pictures, presenting results that in practice are

impossible to replicate. That is vanity, not science.

3.6.5 Centered Initialized Affine Transform

The source code for this section can be found in the file

ImageRegistration9.cxx.

This example illustrates the use of the itk::AffineTransform for performing registration in 2D.

The example code is, for the most part, identical to that in 3.6.2. The main difference is the use of the

AffineTransform here instead of the itk::Euler2DTransform. We will focus on the most relevant

changes in the current code and skip the basic elements already explained in previous examples.

Let’s start by including the header file of the AffineTransform.

#include "itkAffineTransform.h"

We then define the types of the images to be registered.

constexpr unsigned int Dimension = 2;

using PixelType = float;

using FixedImageType = itk::Image<PixelType, Dimension>;

using MovingImageType = itk::Image<PixelType, Dimension>;

https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

3.6. Center Initialization 231

The transform type is instantiated using the code below. The template parameters of this class are

the representation type of the space coordinates and the space dimension.

using TransformType = itk::AffineTransform<double, Dimension>;

The transform object is constructed below and is initialized before the registration process starts.

auto transform = TransformType::New();

In this example, we again use the itk::CenteredTransformInitializer helper class in order to

compute reasonable values for the initial center of rotation and the translations. The initializer is set

to use the center of mass of each image as the initial correspondence correction.

using TransformInitializerType =

itk::CenteredTransformInitializer<TransformType,

FixedImageType,

MovingImageType>;

auto initializer = TransformInitializerType::New();

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());

initializer->SetMovingImage(movingImageReader->GetOutput());

initializer->MomentsOn();

initializer->InitializeTransform();

Now we pass the transform object to the registration filter, and it will be grafted to the output trans-

form of the registration filter by updating its parameters during the the registration process.

registration->SetInitialTransform(transform);

registration->InPlaceOn();

Keeping in mind that the scale of units in scaling, rotation and translation are quite different, we

take advantage of the scaling functionality provided by the optimizers. We know that the first N ×N

elements of the parameters array correspond to the rotation matrix factor, and the last N are the

components of the translation to be applied after multiplication with the matrix is performed.

using OptimizerScalesType = OptimizerType::ScalesType;

OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

optimizerScales[0] = 1.0;

optimizerScales[1] = 1.0;

optimizerScales[2] = 1.0;

optimizerScales[3] = 1.0;

optimizerScales[4] = translationScale;

optimizerScales[5] = translationScale;

optimizer->SetScales(optimizerScales);

https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

232 Chapter 3. Registration

We also set the usual parameters of the optimization method. In this case we are using an

itk::RegularStepGradientDescentOptimizerv4 as before. Below, we define the optimization

parameters like learning rate (initial step length), minimum step length and number of iterations.

These last two act as stopping criteria for the optimization.

optimizer->SetLearningRate(steplength);

optimizer->SetMinimumStepLength(0.0001);

optimizer->SetNumberOfIterations(maxNumberOfIterations);

Finally we trigger the execution of the registration method by calling the Update() method. The

call is placed in a try/catch block in the case any exceptions are thrown.

try

{

registration->Update();

std::cout << "Optimizer stop condition: "

<< registration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

Once the optimization converges, we recover the parameters from the registration method. We can

also recover the final value of the metric with the GetValue() method and the final number of

iterations with the GetCurrentIteration() method.

const TransformType::ParametersType finalParameters =

registration->GetOutput()->Get()->GetParameters();

const double finalRotationCenterX = transform->GetCenter()[0];

const double finalRotationCenterY = transform->GetCenter()[1];

const double finalTranslationX = finalParameters[4];

const double finalTranslationY = finalParameters[5];

const unsigned int numberOfIterations = optimizer->GetCurrentIteration();

const double bestValue = optimizer->GetValue();

Let’s execute this example over two of the images provided in Examples/Data:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html

3.7. Multi-Resolution Registration 233

The second image is the result of intentionally rotating the first image by 10 degrees and then trans-

lating by (−13,−17). Both images have unit-spacing and are shown in Figure 3.30. We execute

the code using the following parameters: step length=1.0, translation scale= 0.0001 and maximum

number of iterations = 300. With these images and parameters the registration takes 92 iterations

and produces

90 44.0851 [0.9849, -0.1729, 0.1725, 0.9848, 12.4541, 16.0759]

AffineAngle: 9.9494

These results are interpreted as

• Iterations = 92

• Final Metric = 44.0386

• Center = (111.204,131.591) millimeters

• Translation = (12.4542,16.076) millimeters

• Affine scales = (1.00014, .999732)

The second component of the matrix values is usually associated with sinθ. We obtain the rota-

tion through SVD of the affine matrix. The value is 9.9494 degrees, which is approximately the

intentional misalignment of 10.0 degrees.

Figure 3.31 shows the output of the registration. The right most image of this figure shows the

squared magnitude difference between the fixed image and the resampled moving image.

Figure 3.32 shows the plots of the main output parameters of the registration process. The metric

values at every iteration are shown on the left plot. The angle values are shown on the middle plot,

while the translation components of the registration are presented on the right plot. Note that the

final total offset of the transform is to be computed as a combination of the shift due to rotation plus

the explicit translation set on the transform.

3.7 Multi-Resolution Registration

Performing image registration using a multi-resolution approach is widely used to improve speed,

accuracy and robustness. The basic idea is that registration is first performed at a coarse scale where

the images have fewer pixels. The spatial mapping determined at the coarse level is then used

to initialize registration at the next finer scale. This process is repeated until it reaches the finest

possible scale. This coarse-to-fine strategy greatly improves the registration success rate and also

increases robustness by eliminating local optima at coarser scales. Robustness can be improved even

more by smoothing the images at coarse scales.

234 Chapter 3. Registration

Figure 3.30: Fixed and moving images provided as input to the registration method using the AffineTransform.

Figure 3.31: The resampled moving image (left), and the difference between the fixed and moving images

before (center) and after (right) registration with the AffineTransform transform.

3.7. Multi-Resolution Registration 235

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60 70 80 90

Sq
ua

re
 D

if
fe

re
nc

es
 M

et
ri

c

Iteration No.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90

A
ng

le
 (

de
gr

ee
s)

Iteration No.

 15

 15.2

 15.4

 15.6

 15.8

 16

 16.2

 16.4

 12 12.5 13 13.5 14 14.5 15

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

Figure 3.32: Metric values, rotation angle and translations during the registration using the AffineTransform

transform.

In all previous examples we ran the registration process at a single resolution. However, the ITKv4

registration framework is structured to provide a multi-resolution registration method. For this pur-

pose we only need to define the number of levels as well as the resolution and smoothness of the

input images at each level. The registration filter smoothes and subsamples the images according to

user-defined ShrinkFactor and SmoothingSigma vectors.

We now present the multi-resolution capabilities of the framework by way of an example.

3.7.1 Fundamentals

In ITK, the itk::MultiResolutionPyramidImageFilter can be used to create a sequence of

reduced resolution images from the input image. The down-sampling is performed according to a

user defined multi-resolution schedule. The schedule is specified as an itk::Array2D of integers,

containing shrink factors for each multi-resolution level (rows) for each dimension (columns). For

example,

8 4 4

4 4 2

is a schedule for a three dimensional image for two multi-resolution levels. In the first (coarsest)

level, the image is reduced by a factor of 8 in the column dimension, factor of 4 in the row dimension

and a factor of 4 in the slice dimension. In the second level, the image reduced by a factor of 4 in

the column dimension, 4 in the row dimension and 2 in the slice dimension.

The method SetNumberOfLevels() is used to set the number of resolution levels in the pyramid.

This method will allocate memory for the schedule and generate a default table with the starting

(coarsest) shrink factors for all dimensions set to 2(M − 1), where M is the number of levels. All

factors are halved for all subsequent levels. For example, if we set the number of levels to 4, the

default schedule is then:

https://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionPyramidImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Array2D.html

236 Chapter 3. Registration

8 8 8

4 4 4

2 2 2

1 1 1

The user can get a copy of the schedule using method GetSchedule(), make modifications, and

reset it using method SetSchedule(). Alternatively, a user can create a default table by specifying

the starting (coarsest) shrink factors using the method SetStartingShrinkFactors(). The factors

for the subsequent levels are generated by halving the factor or setting it to one, depending on which

is larger. For example, for a 4 level pyramid and starting factors of 8, 8 and 4, the generated schedule

would be:

8 8 4

4 4 2

2 2 1

1 1 1

When this filter is triggered by Update(), M outputs are produced where the m-th output corre-

sponds to the m-th level of the pyramid. To generate these images, Gaussian smoothing is first per-

formed using a itk::DiscreteGaussianImageFilter with the variance set to (s/2)2, where s is

the shrink factor. The smoothed images are then sub-sampled using a itk::ShrinkImageFilter.

3.7.2 Fundamentals

The source code for this section can be found in the file

MultiResImageRegistration1.cxx.

This example illustrates the use of the itk::ImageRegistrationMethodv4 to solve a simple

multi-modality registration problem by a multi-resolution approach. Since ITKv4 registration

method is designed based on a multi-resolution structure, a separate set of classes are no longer

required to run the registration process of this example.

This a great advantage over the previous versions of ITK, as in ITKv3 we had to use a different filter (

itk::MultiResolutionImageRegistrationMethod) to run a multi-resolution process. Also, we

had to use image pyramids filters (itk::MultiResolutionPyramidImageFilter) for creating the

sequence of downsampled images. Hence, you can see how ITKv4 framework is more user-friendly

in more complex situations.

To begin the example, we include the headers of the registration components we will use.

#include "itkImageRegistrationMethodv4.h"

#include "itkTranslationTransform.h"

#include "itkMattesMutualInformationImageToImageMetricv4.h"

#include "itkRegularStepGradientDescentOptimizerv4.h"

https://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ShrinkImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionImageRegistrationMethod.html
https://www.itk.org/Doxygen/html/classitk_1_1MultiResolutionPyramidImageFilter.html

3.7. Multi-Resolution Registration 237

Transform

Registration Level 0

Registration Level 2

Registration Level 1

Registration Level 3

Registration Level 4

Transform

Fixed Image
PyramidMoving Image

Pyramid

Transform

Transform

Transform

Figure 3.33: Conceptual representation of the multi-resolution registration process.

The ImageRegistrationMethodv4 solves a registration problem in a coarse-to-fine manner as illus-

trated in Figure 3.33. The registration is first performed at the coarsest level using the images at the

first level of the fixed and moving image pyramids. The transform parameters determined by the

registration are then used to initialize the registration at the next finer level using images from the

second level of the pyramids. This process is repeated as we work up to the finest level of image

resolution.

In a typical registration scenario, a user will tweak component settings or even swap out components

between multi-resolution levels. For example, when optimizing at a coarse resolution, it may be

possible to take more aggressive step sizes and have a more relaxed convergence criterion.

Tweaking the components between resolution levels can be done using ITK’s implementation of

the Command/Observer design pattern. Before beginning registration at each resolution level,

where ImageRegistrationMethodv4 invokes a MultiResolutionIterationEvent(). The regis-

tration components can be changed by implementing a itk::Command which responds to the event.

A brief description of the interaction between events and commands was previously presented in

Section 3.4.

We will illustrate this mechanism by changing the parameters of the optimizer between each resolu-

tion level by way of a simple interface command. First, we include the header file of the Command

class.

#include "itkCommand.h"

Our new interface command class is called RegistrationInterfaceCommand. It derives from

Command and is templated over the multi-resolution registration type.

https://www.itk.org/Doxygen/html/classitk_1_1Command.html

238 Chapter 3. Registration

template <typename TRegistration>

class RegistrationInterfaceCommand : public itk::Command

{

We then define Self, Superclass, Pointer, New() and a constructor in a similar fashion to the

CommandIterationUpdate class in Section 3.4.

public:

using Self = RegistrationInterfaceCommand;

using Superclass = itk::Command;

using Pointer = itk::SmartPointer<Self>;

itkNewMacro(Self);

protected:

RegistrationInterfaceCommand() = default;

For convenience, we declare types useful for converting pointers in the Execute() method.

public:

using RegistrationType = TRegistration;

using RegistrationPointer = RegistrationType *;

using OptimizerType = itk::RegularStepGradientDescentOptimizerv4<double>;

using OptimizerPointer = OptimizerType *;

Two arguments are passed to the Execute() method: the first is the pointer to the object which

invoked the event and the second is the event that was invoked.

void

Execute(itk::Object * object, const itk::EventObject & event) override

{

First we verify that the event invoked is of the right type,

itk::MultiResolutionIterationEvent(). If not, we return without any further action.

if (!(itk::MultiResolutionIterationEvent().CheckEvent(&event)))

{

return;

}

We then convert the input object pointer to a RegistrationPointer. Note that no error checking is done

here to verify the dynamic cast was successful since we know the actual object is a registration

method. Then we ask for the optimizer object from the registration method.

3.7. Multi-Resolution Registration 239

auto registration = static_cast<RegistrationPointer>(object);

auto optimizer =

static_cast<OptimizerPointer>(registration->GetModifiableOptimizer());

If this is the first resolution level we set the learning rate (representing the first step size) and the

minimum step length (representing the convergence criterion) to large values. At each subsequent

resolution level, we will reduce the minimum step length by a factor of 5 in order to allow the

optimizer to focus on progressively smaller regions. The learning rate is set up to the current step

length. In this way, when the optimizer is reinitialized at the beginning of the registration process

for the next level, the step length will simply start with the last value used for the previous level.

This will guarantee the continuity of the path taken by the optimizer through the parameter space.

if (registration->GetCurrentLevel() == 0)

{

optimizer->SetLearningRate(16.00);

optimizer->SetMinimumStepLength(2.5);

}

else

{

optimizer->SetLearningRate(optimizer->GetCurrentStepLength());

optimizer->SetMinimumStepLength(optimizer->GetMinimumStepLength() *

0.2);

}

Another version of the Execute() method accepting a const input object is also required since this

method is defined as pure virtual in the base class. This version simply returns without taking any

action.

void

Execute(const itk::Object *, const itk::EventObject &) override

{

return;

}

};

The fixed and moving image types are defined as in previous examples. The downsampled images

for different resolution levels are created internally by the registration method based on the values

provided for ShrinkFactor and SmoothingSigma vectors.

The types for the registration components are then derived using the fixed and moving image type,

as in previous examples.

To set the optimizer parameters, note that LearningRate and MinimumStepLength are set in the

observer at the beginning of each resolution level. The other optimizer parameters are set as follows.

240 Chapter 3. Registration

optimizer->SetNumberOfIterations(200);

optimizer->SetRelaxationFactor(0.5);

We set the number of multi-resolution levels to three and set the corresponding shrink factor and

smoothing sigma values for each resolution level. Using smoothing in the subsampled images in

low-resolution levels can avoid large fluctuations in the metric function, which prevents the opti-

mizer from becoming trapped in local minima. In this simple example we have no smoothing, and

we have used small shrinkings for the first two resolution levels.

constexpr unsigned int numberOfLevels = 3;

RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;

shrinkFactorsPerLevel.SetSize(3);

shrinkFactorsPerLevel[0] = 3;

shrinkFactorsPerLevel[1] = 2;

shrinkFactorsPerLevel[2] = 1;

RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;

smoothingSigmasPerLevel.SetSize(3);

smoothingSigmasPerLevel[0] = 0;

smoothingSigmasPerLevel[1] = 0;

smoothingSigmasPerLevel[2] = 0;

registration->SetNumberOfLevels(numberOfLevels);

registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);

registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);

Once all the registration components are in place we can create an instance of our interface command

and connect it to the registration object using the AddObserver() method.

using CommandType = RegistrationInterfaceCommand<RegistrationType>;

auto command = CommandType::New();

registration->AddObserver(itk::MultiResolutionIterationEvent(), command);

Then we trigger the registration process by calling Update().

Let’s execute this example using the following images

• BrainT1SliceBorder20.png

• BrainProtonDensitySliceShifted13x17y.png

The output produced by the execution of the method is

0 -0.316956 [11.4200, 11.2063]

3.7. Multi-Resolution Registration 241

Figure 3.34: Mapped moving image (left) and composition of fixed and moving images before (center) and

after (right) registration.

1 -0.562048 [18.2938, 25.6545]

2 -0.407696 [11.3643, 21.6569]

3 -0.5702 [13.7244, 18.4274]

4 -0.803252 [11.1634, 15.3547]

0 -0.697586 [12.8778, 16.3846]

1 -0.901984 [13.1794, 18.3617]

2 -0.827423 [13.0545, 17.3695]

3 -0.92754 [12.8528, 16.3901]

4 -0.902671 [12.9426, 16.8819]

5 -0.941212 [13.1402, 17.3413]

0 -0.922239 [13.0364, 17.1138]

1 -0.930203 [12.9463, 16.8806]

2 -0.930959 [13.0191, 16.9822]

Result =

Translation X = 13.0192

Translation Y = 16.9823

Iterations = 4

Metric value = -0.929237

These values are a close match to the true misalignment of (13,17) introduced in the moving image.

The result of resampling the moving image is presented in the left image of Figure 3.34. The center

and right images of the figure depict a checkerboard composite of the fixed and moving images

242 Chapter 3. Registration

 10

 12

 14

 16

 18

 20

 22

 24

 26

 11 12 13 14 15 16 17 18 19

Y
 T

ra
ns

la
tio

ns
 (

m
m

)

X Translations (mm)

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

 0 2 4 6 8 10 12 14

M
et

ri
c

Iteration No.

Figure 3.35: Sequence of translations and metric values at each iteration of the optimizer.

before and after registration.

Figure 3.35 (left) shows the sequence of translations followed by the optimizer as it searched the

parameter space. The right side of the same figure shows the sequence of metric values computed

as the optimizer searched the parameter space. From the trace, we can see that with the more

aggressive optimization parameters we get quite close to the optimal value within 5 iterations with

the remaining iterations just doing fine adjustments. It is interesting to compare these results with

those of the single resolution example in Section 3.5.1, where 46 iterations were required as more

conservative optimization parameters had to be used.

3.8 Multi-Stage Registration

In section 3.7 you noticed how to tweak component settings between multi-resolution levels and saw

how it can benefit the registration process. That is, the matching metric gets close to the optimal

value before final parameter adjustments in full resolution. This approach saves large amounts of

time in most practical cases, since fewer iterations are required at the full resolution level. This is

helpful in cases like a deformable registration process on a large dataset, e.g. a high-resolution 3D

image.

Another possible scheme is to apply a simple rigid transform for the initial coarse registration, then

upgrade to an affine transform at the finer level. Finally, proceed to a deformable transform at the

last level when we are close enough to the optimal value.

Fortunately, itk::ImageRegistrationMethodv4 allows for multistage registration whereby each

stage is characterized by possibly different transforms and different image metrics. As in the above

https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

3.8. Multi-Stage Registration 243

situation, you may want to perform a linear registration followed by a deformable registration with

both stages performed across multiple resolutions.

Multiple stages are handled by linking multiple instantiations of this class. An optional composite

transform can be used as a container to concatenate the output transforms of multiple stages.

We now present the multistage capabilities of the framework by way of an example.

3.8.1 Fundamentals

The source code for this section can be found in the file

MultiStageImageRegistration1.cxx.

This example illustrates the use of more complex components of the registration framework. In

particular, it introduces a multistage, multi-resolution approach to run a multi-modal registration

process using two linear itk::TranslationTransform and itk::AffineTransform . Also, it

shows the use of Scale Estimators for fine-tuning the scale parameters of the optimizer when an

Affine transform is used. The itk::RegistrationParameterScalesFromPhysicalShift filter

is used for automatic estimation of the parameters scales.

To begin the example, we include the headers of the registration components we will use.

#include "itkImageRegistrationMethodv4.h"

#include "itkMattesMutualInformationImageToImageMetricv4.h"

#include "itkRegularStepGradientDescentOptimizerv4.h"

#include "itkConjugateGradientLineSearchOptimizerv4.h"

#include "itkTranslationTransform.h"

#include "itkAffineTransform.h"

#include "itkCompositeTransform.h"

In a multistage scenario, each stage needs an individual instantiation of the

itk::ImageRegistrationMethodv4, so each stage can possibly have a different transform,

a different optimizer, and a different image metric and can be performed in multiple levels. The

configuration of the registration method at each stage closely follows the procedure in the previous

section.

In early stages we can use simpler transforms and more aggressive optimization parameters to take

big steps toward the optimal value. Then, at the final stage we can have a more complex transform

to do fine adjustments of the final parameters.

A possible scheme is to use a simple translation transform for initial coarse registration levels and

upgrade to an affine transform at the finer level. Since we have two different types of transforms, we

can use a multistage registration approach as shown in the current example.

First we need to configure the registration components of the initial stage. The instantiation of the

https://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesFromPhysicalShift.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

244 Chapter 3. Registration

transform type requires only the dimension of the space and the type used for representing space

coordinates.

using TTransformType = itk::TranslationTransform<double, Dimension>;

The types of other registration components are defined here.

itk::RegularStepGradientDescentOptimizerv4 is used as the optimizer of the first stage.

Also, we use itk::MattesMutualInformationImageToImageMetricv4 as the metric since it

is fitted for a multi-modal registration.

using TOptimizerType = itk::RegularStepGradientDescentOptimizerv4<double>;

using MetricType =

itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,

MovingImageType>;

using TRegistrationType = itk::ImageRegistrationMethodv4<FixedImageType,

MovingImageType,

TTransformType>;

Then, all the components are instantiated using their New() method and connected to the registration

object as in previous examples.

The output transform of the registration process will be constructed internally in the registration filter

since the related TransformType is already passed to the registration method as a template parameter.

However, we should provide an initial moving transform for the registration method if needed.

auto movingInitTx = TTransformType::New();

After setting the initial parameters, the initial transform can be passed to the registration filter by

SetMovingInitialTransform() method.

transRegistration->SetMovingInitialTransform(movingInitTx);

We can use a itk::CompositeTransform to stack all the output transforms resulted from multiple

stages. This composite transform should also hold the moving initial transform (if it exists) because

as explained in section 3.6.1, the output of each registration stage does not include the input initial

transform to that stage.

using CompositeTransformType = itk::CompositeTransform<double, Dimension>;

auto compositeTransform = CompositeTransformType::New();

compositeTransform->AddTransform(movingInitTx);

In the case of this simple example, the first stage is run only in one level of registration at a coarse

resolution.

https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1CompositeTransform.html

3.8. Multi-Stage Registration 245

constexpr unsigned int numberOfLevels1 = 1;

TRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel1;

shrinkFactorsPerLevel1.SetSize(numberOfLevels1);

shrinkFactorsPerLevel1[0] = 3;

TRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel1;

smoothingSigmasPerLevel1.SetSize(numberOfLevels1);

smoothingSigmasPerLevel1[0] = 2;

transRegistration->SetNumberOfLevels(numberOfLevels1);

transRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel1);

transRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel1);

Also, for this initial stage we can use a more aggressive parameter set for the optimizer by taking a

big step size and relaxing stop criteria.

transOptimizer->SetLearningRate(16);

transOptimizer->SetMinimumStepLength(1.5);

Once all the registration components are in place, we trigger the registration process by calling

Update() and add the result output transform to the final composite transform, so this composite

transform can be used to initialize the next registration stage.

try

{

transRegistration->Update();

std::cout

<< "Optimizer stop condition: "

<< transRegistration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

compositeTransform->AddTransform(

transRegistration->GetModifiableTransform());

Now we can upgrade to an Affine transform as the second stage of registration process. The Affine-

Transform is a linear transformation that maps lines into lines. It can be used to represent transla-

tions, rotations, anisotropic scaling, shearing or any combination of them. Details about the affine

transform can be seen in Section 3.9.16. The instantiation of the transform type requires only the

dimension of the space and the type used for representing space coordinates.

246 Chapter 3. Registration

using ATransformType = itk::AffineTransform<double, Dimension>;

We also use a different optimizer in configuration of the second stage while the metric is kept the

same as before.

using AOptimizerType =

itk::ConjugateGradientLineSearchOptimizerv4Template<double>;

using ARegistrationType = itk::ImageRegistrationMethodv4<FixedImageType,

MovingImageType,

ATransformType>;

Again all the components are instantiated using their New() method and connected to the registration

object like in previous stages.

The current stage can be initialized using the initial transform of the registration and the result

transform of the previous stage, so that both are concatenated into the composite transform.

affineRegistration->SetMovingInitialTransform(compositeTransform);

In Section 3.6.2 we showed the importance of center of rotation in the registration process. In Affine

transforms, the center of rotation is defined by the fixed parameters set, which are set by default to

[0, 0]. However, consider a situation where the origin of the virtual space, in which the registration

is run, is far away from the zero origin. In such cases, leaving the center of rotation as the default

value can make the optimization process unstable. Therefore, we are always interested to set the

center of rotation to the center of virtual space which is usually the fixed image space.

Note that either center of gravity or geometrical center can be used as the center of rotation. In this

example center of rotation is set to the geometrical center of the fixed image. We could also use

itk::ImageMomentsCalculator filter to compute the center of mass.

Based on the above discussion, the user must set the fixed parameters of the registration transform

outside of the registration method, so first we instantiate an object of the output transform type.

auto affineTx = ATransformType::New();

Then, we compute the physical center of the fixed image and set that as the center of the output

Affine transform.

using SpacingType = FixedImageType::SpacingType;

using OriginType = FixedImageType::PointType;

using RegionType = FixedImageType::RegionType;

using SizeType = FixedImageType::SizeType;

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

https://www.itk.org/Doxygen/html/classitk_1_1ImageMomentsCalculator.html

3.8. Multi-Stage Registration 247

const SpacingType fixedSpacing = fixedImage->GetSpacing();

const OriginType fixedOrigin = fixedImage->GetOrigin();

const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();

const SizeType fixedSize = fixedRegion.GetSize();

ATransformType::InputPointType centerFixed;

centerFixed[0] = fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;

centerFixed[1] = fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;

const unsigned int numberOfFixedParameters =

affineTx->GetFixedParameters().Size();

ATransformType::ParametersType fixedParameters(numberOfFixedParameters);

for (unsigned int i = 0; i < numberOfFixedParameters; ++i)

{

fixedParameters[i] = centerFixed[i];

}

affineTx->SetFixedParameters(fixedParameters);

Then, the initialized output transform should be connected to the registration object by using

SetInitialTransform() method.

It is important to distinguish between the SetInitialTransform() and

SetMovingInitialTransform() that was used to initialize the registration stage based on

the results of the previous stages. You can assume that the first one is used for direct manipulation

of the optimizable transform in current registration process.

affineRegistration->SetInitialTransform(affineTx);

The set of optimizable parameters in the Affine transform have different dynamic ranges. Typi-

cally the parameters associated with the matrix have values around [−1 : 1], although they are not

restricted to this interval. Parameters associated with translations, on the other hand, tend to have

much higher values, typically on the order of 10.0 to 100.0. This difference in dynamic range neg-

atively affects the performance of gradient descent optimizers. ITK provides some mechanisms

to compensate for such differences in values among the parameters when they are passed to the

optimizer.

The first mechanism consists of providing an array of scale factors to the optimizer. These factors

re-normalize the gradient components before they are used to compute the step of the optimizer

at the current iteration. These scales are estimated by the user intuitively as shown in previous

examples of this chapter. In our particular case, a common choice for the scale parameters is to set

all those associated with the matrix coefficients to 1.0, that is, the first N ×N factors. Then, we set

the remaining scale factors to a small value.

Here the affine transform is represented by the matrix M and the vector T. The transformation of a

point P into P′ is expressed as

248 Chapter 3. Registration

[

P′
x

P′
y

]

=

[

M11 M12

M21 M22

]

·
[

Px

Py

]

+

[

Tx

Ty

]

(3.1)

Based on the above discussion, we need much smaller scales for translation parameters of vector

T (Tx, Ty) compared to the parameters of matrix M (M11, M12, M21, M22). However, it is not easy

to have an intuitive estimation of all parameter scales when we have to deal with a large parameter

space.

Fortunately, ITKv4 provides a framework for automated parameter scaling.

itk::RegistrationParameterScalesEstimator vastly reduces the difficulty of tuning pa-

rameters for different transform/metric combinations. Parameter scales are estimated by analyzing

the result of a small parameter update on the change in the magnitude of physical space deformation

induced by the transformation.

The impact from a unit change of a parameter may be defined in multiple ways, such

as the maximum shift of voxels in index or physical space, or the average norm of

transform Jacobian. Filters itk::RegistrationParameterScalesFromPhysicalShift and

itk::RegistrationParameterScalesFromIndexShift use the first definition to estimate the

scales, while the itk::RegistrationParameterScalesFromJacobian filter estimates scales

based on the later definition. In all methods, the goal is to rescale the transform parameters such that

a unit change of each scaled parameter will have the same impact on deformation.

In this example the first filter is chosen to estimate the parameter scales. The scales estimator will

then be passed to optimizer.

using ScalesEstimatorType =

itk::RegistrationParameterScalesFromPhysicalShift<MetricType>;

auto scalesEstimator = ScalesEstimatorType::New();

scalesEstimator->SetMetric(affineMetric);

scalesEstimator->SetTransformForward(true);

affineOptimizer->SetScalesEstimator(scalesEstimator);

The step length has to be proportional to the expected values of the parameters in the search space.

Since the expected values of the matrix coefficients are around 1.0, the initial step of the optimization

should be a small number compared to 1.0. As a guideline, it is useful to think of the matrix

coefficients as combinations of cos(θ) and sin(θ). This leads to use values close to the expected

rotation measured in radians. For example, a rotation of 1.0 degree is about 0.017 radians.

However, we need not worry about the above considerations. Thanks to the ScalesEstimator, the

initial step size can also be estimated automatically, either at each iteration or only at the first iter-

ation. In this example we choose to estimate learning rate once at the beginning of the registration

process.

https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesEstimator.html
https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesFromPhysicalShift.html
https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesFromIndexShift.html
https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesFromJacobian.html

3.8. Multi-Stage Registration 249

affineOptimizer->SetDoEstimateLearningRateOnce(true);

affineOptimizer->SetDoEstimateLearningRateAtEachIteration(false);

At the second stage, we run two levels of registration, where the second level is run in full resolution

in which we do the final adjustments of the output parameters.

constexpr unsigned int numberOfLevels2 = 2;

ARegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel2;

shrinkFactorsPerLevel2.SetSize(numberOfLevels2);

shrinkFactorsPerLevel2[0] = 2;

shrinkFactorsPerLevel2[1] = 1;

ARegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel2;

smoothingSigmasPerLevel2.SetSize(numberOfLevels2);

smoothingSigmasPerLevel2[0] = 1;

smoothingSigmasPerLevel2[1] = 0;

affineRegistration->SetNumberOfLevels(numberOfLevels2);

affineRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel2);

affineRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel2);

Finally we trigger the registration process by calling Update() and add the output transform of

the last stage to the composite transform. This composite transform will be considered as the final

transform of this multistage registration process and will be used by the resampler to resample the

moving image in to the virtual domain space (fixed image space if there is no fixed initial transform).

try

{

affineRegistration->Update();

std::cout

<< "Optimizer stop condition: "

<< affineRegistration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

compositeTransform->AddTransform(

affineRegistration->GetModifiableTransform());

Let’s execute this example using the following multi-modality images:

• BrainT1SliceBorder20.png

250 Chapter 3. Registration

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating the first image by 10 degrees and then trans-

lating by (−13,−17). Both images have unit-spacing and are shown in Figure 3.36.

The registration converges after 5 iterations in the translation stage. Also, in the second stage, the

registration converges after 46 iterations in the first level, and 6 iterations in the second level. The

final results when printed as an array of parameters are:

Initial parameters of the registration process:

[3, 5]

Translation parameters after first registration stage:

[9.0346, 10.8303]

Affine parameters after second registration stage:

[0.9864, -0.1733, 0.1738, 0.9863, 0.9693, 0.1482]

As it can be seen, the translation parameters after the first stage compensate most of the offset be-

tween the fixed and moving images. When the images are close to each other, the affine registration

is run for the rotation and the final match. By reordering the Affine array of parameters as coeffi-

cients of matrix M and vector T they can now be seen as

M =

[

0.9864 −0.1733

0.1738 0.9863

]

and T =

[

0.9693

0.1482

]

(3.2)

In this form, it is easier to interpret the effect of the transform. The matrix M is responsible for

scaling, rotation and shearing while T is responsible for translations.

The second component of the matrix values is usually associated with sinθ. We obtain the rotation

through SVD of the affine matrix. The value is 9.975 degrees, which is approximately the intentional

misalignment of 10.0 degrees.

Also, let’s compute the total translation values resulting from initial transform, translation transform,

and the Affine transform together.

In X direction:

3+ 9.0346+ 0.9693= 13.0036 (3.3)

In Y direction:

5+ 10.8303+0.1482= 15.9785 (3.4)

It can be seen that the translation values closely match the true misalignment introduced in the

moving image.

It is important to note that once the images are registered at a sub-pixel level, any further improve-

ment of the registration relies heavily on the quality of the interpolator. It may then be reasonable to

3.8. Multi-Stage Registration 251

Figure 3.36: Fixed and moving images provided as input to the registration method using the AffineTransform.

use a coarse and fast interpolator in the lower resolution levels and switch to a high-quality but slow

interpolator in the final resolution level. However, in this example we used a linear interpolator for

all stages and different registration levels since it is so fast.

The result of resampling the moving image is presented in the left image of Figure 3.37. The center

and right images of the figure depict a checkerboard composite of the fixed and moving images

before and after registration.

3.8.2 Cascaded Multistage Registration

The source code for this section can be found in the file

MultiStageImageRegistration2.cxx.

This examples shows how different stages can be cascaded together directly in a multistage registra-

tion process. The example code is, for the most part, identical to the previous multistage example.

The main difference is that no initial transform is used, and the output of the first stage is directly

linked to the second stage, and the whole registration process is triggered only once by calling

Update() after the last stage stage.

We will focus on the most relevant changes in current code and skip all the similar parts already

explained in the previous example.

Let’s start by defining different types of the first stage.

252 Chapter 3. Registration

Figure 3.37: Mapped moving image (left) and composition of fixed and moving images before (center) and

after (right) registration.

using TTransformType = itk::TranslationTransform<double, Dimension>;

using TOptimizerType = itk::RegularStepGradientDescentOptimizerv4<double>;

using MetricType =

itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,

MovingImageType>;

using TRegistrationType =

itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType>;

Type definitions are the same as previous example with an important subtle change: the transform

type is not passed to the registration method as a template parameter anymore. In this case, the

registration filter will consider the transform base class itk::Transform as the type of its output

transform.

Instead of passing the transform type, we create an explicit instantiation of the transform ob-

ject outside of the registration filter, and connect that to the registration object using the

SetInitialTransform() method. Also, by calling InPlaceOn() method, this transform object

will be the output transform of the registration filter or will be grafted to the output.

auto translationTx = TTransformType::New();

transRegistration->SetInitialTransform(translationTx);

transRegistration->InPlaceOn();

Also, there is no initial transform defined for this example.

As in the previous example, the first stage is run using only one level of registration at a coarse

resolution level. However, notice that we do not need to update the translation registration filter at

this step since the output of this stage will be directly connected to the initial input of the next stage.

https://www.itk.org/Doxygen/html/classitk_1_1Transform.html

3.8. Multi-Stage Registration 253

Due to ITK’s pipeline structure, when we call the Update() at the last stage, the first stage will be

updated as well.

Now we upgrade to an Affine transform as the second stage of registration process, and as before,

we initially define and instantiate different components of the current registration stage. We have

used a new optimizer but the same metric in new configurations.

using ATransformType = itk::AffineTransform<double, Dimension>;

using AOptimizerType =

itk::ConjugateGradientLineSearchOptimizerv4Template<double>;

using ARegistrationType =

itk::ImageRegistrationMethodv4<FixedImageType, MovingImageType>;

Again notice that TransformType is not passed to the type definition of the registration filter. It is

important because when the registration filter considers transform base class itk::Transform as

the type of its output transform, it prevents the type mismatch when the two stages are cascaded to

each other.

Then, all components are instantiated using their New() method and connected to the registration

object among the transform type. Despite the previous example, here we use the fixed image’s center

of mass to initialize the fixed parameters of the Affine transform. itk::ImageMomentsCalculator

filter is used for this purpose.

using FixedImageCalculatorType =

itk::ImageMomentsCalculator<FixedImageType>;

auto fixedCalculator = FixedImageCalculatorType::New();

fixedCalculator->SetImage(fixedImage);

fixedCalculator->Compute();

FixedImageCalculatorType::VectorType fixedCenter =

fixedCalculator->GetCenterOfGravity();

Then, we initialize the fixed parameters (center of rotation) in the Affine transform and connect that

to the registration object.

auto affineTx = ATransformType::New();

const unsigned int numberOfFixedParameters =

affineTx->GetFixedParameters().Size();

ATransformType::ParametersType fixedParameters(numberOfFixedParameters);

for (unsigned int i = 0; i < numberOfFixedParameters; ++i)

{

fixedParameters[i] = fixedCenter[i];

}

affineTx->SetFixedParameters(fixedParameters);

affineRegistration->SetInitialTransform(affineTx);

affineRegistration->InPlaceOn();

https://www.itk.org/Doxygen/html/classitk_1_1Transform.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageMomentsCalculator.html

254 Chapter 3. Registration

Now, the output of the first stage is wrapped through a itk::DataObjectDecorator

and is passed to the input of the second stage as the moving initial transform via

SetMovingInitialTransformInput() method. Note that this API has an “Input” word attached

to the name of another initialization method SetMovingInitialTransform() that already has been

used in previous example. This extension means that the following API expects a data object deco-

rator type.

affineRegistration->SetMovingInitialTransformInput(

transRegistration->GetTransformOutput());

Second stage runs two levels of registration, where the second level is run in full resolution.

Once all the registration components are in place, finally we trigger the whole registration process,

including two cascaded registration stages, by calling Update() on the registration filter of the last

stage, which causes both stages be updated.

try

{

affineRegistration->Update();

std::cout

<< "Optimizer stop condition: "

<< affineRegistration->GetOptimizer()->GetStopConditionDescription()

<< std::endl;

}

catch (const itk::ExceptionObject & err)

{

std::cout << "ExceptionObject caught !" << std::endl;

std::cout << err << std::endl;

return EXIT_FAILURE;

}

Finally, a composite transform is used to concatenate the results of all stages together, which will

be considered as the final output of this multistage process and will be passed to the resampler to

resample the moving image into the virtual domain space (fixed image space if there is no fixed

initial transform).

using CompositeTransformType = itk::CompositeTransform<double, Dimension>;

auto compositeTransform = CompositeTransformType::New();

compositeTransform->AddTransform(translationTx);

compositeTransform->AddTransform(affineTx);

Let’s execute this example using the same multi-modality images as before. The registration con-

verges after 6 iterations in the first stage, also in 45 and 11 iterations corresponding to the first level

and second level of the Affine stage. The final results when printed as an array of parameters are:

Translation parameters after first registration stage:

https://www.itk.org/Doxygen/html/classitk_1_1DataObjectDecorator.html

3.8. Multi-Stage Registration 255

Figure 3.38: Mapped moving image (left) and composition of fixed and moving images before (center) and

after (right) registration.

[11.600, 15.1814]

Affine parameters after second registration stage:

[0.9860, -0.1742, 0.1751, 0.9862, 0.9219, 0.8023]

Let’s reorder the Affine array of parameters again as coefficients of matrix M and vector T. They

can now be seen as

M =

[

0.9860 −0.1742

0.1751 0.9862

]

and T =

[

0.9219

0.8023

]

(3.5)

10.02 degrees is the rotation value computed from the affine matrix parameters, which approxi-

mately equals the intentional misalignment.

Also for the total translation value resulted from both transforms, we have:

In X direction:

11.6004+ 0.9219= 12.5223 (3.6)

In Y direction:

15.1814+ 0.8023= 15.9837 (3.7)

These results closely match the true misalignment introduced in the moving image.

The result of resampling the moving image is presented in the left image of Figure 3.38. The center

and right images of the figure depict a checkerboard composite of the fixed and moving images

before and after registration.

With the completion of these examples, we will now review the main features of the components

forming the registration framework.

256 Chapter 3. Registration

Point Vector

Covariant

Vectors

Figure 3.39: Geometric representation objects in ITK.

3.9 Transforms

In the Insight Toolkit, itk::Transform objects encapsulate the mapping of points and vectors

from an input space to an output space. If a transform is invertible, back transform methods are

also provided. Currently, ITK provides a variety of transforms from simple translation, rotation and

scaling to general affine and kernel transforms. Note that, while in this section we discuss transforms

in the context of registration, transforms are general and can be used for other applications. Some

of the most commonly used transforms will be discussed in detail later. Let’s begin by introducing

the objects used in ITK for representing basic spatial concepts.

3.9.1 Geometrical Representation

ITK implements a consistent geometric representation of space. The characteristics of classes in-

volved in this representation are summarized in Table 3.1. In this regard, ITK takes full advantage

of the capabilities of Object Oriented programming and resists the temptation of using simple arrays

of float or double in order to represent geometrical objects. The use of basic arrays would have

blurred the important distinction between the different geometrical concepts and would have allowed

for the innumerable conceptual and programming errors that result from using a vector where a point

is needed or vice versa.

Additional uses of the itk::Point, itk::Vector and itk::CovariantVector classes have

been discussed in the Data Representation chaper of Book 1. Each one of these classes behaves

differently under spatial transformations. It is therefore quite important to keep their distinction

clear. Figure 3.39 illustrates the differences between these concepts.

Transform classes provide different methods for mapping each one of the basic space-

representation objects. Points, vectors and covariant vectors are transformed using the methods

TransformPoint(), TransformVector() and TransformCovariantVector() respectively.

One of the classes that deserves further comments is the itk::Vector. This ITK class tends to

be misinterpreted as a container of elements instead of a geometrical object. This is a common

misconception originating from the colloquial use by computer scientists and software engineers of

https://www.itk.org/Doxygen/html/classitk_1_1Transform.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

3.9. Transforms 257

Class Geometrical concept

itk::Point Position in space. In N-dimensional space it is represented

by an array of N numbers associated with space coordinates.

itk::Vector Relative position between two points. In N-dimensional

space it is represented by an array of N numbers, each one

associated with the distance along a coordinate axis. Vec-

tors do not have a position in space. A vector is defined as

the subtraction of two points.

itk::CovariantVector Orthogonal direction to a (N − 1)-dimensional manifold in

space. For example, in 3D it corresponds to the vector or-

thogonal to a surface. This is the appropriate class for rep-

resenting gradients of functions. Covariant vectors do not

have a position in space. Covariant vector should not be

added to Points, nor to Vectors.

Table 3.1: Summary of objects representing geometrical concepts in ITK.

the term “Vector”. The actual word “Vector” is relatively young. It was coined by William Hamilton

in his book “Elements of Quaternions” published in 1886 (post-mortem)[24]. In the same text

Hamilton coined the terms: “Scalar”, “Versor” and “Tensor”. Although the modern term of “Tensor”

is used in Calculus in a different sense of what Hamilton defined in his book at the time [17].

A “Vector” is, by definition, a mathematical object that embodies the concept of “direction in space”.

Strictly speaking, a Vector describes the relationship between two Points in space, and captures both

their relative distance and orientation.

Computer scientists and software engineers misused the term vector in order to represent the concept

of an “Indexed Set” [5]. Mechanical Engineers and Civil Engineers, who deal with the real world

of physical objects will not commit this mistake and will keep the word “Vector” attached to a

geometrical concept. Biologists, on the other hand, will associate “Vector” to a “vehicle” that allows

them to direct something in a particular direction, for example, a virus that allows them to insert

pieces of code into a DNA strand [35].

Textbooks in programming do not help to clarify those concepts and loosely use the term “Vector”

for the purpose of representing an “enumerated set of common elements”. STL follows this trend and

continues using the word “Vector” in this manner [5, 1]. Linear algebra separates the “Vector” from

its notion of geometric reality and makes it an abstract set of numbers with arithmetic operations

associated.

For those of you who are looking for the “Vector” in the Software Engineering sense, please look

at the itk::Array and itk::FixedArray classes that actually provide such functionalities. Ad-

ditionally, the itk::VectorContainer and itk::MapContainer classes may be of interest too.

These container classes are intended for algorithms which require insertion and deletion of elements,

and those which may have large numbers of elements.

https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1Array.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorContainer.html
https://www.itk.org/Doxygen/html/classitk_1_1MapContainer.html

258 Chapter 3. Registration

The Insight Toolkit deals with real objects that inhabit the physical space. This is particularly true

in the context of the image registration framework. We chose to give the appropriate name to the

mathematical objects that describe geometrical relationships in N-Dimensional space. It is for this

reason that we explicitly make clear the distinction between Point, Vector and CovariantVector,

despite the fact that most people would be happy with a simple use of double[3] for the three

concepts and then will proceed to perform all sort of conceptually flawed operations such as

• Adding two Points

• Dividing a Point by a Scalar

• Adding a Covariant Vector to a Point

• Adding a Covariant Vector to a Vector

In order to enforce the correct use of the geometrical concepts in ITK we organized these classes

in a hierarchy that supports reuse of code and compartmentalizes the behavior of the individual

classes. The use of the itk::FixedArray as the base class of the itk::Point, the itk::Vector

and the itk::CovariantVector was a design decision based on the decision to use the correct

nomenclature.

An itk::FixedArray is an enumerated collection with a fixed number of elements. You can

instantiate a fixed array of letters, or a fixed array of images, or a fixed array of transforms, or a

fixed array of geometrical shapes. Therefore, the FixedArray only implements the functionality that

is necessary to access those enumerated elements. No assumptions can be made at this point on

any other operations required by the elements of the FixedArray, except that it will have a default

constructor.

The itk::Point is a type that represents the spatial coordinates of a spatial location. Based on

geometrical concepts we defined the valid operations of the Point class. In particular we made

sure that no operator+() was defined between Points, and that no operator*(scalar) nor

operator/(scalar) were defined for Points.

In other words, you can perform ITK operations such as:

• Vector = Point - Point

• Point += Vector

• Point -= Vector

• Point = BarycentricCombination(Point, Point)

and you cannot (because you should not) perform operations such as

• Point = Point * Scalar

https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html

3.9. Transforms 259

• Point = Point + Point

• Point = Point / Scalar

The itk::Vector is, by Hamilton’s definition, the subtraction between two points. Therefore a

Vector must satisfy the following basic operations:

• Vector = Point - Point

• Point = Point + Vector

• Point = Point - Vector

• Vector = Vector + Vector

• Vector = Vector - Vector

An itk::Vector object is intended to be instantiated over elements that support mathematical

operation such as addition, subtraction and multiplication by scalars.

3.9.2 Transform General Properties

Each transform class typically has several methods for setting its parameters. For example,

itk::Euler2DTransform provides methods for specifying the offset, angle, and the entire rota-

tion matrix. However, for use in the registration framework, the parameters are represented by a

flat Array of doubles to facilitate communication with generic optimizers. In the case of the Eu-

ler2DTransform, the transform is also defined by three doubles: the first representing the angle,

and the last two the offset. The flat array of parameters is defined using SetParameters(). A

description of the parameters and their ordering is documented in the sections that follow.

In the context of registration, the transform parameters define the search space for optimizers. That

is, the goal of the optimization is to find the set of parameters defining a transform that results in

the best possible value of an image metric. The more parameters a transform has, the longer its

computational time will be when used in a registration method since the dimension of the search

space will be equal to the number of transform parameters.

Another requirement that the registration framework imposes on the transform classes is the com-

putation of their Jacobians. In general, metrics require the knowledge of the Jacobian in order to

compute Metric derivatives. The Jacobian is a matrix whose elements are the partial derivatives of

the output point with respect to the array of parameters that defines the transform:7

7Note that the term Jacobian is also commonly used for the matrix representing the derivatives of output point coordinates

with respect to input point coordinates. Sometimes the term is loosely used to refer to the determinant of such a matrix. [17]

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

260 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Maps every point to

itself, every vector to

itself and every co-

variant vector to it-

self.

0 NA Only defined when the in-

put and output space has the

same number of dimensions.

Table 3.2: Characteristics of the identity transform.

J =













∂x1
∂p1

∂x1
∂p2

· · · ∂x1
∂pm

∂x2
∂p1

∂x2
∂p2

· · · ∂x2
∂pm

...
...

. . .
...

∂xn

∂p1

∂xn

∂p2
· · · ∂xn

∂pm













(3.8)

where {pi} are the transform parameters and {xi} are the coordinates of the output point. Within

this framework, the Jacobian is represented by an itk::Array2D of doubles and is obtained from

the transform by method GetJacobian(). The Jacobian can be interpreted as a matrix that indicates

for a point in the input space how much its mapping on the output space will change as a response

to a small variation in one of the transform parameters. Note that the values of the Jacobian matrix

depend on the point in the input space. So actually the Jacobian can be noted as J(X), where

X = {xi}. The use of transform Jacobians enables the efficient computation of metric derivatives.

When Jacobians are not available, metrics derivatives have to be computed using finite differences

at a price of 2M evaluations of the metric value, where M is the number of transform parameters.

The following sections describe the main characteristics of the transform classes available in ITK.

3.9.3 Identity Transform

The identity transform itk::IdentityTransform is mainly used for debugging purposes. It is

provided to methods that require a transform and in cases where we want to have the certainty that

the transform will have no effect whatsoever in the outcome of the process. The main characteristics

of the identity transform are summarized in Table 3.2

3.9.4 Translation Transform

The itk::TranslationTransform is probably the simplest yet one of the most useful transforma-

tions. It maps all Points by adding a Vector to them. Vector and covariant vectors remain unchanged

https://www.itk.org/Doxygen/html/classitk_1_1Array2D.html
https://www.itk.org/Doxygen/html/classitk_1_1IdentityTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1TranslationTransform.html

3.9. Transforms 261

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a simple

translation of points

in the input space and

has no effect on vec-

tors or covariant vec-

tors.

Same as the

input space

dimension.

The i-th parame-

ter represents the

translation in the

i-th dimension.

Only defined when the input

and output space have the

same number of dimensions.

Table 3.3: Characteristics of the TranslationTransform class.

under this transformation since they are not associated with a particular position in space. Trans-

lation is the best transform to use when starting a registration method. Before attempting to solve

for rotations or scaling it is important to overlap the anatomical objects in both images as much as

possible. This is done by resolving the translational misalignment between the images. Translations

also have the advantage of being fast to compute and having parameters that are easy to interpret.

The main characteristics of the translation transform are presented in Table 3.3.

3.9.5 Scale Transform

The itk::ScaleTransform represents a simple scaling of the vector space. Different scaling

factors can be applied along each dimension. Points are transformed by multiplying each one of their

coordinates by the corresponding scale factor for the dimension. Vectors are transformed in the same

way as points. Covariant vectors, on the other hand, are transformed differently since anisotropic

scaling does not preserve angles. Covariant vectors are transformed by dividing their components

by the scale factor of the corresponding dimension. In this way, if a covariant vector was orthogonal

to a vector, this orthogonality will be preserved after the transformation. The following equations

summarize the effect of the transform on the basic geometric objects.

Point P′ = T (P) : P′
i = Pi ·Si

Vector V′ = T (V) : V′
i = Vi ·Si

CovariantVector C′ = T (C) : C′
i = Ci/Si

(3.9)

where Pi, Vi and Ci are the point, vector and covariant vector i-th components while Si is the scaling

factor along dimension i− th. The following equation illustrates the effect of the scaling transform

on a 3D point.





x′

y′

z′



=





S1 0 0

0 S2 0

0 0 S3



 ·





x

y

z



 (3.10)

https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html

262 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Points are trans-

formed by multi-

plying each one of

their coordinates by

the corresponding

scale factor for the

dimension. Vectors

are transformed as

points. Covariant

vectors are trans-

formed by dividing

their components by

the scale factor in

the corresponding

dimension.

Same as the

input space

dimension.

The i-th parame-

ter represents the

scaling in the i-th

dimension.

Only defined when the input

and output space have the

same number of dimensions.

Table 3.4: Characteristics of the ScaleTransform class.

Scaling appears to be a simple transformation but there are actually a number of issues to keep

in mind when using different scale factors along every dimension. There are subtle effects—for

example, when computing image derivatives. Since derivatives are represented by covariant vectors,

their values are not intuitively modified by scaling transforms.

One of the difficulties with managing scaling transforms in a registration process is that typical opti-

mizers manage the parameter space as a vector space where addition is the basic operation. Scaling

is better treated in the frame of a logarithmic space where additions result in regular multiplicative

increments of the scale. Gradient descent optimizers have trouble updating step length, since the

effect of an additive increment on a scale factor diminishes as the factor grows. In other words, a

scale factor variation of (1.0+ ε) is quite different from a scale variation of (5.0+ ε).

Registrations involving scale transforms require careful monitoring of the optimizer parameters in

order to keep it progressing at a stable pace. Note that some of the transforms discussed in following

sections, for example, the AffineTransform, have hidden scaling parameters and are therefore subject

to the same vulnerabilities of the ScaleTransform.

In cases involving misalignments with simultaneous translation, rotation and scaling components it

may be desirable to solve for these components independently. The main characteristics of the scale

transform are presented in Table 3.4.

3.9. Transforms 263

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Points are trans-

formed by multi-

plying each one of

their coordinates by

the corresponding

scale factor for the

dimension. Vectors

are transformed as

points. Covariant

vectors are trans-

formed by dividing

their components by

the scale factor in

the corresponding

dimension.

Same as the

input space

dimension.

The i-th parame-

ter represents the

scaling in the i-th

dimension.

Only defined when the in-

put and output space have

the same number of dimen-

sions. The difference be-

tween this transform and

the ScaleTransform is that

here the scaling factors are

passed as logarithms, in this

way their behavior is closer

to the one of a Vector space.

Table 3.5: Characteristics of the ScaleLogarithmicTransform class.

3.9.6 Scale Logarithmic Transform

The itk::ScaleLogarithmicTransform is a simple variation of the itk::ScaleTransform . It

is intended to improve the behavior of the scaling parameters when they are modified by optimiz-

ers. The difference between this transform and the ScaleTransform is that the parameter factors

are passed here as logarithms. In this way, multiplicative variations in the scale become additive

variations in the logarithm of the scaling factors.

3.9.7 Euler2DTransform

itk::Euler2DTransform implements a rigid transformation in 2D. It is composed of a plane

rotation and a two-dimensional translation. The rotation is applied first, followed by the translation.

The following equation illustrates the effect of this transform on a 2D point,

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x

y

]

+

[

Tx

Ty

]

(3.11)

where θ is the rotation angle and (Tx,Ty) are the components of the translation.

A challenging aspect of this transformation is the fact that translations and rotations do not form a

vector space and cannot be managed as linearly independent parameters. Typical optimizers make

https://www.itk.org/Doxygen/html/classitk_1_1ScaleLogarithmicTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

264 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 2D rota-

tion and a 2D trans-

lation. Note that

the translation com-

ponent has no effect

on the transformation

of vectors and covari-

ant vectors.

3 The first param-

eter is the angle

in radians and the

last two parame-

ters are the trans-

lation in each di-

mension.

Only defined for two-

dimensional input and

output spaces.

Table 3.6: Characteristics of the Euler2DTransform class.

the loose assumption that parameters exist in a vector space and rely on the step length to be small

enough for this assumption to hold approximately.

In addition to the non-linearity of the parameter space, the most common difficulty found when using

this transform is the difference in units used for rotations and translations. Rotations are measured

in radians; hence, their values are in the range [−π,π]. Translations are measured in millimeters and

their actual values vary depending on the image modality being considered. In practice, translations

have values on the order of 10 to 100. This scale difference between the rotation and translation

parameters is undesirable for gradient descent optimizers because they deviate from the trajectories

of descent and make optimization slower and more unstable. In order to compensate for these

differences, ITK optimizers accept an array of scale values that are used to normalize the parameter

space.

Registrations involving angles and translations should take advantage of the scale normalization

functionality in order to obtain the best performance out of the optimizers. The main characteristics

of the Euler2DTransform class are presented in Table 3.6.

3.9.8 CenteredRigid2DTransform

itk::CenteredRigid2DTransform implements a rigid transformation in 2D. The main difference

between this transform and the itk::Euler2DTransform is that here we can specify an arbitrary

center of rotation, while the Euler2DTransform always uses the origin of the coordinate system as

the center of rotation. This distinction is quite important in image registration since ITK images usu-

ally have their origin in the corner of the image rather than the middle. Rotational mis-registrations

usually exist, however, as rotations around the center of the image, or at least as rotations around a

point in the middle of the anatomical structure captured by the image. Using gradient descent opti-

mizers, it is almost impossible to solve non-origin rotations using a transform with origin rotations

since the deep basin of the real solution is usually located across a high ridge in the topography of

the cost function.

https://www.itk.org/Doxygen/html/classitk_1_1CenteredRigid2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

3.9. Transforms 265

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 2D ro-

tation around a user-

provided center fol-

lowed by a 2D trans-

lation.

5 The first parame-

ter is the angle in

radians. Second

and third are the

center of rota-

tion coordinates

and the last two

parameters are

the translation in

each dimension.

Only defined for two-

dimensional input and

output spaces.

Table 3.7: Characteristics of the CenteredRigid2DTransform class.

In practice, the user must supply the center of rotation in the input space, the angle of rotation

and a translation to be applied after the rotation. With these parameters, the transform initializes a

rotation matrix and a translation vector that together perform the equivalent of translating the center

of rotation to the origin of coordinates, rotating by the specified angle, translating back to the center

of rotation and finally translating by the user-specified vector.

As with the Euler2DTransform, this transform suffers from the difference in units used for rotations

and translations. Rotations are measured in radians; hence, their values are in the range [−π,π].
The center of rotation and the translations are measured in millimeters, and their actual values vary

depending on the image modality being considered. Registrations involving angles and translations

should take advantage of the scale normalization functionality of the optimizers in order to get the

best performance out of them.

The following equation illustrates the effect of the transform on an input point (x,y) that maps to the

output point (x′,y′),

[

x′

y′

]

=

[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(3.12)

where θ is the rotation angle, (Cx,Cy) are the coordinates of the rotation center and (Tx,Ty) are the

components of the translation. Note that the center coordinates are subtracted before the rotation and

added back after the rotation. The main features of the CenteredRigid2DTransform are presented in

Table 3.7.

266 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 2D ro-

tation, homogeneous

scaling and a 2D

translation. Note that

the translation com-

ponent has no effect

on the transformation

of vectors and covari-

ant vectors.

4 The first pa-

rameter is the

scaling factor for

all dimensions,

the second is the

angle in radians,

and the last two

parameters are

the translations

in (x,y) respec-

tively.

Only defined for two-

dimensional input and

output spaces.

Table 3.8: Characteristics of the Similarity2DTransform class.

3.9.9 Similarity2DTransform

The itk::Similarity2DTransform can be seen as a rigid transform combined with an isotropic

scaling factor. This transform preserves angles between lines. In its 2D implementation, the four

parameters of this transformation combine the characteristics of the itk::ScaleTransform and

itk::Euler2DTransform. In particular, those relating to the non-linearity of the parameter space

and the non-uniformity of the measurement units. Gradient descent optimizers should be used with

caution on such parameter spaces since the notions of gradient direction and step length are ill-

defined.

The following equation illustrates the effect of the transform on an input point (x,y) that maps to the

output point (x′,y′),

[

x′

y′

]

=

[

λ 0

0 λ

]

·
[

cosθ −sinθ
sinθ cosθ

]

·
[

x−Cx

y−Cy

]

+

[

Tx +Cx

Ty +Cy

]

(3.13)

where λ is the scale factor, θ is the rotation angle, (Cx,Cy) are the coordinates of the rotation center

and (Tx,Ty) are the components of the translation. Note that the center coordinates are subtracted

before the rotation and scaling, and they are added back afterwards. The main features of the Simi-

larity2DTransform are presented in Table 3.8.

A possible approach for controlling optimization in the parameter space of this transform is to dy-

namically modify the array of scales passed to the optimizer. The effect produced by the parameter

scaling can be used to steer the walk in the parameter space (by giving preference to some of the

parameters over others). For example, perform some iterations updating only the rotation angle, then

balance the array of scale factors in the optimizer and perform another set of iterations updating only

the translations.

https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ScaleTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html

3.9. Transforms 267

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 3D rotation and

a 3D translation. The rota-

tion is specified as a quater-

nion, defined by a set of four

numbers q. The relationship

between quaternion and ro-

tation about vector n by an-

gle θ is as follows:

q = (nsin(θ/2),cos(θ/2))

Note that if the quaternion

is not of unit length, scaling

will also result.

7 The first four pa-

rameters defines

the quaternion

and the last three

parameters the

translation in

each dimension.

Only defined for

three-dimensional

input and output

spaces.

Table 3.9: Characteristics of the QuaternionRigidTransform class.

3.9.10 QuaternionRigidTransform

The itk::QuaternionRigidTransform class implements a rigid transformation in 3D space. The

rotational part of the transform is represented using a quaternion while the translation is represented

with a vector. Quaternions components do not form a vector space and hence raise the same concerns

as the itk::Similarity2DTransform when used with gradient descent optimizers.

The itk::QuaternionRigidTransformGradientDescentOptimizer was introduced into the

toolkit to address these concerns. This specialized optimizer implements a variation of a gradi-

ent descent algorithm adapted for a quaternion space. This class ensures that after advancing in

any direction on the parameter space, the resulting set of transform parameters is mapped back into

the permissible set of parameters. In practice, this comes down to normalizing the newly-computed

quaternion to make sure that the transformation remains rigid and no scaling is applied. The main

characteristics of the QuaternionRigidTransform are presented in Table 3.9.

The Quaternion rigid transform also accepts a user-defined center of rotation. In this way, the trans-

form can easily be used for registering images where the rotation is mostly relative to the center of

the image instead of one of the corners. The coordinates of this rotation center are not subject to

optimization. They only participate in the computation of the mappings for Points and in the com-

putation of the Jacobian. The transformations for Vectors and CovariantVector are not affected by

the selection of the rotation center.

https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Similarity2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransformGradientDescentOptimizer.html

268 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 3D ro-

tation. The rotation

is specified by a ver-

sor or unit quater-

nion. The rotation

is performed around

a user-specified cen-

ter of rotation.

3 The three param-

eters define the

versor.

Only defined for three-

dimensional input and

output spaces.

Table 3.10: Characteristics of the Versor Transform

3.9.11 VersorTransform

By definition, a Versor is the rotational part of a Quaternion. It can also be defined as a unit-

quaternion [24, 27]. Versors only have three independent components, since they are restricted to

reside in the space of unit-quaternions. The implementation of versors in the toolkit uses a set of

three numbers. These three numbers correspond to the first three components of a quaternion. The

fourth component of the quaternion is computed internally such that the quaternion is of unit length.

The main characteristics of the itk::VersorTransform are presented in Table 3.10.

This transform exclusively represents rotations in 3D. It is intended to rapidly solve the rotational

component of a more general misalignment. The efficiency of this transform comes from using a

parameter space of reduced dimensionality. Versors are the best possible representation for rotations

in 3D space. Sequences of versors allow the creation of smooth rotational trajectories; for this

reason, they behave stably under optimization methods.

The space formed by versor parameters is not a vector space. Standard gradient descent algorithms

are not appropriate for exploring this parameter space. An optimizer specialized for the versor space

is available in the toolkit under the name of itk::VersorTransformOptimizer. This optimizer

implements versor derivatives as originally defined by Hamilton [24].

The center of rotation can be specified by the user with the SetCenter() method. The center is not

part of the parameters to be optimized, therefore it remains the same during an optimization process.

Its value is used during the computations for transforming Points and when computing the Jacobian.

3.9.12 VersorRigid3DTransform

The itk::VersorRigid3DTransform implements a rigid transformation in 3D space. It is a vari-

ant of the itk::QuaternionRigidTransform and the itk::VersorTransform. It can be seen as

a itk::VersorTransform plus a translation defined by a vector. The advantage of this class with

https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransformOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1QuaternionRigidTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorTransform.html

3.9. Transforms 269

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 3D rota-

tion and a 3D trans-

lation. The rotation

is specified by a ver-

sor or unit quater-

nion, while the trans-

lation is represented

by a vector. Users

can specify the coor-

dinates of the center

of rotation.

6 The first three

parameters define

the versor and

the last three

parameters the

translation in

each dimension.

Only defined for three-

dimensional input and

output spaces.

Table 3.11: Characteristics of the VersorRigid3DTransform class.

respect to the QuaternionRigidTransform is that it exposes only six parameters, three for the versor

components and three for the translational components. This reduces the search space for the op-

timizer to six dimensions instead of the seven dimensional used by the QuaternionRigidTransform.

This transform also allows the users to set a specific center of rotation. The center coordinates are

not modified during the optimization performed in a registration process. The main features of this

transform are summarized in Table 3.11. This transform is probably the best option to use when

dealing with rigid transformations in 3D.

Given that the space of Versors is not a Vector space, typical gradient descent opti-

mizers are not well suited for exploring the parametric space of this transform. The

itk::VersorRigid3DTranformOptimizer has been introduced in the ITK toolkit with the pur-

pose of providing an optimizer that is aware of the Versor space properties on the rotational part of

this transform, as well as the Vector space properties on the translational part of the transform.

3.9.13 Euler3DTransform

The itk::Euler3DTransform implements a rigid transformation in 3D space. It can be seen as

a rotation followed by a translation. This class exposes six parameters, three for the Euler angles

that represent the rotation and three for the translational components. This transform also allows the

users to set a specific center of rotation. The center coordinates are not modified during the opti-

mization performed in a registration process. The main features of this transform are summarized in

Table 3.12.

Three rotational parameters are non-linear and do not behave like Vector spaces. This must be taken

into account when selecting an optimizer to work with this transform and when fine tuning the

parameters of the optimizer. It is strongly recommended to use this transform by introducing very

https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTranformOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler3DTransform.html

270 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a rigid ro-

tation in 3D space.

That is, a rotation fol-

lowed by a 3D trans-

lation. The rotation is

specified by three an-

gles representing ro-

tations to be applied

around the X, Y and

Z axes one after an-

other. The translation

part is represented by

a Vector. Users can

also specify the coor-

dinates of the center

of rotation.

6 The first three

parameters are

the rotation an-

gles around X, Y

and Z axes, and

the last three pa-

rameters are the

translations along

each dimension.

Only defined for three-

dimensional input and

output spaces.

Table 3.12: Characteristics of the Euler3DTransform class.

small variations on the rotational components. A small rotation will be in the range of 1 degree,

which in radians is approximately 0.01745.

You should not expect this transform to be able to compensate for large rotations just by being driven

with the optimizer. In practice you must provide a reasonable initialization of the transform angles

and only need to correct for residual rotations in the order of 10 or 20 degrees.

3.9.14 Similarity3DTransform

The itk::Similarity3DTransform implements a similarity transformation in 3D space. It can

be seen as an homogeneous scaling followed by a itk::VersorRigid3DTransform. This class

exposes seven parameters: one for the scaling factor, three for the versor components and three for

the translational components. This transform also allows the user to set a specific center of rotation.

The center coordinates are not modified during the optimization performed in a registration process.

Both the rotation and scaling operations are performed with respect to the center of rotation. The

main features of this transform are summarized in Table 3.13.

The scaling and rotational spaces are non-linear and do not behave like Vector spaces. This must be

taken into account when selecting an optimizer to work with this transform and when fine tuning the

parameters of the optimizer.

https://www.itk.org/Doxygen/html/classitk_1_1Similarity3DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VersorRigid3DTransform.html

3.9. Transforms 271

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a 3D ro-

tation, a 3D trans-

lation and homoge-

neous scaling. The

scaling factor is spec-

ified by a scalar, the

rotation is specified

by a versor, and the

translation is repre-

sented by a vector.

Users can also spec-

ify the coordinates of

the center of rotation,

which is the same

center used for scal-

ing.

7 The first three

parameters de-

fine the Versor,

the next three

parameters the

translation in

each dimension,

and the last pa-

rameter is the

isotropic scaling

factor.

Only defined for three-

dimensional input and

output spaces.

Table 3.13: Characteristics of the Similarity3DTransform class.

3.9.15 Rigid3DPerspectiveTransform

The itk::Rigid3DPerspectiveTransform implements a rigid transformation in 3D space fol-

lowed by a perspective projection. This transform is intended to be used in 3D/2D registration

problems where a 3D object is projected onto a 2D plane. This is the case in Fluoroscopic images

used for image-guided intervention, and it is also the case for classical radiography. Users must

provide a value for the focal distance to be used during the computation of the perspective trans-

form. This transform also allows users to set a specific center of rotation. The center coordinates

are not modified during the optimization performed in a registration process. The main features of

this transform are summarized in Table 3.14. This transform is also used when creating Digitally

Reconstructed Radiographs (DRRs).

The strategies for optimizing the parameters of this transform are the same ones used for optimiz-

ing the VersorRigid3DTransform. In particular, you can use the same VersorRigid3DTranform-

Optimizer in order to optimize the parameters of this class.

3.9.16 AffineTransform

The itk::AffineTransform is one of the most popular transformations used for image registra-

tion. Its main advantage comes from its representation as a linear transformation. The main features

https://www.itk.org/Doxygen/html/classitk_1_1Rigid3DPerspectiveTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1AffineTransform.html

272 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a rigid

3D transformation

followed by a per-

spective projection.

The rotation is spec-

ified by a Versor,

while the translation

is represented by a

Vector. Users can

specify the coordi-

nates of the center

of rotation. They

must specify a focal

distance to be used

for the perspective

projection. The

rotation center and

the focal distance

parameters are not

modified during the

optimization process.

6 The first three

parameters define

the Versor and

the last three

parameters the

Translation in

each dimension.

Only defined for three-

dimensional input and

two-dimensional output

spaces. This is one of the

few transforms where the

input space has a different

dimension from the output

space.

Table 3.14: Characteristics of the Rigid3DPerspectiveTransform class.

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents an affine

transform composed

of rotation, scaling,

shearing and transla-

tion. The transform

is specified by a N ×
N matrix and a N × 1

vector where N is the

space dimension.

(N + 1)×N The first N × N

parameters define

the matrix in

column-major

order (where

the column in-

dex varies the

fastest). The last

N parameters

define the trans-

lations for each

dimension.

Only defined when the input

and output space have the

same dimension.

Table 3.15: Characteristics of the AffineTransform class.

3.9. Transforms 273

of this transform are presented in Table 3.15.

The set of AffineTransform coefficients can actually be represented in a vector space of dimension

(N + 1)×N. This makes it possible for optimizers to be used appropriately on this search space.

However, the high dimensionality of the search space also implies a high computational complexity

of cost-function derivatives. The best compromise in the reduction of this computational time is to

use the transform’s Jacobian in combination with the image gradient for computing the cost-function

derivatives.

The coefficients of the N×N matrix can represent rotations, anisotropic scaling and shearing. These

coefficients are usually of a very different dynamic range compared to the translation coefficients.

Coefficients in the matrix tend to be in the range [−1 : 1], but are not restricted to this interval.

Translation coefficients, on the other hand, can be on the order of 10 to 100, and are basically

related to the image size and pixel spacing.

This difference in scale makes it necessary to take advantage of the functionality offered by the

optimizers for rescaling the parameter space. This is particularly relevant for optimizers based on

gradient descent approaches. This transform lets the user set an arbitrary center of rotation. The

coordinates of the rotation center do not make part of the parameters array passed to the optimizer.

Equation 3.14 illustrates the effect of applying the AffineTransform to a point in 3D space.





x′

y′

z′



=





M00 M01 M02

M10 M11 M12

M20 M21 M22



 ·





x−Cx

y−Cy

z−Cz



+





Tx +Cx

Ty +Cy

Tz +Cz



 (3.14)

A registration based on the affine transform may be more effective when applied after simpler trans-

formations have been used to remove the major components of misalignment. Otherwise it will

incur an overwhelming computational cost. For example, using an affine transform, the first set of

optimization iterations would typically focus on removing large translations. This task could instead

be accomplished by a translation transform in a parameter space of size N instead of the (N+1)×N

associated with the affine transform.

Tracking the evolution of a registration process that uses AffineTransforms can be challenging, since

it is difficult to represent the coefficients in a meaningful way. A simple printout of the transform

coefficients generally does not offer a clear picture of the current behavior and trend of the optimiza-

tion. A better implementation uses the affine transform to deform a wire-frame cube which is shown

in a 3D visualization display.

3.9.17 BSplineDeformableTransform

The itk::BSplineDeformableTransform is designed to be used for solving deformable registra-

tion problems. This transform is equivalent to generating a deformation field where a deformation

vector is assigned to every point in space. The deformation vectors are computed using BSpline in-

terpolation from the deformation values of points located in a coarse grid, which is usually referred

to as the BSpline grid.

https://www.itk.org/Doxygen/html/classitk_1_1BSplineDeformableTransform.html

274 Chapter 3. Registration

Behavior Number of

Parameters

Parameter Or-

dering

Restrictions

Represents a free-

form deformation

by providing a de-

formation field from

the interpolation of

deformations in a

coarse grid.

M×N Where M is the

number of nodes

in the BSpline

grid and N is the

dimension of the

space.

Only defined when the in-

put and output space have

the same dimension. This

transform has the advantage

of being able to compute de-

formable registration. It also

has the disadvantage of a

very high-dimensional para-

metric space, and therefore

requiring long computation

times.

Table 3.16: Characteristics of the BSplineDeformableTransform class.

The BSplineDeformableTransform is not flexible enough to account for large rotations or shearing,

or scaling differences. In order to compensate for this limitation, it provides the functionality of

being composed with an arbitrary transform. This transform is known as the Bulk transform and it

applied to points before they are mapped with the displacement field.

This transform does not provide functionality for mapping Vectors nor CovariantVectors—only

Points can be mapped. This is because the variations of a vector under a deformable transform

actually depend on the location of the vector in space. In other words, Vectors only make sense as

the relative position between two points.

The BSplineDeformableTransform has a very large number of parameters and therefore is well

suited for the itk::LBFGSOptimizer and itk::LBFGSBOptimizer. The use of this transform

was proposed in the following papers [52, 39, 40].

3.9.18 KernelTransforms

Kernel Transforms are a set of Transforms that are also suitable for performing deformable registra-

tion. These transforms compute on-the-fly the displacements corresponding to a deformation field.

The displacement values corresponding to every point in space are computed by interpolation from

the vectors defined by a set of Source Landmarks and a set of Target Landmarks.

Several variations of these transforms are available in the toolkit. They differ in the type of interpo-

lation kernel that is used when computing the deformation in a particular point of space. Note that

these transforms are computationally expensive and that their numerical complexity is proportional

to the number of landmarks and the space dimension.

The following is the list of Transforms based on the KernelTransform.

https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizer.html

3.9. Transforms 275

• itk::ElasticBodySplineKernelTransform

• itk::ElasticBodyReciprocalSplineKernelTransform

• itk::ThinPlateSplineKernelTransform

• itk::ThinPlateR2LogRSplineKernelTransform

• itk::VolumeSplineKernelTransform

Details about the mathematical background of these transform can be found in the paper by Davis

et. al [14] and the papers by Rohr et. al [50, 51].

https://www.itk.org/Doxygen/html/classitk_1_1ElasticBodySplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ElasticBodyReciprocalSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ThinPlateSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ThinPlateR2LogRSplineKernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1VolumeSplineKernelTransform.html

276 Chapter 3. Registration

X X

Y

Transform T(x)
Y

Moving Image

Walk
Iterator

Moving Image Fixed ImageFixed Image

Transform T(x)

Figure 3.40: The moving image is mapped into the fixed image space under some spatial transformation. An

iterator walks through the fixed image and its coordinates are mapped onto the moving image.

3.10 Interpolators

In the registration process, the metric typi-

Figure 3.41: Grid positions of the fixed image

map to non-grid positions of the moving image.

cally compares intensity values in the fixed

image against the corresponding values in the

transformed moving image. When a point is

mapped from one space to another by a trans-

form, it will in general be mapped to a non-grid

position. Therefore, interpolation is required to

evaluate the image intensity at the mapped po-

sition.

Figure 3.40 (left) illustrates the mapping of

the fixed image space onto the moving image

space. The transform maps points from the

fixed image coordinate system onto the mov-

ing image coordinate system. The figure high-

lights the region of overlap between the two

images after the mapping. The right side illus-

trates how an iterator is used to walk through a

region of the fixed image. Each one of the iter-

ator positions is mapped by the transform onto

the moving image space in order to find the homologous pixel.

Figure 3.41 presents a detailed view of the mapping from the fixed image to the moving image.

In general, the grid positions of the fixed image will not be mapped onto grid positions of the

moving image. Interpolation is needed for estimating the intensity of the moving image at these

non-grid positions. The service is provided in ITK by interpolator classes that can be plugged into

the registration method.

The following interpolators are available:

3.10. Interpolators 277

• itk::NearestNeighborInterpolateImageFunction

• itk::LinearInterpolateImageFunction

• itk::BSplineInterpolateImageFunction

• itk::WindowedSincInterpolateImageFunction

In the context of registration, the interpolation method affects the smoothness of the optimization

search space and the overall computation time. On the other hand, interpolations are executed

thousands of times in a single optimization cycle. Hence, the user has to balance the simplicity of

computation with the smoothness of the optimization when selecting the interpolation scheme.

The basic input to an itk::InterpolateImageFunction is the image to be interpolated. Once

an image has been defined using SetInputImage(), a user can interpolate either at a point using

Evaluate() or an index using EvaluateAtContinuousIndex().

Interpolators provide the method IsInsideBuffer() that tests whether a particular image index or

a physical point falls inside the spatial domain for which image pixels exist.

3.10.1 Nearest Neighbor Interpolation

The itk::NearestNeighborInterpolateImageFunction simply uses the intensity of the nearest

grid position. That is, it assumes that the image intensity is piecewise constant with jumps mid-way

between grid positions. This interpolation scheme is cheap as it does not require any floating point

computations.

3.10.2 Linear Interpolation

The itk::LinearInterpolateImageFunction assumes that intensity varies linearly between

grid positions. Unlike nearest neighbor interpolation, the interpolated intensity is spatially con-

tinuous. However, the intensity gradient will be discontinuous at grid positions.

3.10.3 B-Spline Interpolation

The itk::BSplineInterpolateImageFunction represents the image intensity using B-spline

basis functions. When an input image is first connected to the interpolator, B-spline coefficients

are computed using recursive filtering (assuming mirror boundary conditions). Intensity at a non-

grid position is computed by multiplying the B-spline coefficients with shifted B-spline kernels

within a small support region of the requested position. Figure 3.42 illustrates on the left how the

deformation values on the BSpline grid nodes are used for computing interpolated deformations in

the rest of space. Note for example that when a cubic BSpline is used, the grid must have one extra

node in one side of the image and two extra nodes on the other side, this along every dimension.

https://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1InterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1NearestNeighborInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1BSplineInterpolateImageFunction.html

278 Chapter 3. Registration

Figure 3.42: The left side illustrates the BSpline grid and the deformations that are known on those nodes.

The right side illustrates the region where interpolation is possible when the BSpline is of cubic order. The small

arrows represent deformation values that were interpolated from the grid deformations shown on the left side of

the diagram.

Currently, this interpolator supports splines of order 0 to 5. Using a spline of order 0 is almost

identical to nearest neighbor interpolation; a spline of order 1 is exactly identical to linear interpo-

lation. For splines of order greater than 1, both the interpolated value and its derivative are spatially

continuous.

It is important to note that when using this scheme, the interpolated value may lie outside the range

of input image intensities. This is especially important when handling unsigned data, as it is possible

that the interpolated value is negative.

3.10.4 Windowed Sinc Interpolation

The itk::WindowedSincInterpolateImageFunction is the best possible interpolator for data

that have been digitized in a discrete grid. This interpolator has been developed based on Fourier

Analysis considerations. It is well known in signal processing that the process of sampling a spatial

function using a periodic discrete grid results in a replication of the spectrum of that signal in the

frequency domain.

The process of recovering the continuous signal from the discrete sampling is equivalent to the

removal of the replicated spectra in the frequency domain. This can be done by multiplying the

spectra with a box function that will set to zero all the frequencies above the highest frequency in

the original signal. Multiplying the spectrum with a box function is equivalent to convolving the

spatial discrete signal with a sinc function

https://www.itk.org/Doxygen/html/classitk_1_1WindowedSincInterpolateImageFunction.html

3.10. Interpolators 279

sinc(x) = sin(x)/x (3.15)

The sinc function has infinite support, which of course in practice can not really be implemented.

Therefore, the sinc is usually truncated by multiplying it with a Window function. The Windowed

Sinc interpolator is the result of such an operation.

This interpolator presents a series of trade-offs in its utilization. Probably the most significant is

that the larger the window, the more precise will be the resulting interpolation. However, large

windows will also result in long computation times. Since the user can select the window size in this

interpolator, it is up to the user to determine how much interpolation quality is required in her/his

application and how much computation time can be justified. For details on the signal processing

theory behind this interpolator, please refer to Meijering et. al [41].

The region of the image used for computing the interpolator is determined by the window radius.

For example, in a 2D image where we want to interpolate the value at position (x,y) the following

computation will be performed.

I(x,y) =
⌊x⌋+m

∑
i=⌊x⌋+1−m

⌊y⌋+m

∑
j=⌊y⌋+1−m

Ii, jK(x− i)K(y− j) (3.16)

where m is the radius of the window. Typically, values such as 3 or 4 are reasonable for the window

radius. The function kernel K(t) is composed by the sinc function and one of the windows listed

above.

K(t) = w(t)sinc(t) = w(t)
sin(πt)

πt
(3.17)

Some of the windows that can be used with this interpolator are

Cosinus window

w(x) = cos(
πx

2m
) (3.18)

Hamming window

w(x) = 0.54+ 0.46cos(
πx

m
) (3.19)

Welch window

w(x) = 1− (
x2

m2
) (3.20)

Lancos window

w(x) = sinc(
x

m
) (3.21)

Blackman window

w(x) = 0.42+ 0.5cos(
πx

m
)+ 0.08cos(

2πx

m
) (3.22)

280 Chapter 3. Registration

The window functions listed above are available inside the itk::Function namespace. The conclu-

sions of the referenced paper suggest to use the Welch, Cosine, Kaiser, and Lancos windows for m

= 4,5. These are based on error in rotating medical images with respect to the linear interpolation

method. In some cases the results achieve a 20-fold improvement in accuracy.

This filter can be used in the same way you would use any ImageInterpolationFunction. For instance,

you can plug it into the ResampleImageFilter class. In order to instantiate the filter you must choose

several template parameters.

using InterpolatorType =

WindowedSincInterpolateImageFunction<TInputImage,

VRadius,

TWindowFunction,

TBoundaryCondition,

TCoordRep>;

TInputImage is the image type, as for any other interpolator.

VRadius is the radius of the kernel, i.e., the m from the formula above.

TWindowFunction is the window function object, which you can choose from about five different

functions defined in this header. The default is the Hamming window, which is commonly used but

not optimal according to the cited paper.

TBoundaryCondition is the boundary condition class used to determine the values of pix-

els that fall off the image boundary. This class has the same meaning here as in the

itk::NeighborhoodIterator classes.

TCoordRep is again standard for interpolating functions, and should be float or double.

The WindowedSincInterpolateImageFunction is probably not the interpolator that you want to use

for performing registration. Its computation burden makes it too expensive for this purpose. The

best use of this interpolator is for the final resampling of the image, once the transform has been

found using another less expensive interpolator in the registration process.

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodIterator.html

3.11. Metrics 281

3.11 Metrics

In ITK, itk::ImageToImageMetricv4 ob-

Sigma

Gray levels

Figure 3.43: In Parzen windowing, a continuous

density function is constructed by superimposing

kernel functions (Gaussian function in this case)

centered on the intensity samples obtained from

the image.

jects quantitatively measure how well the

transformed moving image fits the fixed im-

age by comparing the gray-scale intensity of

the images. These metrics are very flexible

and can work with any transform or interpo-

lation method and do not require reduction of

the gray-scale images to sparse extracted infor-

mation such as edges.

The metric component is perhaps the most

critical element of the registration framework.

The selection of which metric to use is highly

dependent on the registration problem to be

solved. For example, some metrics have a large

capture range while others require initialization

close to the optimal position. In addition, some

metrics are only suitable for comparing im-

ages obtained from the same imaging modality,

while others can handle inter-modality com-

parisons. Unfortunately, there are no clear-cut

rules as to how to choose a metric.

The matching Metric class controls most parts

of the registration process since it handles fixed, moving and virtual images as well as fixed and

moving transforms and interpolators. The method GetValue() can be used to evaluate the quanti-

tative criterion at the transform parameters specified in the argument. Typically, the metric samples

points within a defined region of the virtual lattice. For each point, the corresponding fixed and mov-

ing image positions are computed using the fixed initial transform and the moving transform with

the specified parameters. Then, the fixed and moving interpolators are used to compute the fixed

and moving image’s intensities at the mapped positions. Details on this mapping are illustrated in

Figures 3.40 and 3.41 assuming that virtual lattice is the same as the fixed image lattice, which is

usually the case in practice.

The metrics also support region-based evaluation. The SetFixedImageMask() and

SetMovingImageMask() methods may be used to restrict evaluation of the metric within a spec-

ified region. The masks may be of any type derived from itk::SpatialObject.

Besides the measure value, gradient-based optimization schemes also require derivatives of

the measure with respect to each transform parameter. The methods GetDerivatives() and

GetValueAndDerivatives() can be used to obtain the gradient information.

The following is the list of metrics currently available in ITKv4 registration framework:

https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

282 Chapter 3. Registration

• Mean squares

itk::MeanSquaresImageToImageMetricv4

• Correlation

itk::CorrelationImageToImageMetricv4

• Mutual information by Mattes

itk::MattesMutualInformationImageToImageMetricv4

• Joint histogram mutual information

itk::JointHistogramMutualInformationHistogramImageToImageMetricv4

• Demons metric

itk::DemonsImageToImageMetricv4

• ANTS neighborhood correlation metric

itk::ANTSNeighborhoodCorrelationImageToImageMetricv4

Also, in case you are interested in using the legacy ITK registration framework, the following is the

list of metrics currently available in ITKv3:

• Mean squares

itk::MeanSquaresImageToImageMetric

• Normalized correlation

itk::NormalizedCorrelationImageToImageMetric

• Mean reciprocal squared difference

itk::MeanReciprocalSquareDifferenceImageToImageMetric

• Mutual information by Viola and Wells

itk::MutualInformationImageToImageMetric

• Mutual information by Mattes

itk::MattesMutualInformationImageToImageMetric

• Kullback Liebler distance metric by Kullback and Liebler

itk::KullbackLeiblerCompareHistogramImageToImageMetric

• Normalized mutual information

itk::NormalizedMutualInformationHistogramImageToImageMetric

• Mean squares histogram

itk::MeanSquaresHistogramImageToImageMetric

• Correlation coefficient histogram

itk::CorrelationCoefficientHistogramImageToImageMetric

https://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1CorrelationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1JointHistogramMutualInformationHistogramImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1DemonsImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ANTSNeighborhoodCorrelationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1NormalizedCorrelationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MeanReciprocalSquareDifferenceImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresHistogramImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1CorrelationCoefficientHistogramImageToImageMetric.html

3.11. Metrics 283

• Cardinality Match metric

itk::MatchCardinalityImageToImageMetric

• Kappa Statistics metric

itk::KappaStatisticImageToImageMetric

• Gradient Difference metric

itk::GradientDifferenceImageToImageMetric

In the following sections, we describe the ITKv4 metric types in detail. You can check ITK descrip-

tions in doxygen for details about ITKv3 metric classes.

For ease of notation, we will refer to the fixed image f (X) and transformed moving image (m◦T (X))
as images A and B.

3.11.1 Mean Squares Metric

The itk::MeanSquaresImageToImageMetricv4 computes the mean squared pixel-wise differ-

ence in intensity between image A and B over a user defined region:

MS(A,B) =
1

N

N

∑
i=1

(Ai −Bi)
2

(3.23)

Ai is the i-th pixel of Image A

Bi is the i-th pixel of Image B

N is the number of pixels considered

The optimal value of the metric is zero. Poor matches between images A and B result in large values

of the metric. This metric is simple to compute and has a relatively large capture radius.

This metric relies on the assumption that intensity representing the same homologous point must be

the same in both images. Hence, its use is restricted to images of the same modality. Additionally,

any linear changes in the intensity result in a poor match value.

Exploring a Metric

Getting familiar with the characteristics of the Metric as a cost function is fundamental in order to

find the best way of setting up an optimization process that will use this metric for solving a registra-

tion problem. The following example illustrates a typical mechanism for studying the characteristics

of a Metric. Although the example is using the Mean Squares metric, the same methodology can be

applied to any of the other metrics available in the toolkit.

The source code for this section can be found in the file

MeanSquaresImageMetric1.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1MatchCardinalityImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1KappaStatisticImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientDifferenceImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MeanSquaresImageToImageMetricv4.html

284 Chapter 3. Registration

This example illustrates how to explore the domain of an image metric. This is a useful exercise

before starting a registration process, since familiarity with the characteristics of the metric is fun-

damental for appropriate selection of the optimizer and its parameters used to drive the registration

process. This process helps identify how noisy a metric may be in a given range of parameters, and

it will also give an idea of the number of local minima or maxima in which an optimizer may get

trapped while exploring the parametric space.

We start by including the headers of the basic components: Metric, Transform and Interpolator.

#include "itkMeanSquaresImageToImageMetricv4.h"

#include "itkTranslationTransform.h"

#include "itkNearestNeighborInterpolateImageFunction.h"

We define the dimension and pixel type of the images to be used in the evaluation of the Metric.

constexpr unsigned int Dimension = 2;

using PixelType = float;

using ImageType = itk::Image<PixelType, Dimension>;

The type of the Metric is instantiated and one is constructed. In this case we decided to use the same

image type for both the fixed and the moving images.

using MetricType =

itk::MeanSquaresImageToImageMetricv4<ImageType, ImageType>;

auto metric = MetricType::New();

We also instantiate the transform and interpolator types, and create objects of each class.

using TransformType = itk::TranslationTransform<double, Dimension>;

auto transform = TransformType::New();

using InterpolatorType =

itk::NearestNeighborInterpolateImageFunction<ImageType, double>;

auto interpolator = InterpolatorType::New();

The classes required by the metric are connected to it. This includes the fixed and moving images,

the interpolator and the transform.

metric->SetTransform(transform);

metric->SetMovingInterpolator(interpolator);

3.11. Metrics 285

-60
-40

-20
 0

 20
 40

 60-60

-40

-20

 0

 20

 40

 60

 0

 2000

 4000

 6000

 8000

 10000

 12000

Mean Squares Metric

Translation in X (mm)

Translation in Y (mm)

Mean Squares Metric
-60

-40

-20

 0

 20

 40

 60
-60 -40 -20 0 20 40 60

Figure 3.44: Plots of the Mean Squares Metric for an image compared to itself under multiple translations.

metric->SetFixedImage(fixedImage);

metric->SetMovingImage(movingImage);

Note that the SetTransform() method is equivalent to the SetMovingTransform() function. In

this example there is no need to use the SetFixedTransform(), since the virtual domain is assumed

to be the same as the fixed image domain set as following.

metric->SetVirtualDomainFromImage(fixedImage);

Finally we select a region of the parametric space to explore. In this case we are using a translation

transform in 2D, so we simply select translations from a negative position to a positive position, in

both x and y. For each one of those positions we invoke the GetValue() method of the Metric.

MetricType::MovingTransformParametersType displacement(Dimension);

constexpr int rangex = 50;

constexpr int rangey = 50;

for (int dx = -rangex; dx <= rangex; ++dx)

{

for (int dy = -rangey; dy <= rangey; ++dy)

{

displacement[0] = dx;

displacement[1] = dy;

metric->SetParameters(displacement);

const double value = metric->GetValue();

std::cout << dx << " " << dy << " " << value << std::endl;

}

}

Running this code using the image BrainProtonDensitySlice.png as both the fixed and the moving

286 Chapter 3. Registration

images results in the plot shown in Figure 3.44. From this figure, it can be seen that a gradient-based

optimizer will be appropriate for finding the extrema of the Metric. It is also possible to estimate a

good value for the step length of a gradient-descent optimizer.

This exercise of plotting the Metric is probably the best thing to do when a registration process

is not converging and when it is unclear how to fine tune the different parameters involved in the

registration. This includes the optimizer parameters, the metric parameters and even options such as

preprocessing the image data with smoothing filters.

The shell and Gnuplot8 scripts used for generating the graphics in Figure 3.44 are available in the

directory

ITKSoftwareGuide/SoftwareGuide/Art

Of course, this plotting exercise becomes more challenging when the transform has more than three

parameters, and when those parameters have very different value ranges. In those cases it is neces-

sary to select only a key subset of parameters from the transform and to study the behavior of the

metric when those parameters are varied.

3.11.2 Normalized Correlation Metric

The itk::CorrelationImageToImageMetricv4 computes pixel-wise cross-correlation and nor-

malizes it by the square root of the autocorrelation of the images:

NC(A,B) =−1× ∑N
i=1 (Ai ·Bi)

√

∑N
i=1 A2

i ·∑N
i=1 B2

i

(3.24)

Ai is the i-th pixel of Image A

Bi is the i-th pixel of Image B

N is the number of pixels considered

Note the −1 factor in the metric computation. This factor is used to make the metric be optimal when

its minimum is reached. The optimal value of the metric is then minus one. Misalignment between

the images results in small measure values. The use of this metric is limited to images obtained

using the same imaging modality. The metric is insensitive to multiplicative factors between the two

images. This metric produces a cost function with sharp peaks and well-defined minima. On the

other hand, it has a relatively small capture radius.

3.11.3 Mutual Information Metric

The itk::MattesMutualInformationImageToImageMetricv4 computes the mutual information

between image A and image B. Mutual information (MI) measures how much information one

8http://www.gnuplot.info

https://www.itk.org/Doxygen/html/classitk_1_1CorrelationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetricv4.html

3.11. Metrics 287

random variable (image intensity in one image) tells about another random variable (image intensity

in the other image). The major advantage of using MI is that the actual form of the dependency does

not have to be specified. Therefore, complex mapping between two images can be modeled. This

flexibility makes MI well suited as a criterion of multi-modality registration [46].

Mutual information is defined in terms of entropy. Let

H(A) =−
∫

pA(a) log pA(a)da (3.25)

be the entropy of random variable A, H(B) the entropy of random variable B and

H(A,B) =

∫
pAB(a,b) log pAB(a,b)dadb (3.26)

be the joint entropy of A and B. If A and B are independent, then

pAB(a,b) = pA(a)pB(b) (3.27)

and

H(A,B) = H(A)+H(B). (3.28)

However, if there is any dependency, then

H(A,B)< H(A)+H(B). (3.29)

The difference is called Mutual Information : I(A,B)

I(A,B) = H(A)+H(B)−H(A,B) (3.30)

Parzen Windowing

In a typical registration problem, direct access to the marginal and joint probability densities is not

available and hence the densities must be estimated from the image data. Parzen windows (also

known as kernel density estimators) can be used for this purpose. In this scheme, the densities are

constructed by taking intensity samples S from the image and super-positioning kernel functions

K(·) centered on the elements of S as illustrated in Figure 3.43:

A variety of functions can be used as the smoothing kernel with the requirement that they are smooth,

symmetric, have zero mean and integrate to one. For example, boxcar, Gaussian and B-spline func-

tions are suitable candidates. A smoothing parameter is used to scale the kernel function. The larger

the smoothing parameter, the wider the kernel function used and hence the smoother the density

estimate. If the parameter is too large, features such as modes in the density will get smoothed out.

On the other hand, if the smoothing parameter is too small, the resulting density may be too noisy.

The estimation is given by the following equation.

p(a)≈ P∗(a) =
1

N
∑

s j∈S

K (a− s j) (3.31)

288 Chapter 3. Registration

Choosing the optimal smoothing parameter is a difficult research problem and beyond the scope of

this software guide. Typically, the optimal value of the smoothing parameter will depend on the data

and the number of samples used.

Mattes et al. Implementation

The implementation of mutual information metric available in ITKv4 follows

the method specified by Mattes et al. in [39] and is implemented by the

itk::MattesMutualInformationImageToImageMetricv4 class.

In this implementation, only one set of intensity samples is drawn from the image. Using this set,

the marginal and joint probability density function (PDF) is evaluated at discrete positions or bins

uniformly spread within the dynamic range of the images. Entropy values are then computed by

summing over the bins.

The number of spatial samples used is a ratio of the total number of samples and is set us-

ing the SetMetricSamplingPercentage() method directly from the registration framework

itk::ImageRegistrationMethodv4. Also, The number of bins used to compute the entropy val-

ues is set in the metric class via the SetNumberOfHistogramBins() method.

Since the fixed image PDF does not contribute to the metric derivatives, it does not need to be

smooth. Hence, a zero-order (boxcar) B-spline kernel is used for computing the PDF. On the other

hand, to ensure smoothness, a third-order B-spline kernel is used to compute the moving image

intensity PDF. The advantage of using a B-spline kernel over a Gaussian kernel is that the B-spline

kernel has a finite support region. This is computationally attractive, as each intensity sample only

affects a small number of bins and hence does not require a N×N loop to compute the metric value.

During the PDF calculations, the image intensity values are linearly scaled to have a minimum of

zero and maximum of one. This rescaling means that a fixed B-spline kernel bandwidth of one can

be used to handle image data with arbitrary magnitude and dynamic range.

3.11.4 Normalized Mutual Information Metric

Given two images, A and B, the normalized mutual information may be computed as

NMI(A,B) = 1+
I(A,B)

H(A,B)
=

H(A)+H(B)

H(A,B)
(3.32)

where the entropy of the images, H(A), H(B), the mutual information, I(A,B) and the joint entropy

H(A,B) are computed as mentioned in 3.11.3. Details of the implementation may be found in [23].

https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageRegistrationMethodv4.html

3.11. Metrics 289

3.11.5 Demons metric

The implementation of the itk::DemonsImageToImageMetricv4 metric is taken from

itk::DemonsRegistrationFunction .

The metric derivative can be calculated using image derivatives either from the fixed or moving

images. The default is to use fixed-image gradients. See ObjectToObjectMetric::SetGradientSource

to change this behavior.

An intensity threshold is used, below which image pixels are considered equal for

the purpose of derivative calculation. The threshold can be changed by calling

SetIntensityDifferenceThreshold.

Note that this metric supports only moving transforms with local support and with a number of

local parameters that match the moving image dimension. In particular, it’s meant to be used with

itk::DisplacementFieldTransform and derived classes.

3.11.6 ANTS neighborhood correlation metric

The itk::ANTSNeighborhoodCorrelationImageToImageMetricv4 metric computes normal-

ized cross correlation using a small neighborhood for each voxel between two images, with speed

optimizations for dense registration.

Around each voxel, the neighborhood is defined as a N-Dimensional rectangle centered at the voxel.

The size of the rectangle is 2*radius+1. Normalized correlation between neighborhoods of the fixed

image and the moving image are averaged over the whole image as the final metric. A radius less

than 2 can be unstable. 2 is the default.

https://www.itk.org/Doxygen/html/classitk_1_1DemonsImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1DemonsRegistrationFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1DisplacementFieldTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ANTSNeighborhoodCorrelationImageToImageMetricv4.html

290 Chapter 3. Registration

3.12 Optimizers

Optimization algorithms are encapsulated as itk::ObjectToObjectOptimizer objects within

ITKv4. Optimizers are generic and can be used for applications other than registration. Within

the registration framework, subclasses of itk::SingleValuedNonLinearVnlOptimizerv4 are

implemented as a wrap around already implemented vnl classes.

The basic input to an optimizer is a cost function or metric object. In the context of

registration, itk::ImageToImageMetricv4 classes provide this functionality. The met-

ric is set using SetInitialPosition() and the optimization algorithm is invoked by

StartOptimization(). Once the optimization has finished, the final parameters can be obtained

using GetCurrentPosition().

Some optimizers also allow rescaling of their individual parameters. This is convenient for nor-

malizing parameter spaces where some parameters have different dynamic ranges. For example,

the first parameter of itk::Euler2DTransform represents an angle while the last two parameters

represent translations. A unit change in angle has a much greater impact on an image than a unit

change in translation. This difference in scale appears as long narrow valleys in the search space

making the optimization problem more difficult. Rescaling the translation parameters can help to fix

this problem. Scales are represented as an itk::Array of doubles and set using SetScales().

Estimating the scales parameters can also be done automatically using the

itk::OptimizerParameterScalesEstimatorTemplate and its subclasses. The scales esti-

mator object is then set to the optimizer via SetScalesEstimator().

Despite the old version of ITK, there are only Single Valued types of optimizers available in ITKv4,

which are suitable for dealing with cost functions that return a single value. These are indeed the

most common type of cost functions, and are also known as Single Valued functions.

The types of single valued optimizers currently available in ITKv4 are:

• Amoeba: Nelder-Meade downhill simplex. This optimizer is actually implemented in the

vxl/vnl numerics toolkit. The ITK class itk::AmoebaOptimizerv4 is merely an adaptor

class.

• Gradient Descent: Advances parameters in the direction of the gradient where the step size

is governed by a learning rate (itk::GradientDescentOptimizerv4).

• Gradient Descent Line Search: Gradient descent with a golden section line search.

itk::GradientDescentLineSearchOptimizerv4 implements a simple gradient descent

optimizer that is followed by a line search to find the best value for the learning rate.

• Conjugate Gradient Descent Line Search: Advances parameters in the direction of the

Polak-Ribiere conjugate gradient where a line search is used to find the best value for the

learning rate (itk::ConjugateGradientLineSearchOptimizerv4).

• Quasi Newton: Implements a Quasi-Newton optimizer with BFGS Hessian estimation. Sec-

ond order approximation of the cost function is usually more efficient since it estimates the

https://www.itk.org/Doxygen/html/classitk_1_1ObjectToObjectOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1SingleValuedNonLinearVnlOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToImageMetricv4.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1Array.html
https://www.itk.org/Doxygen/html/classitk_1_1OptimizerParameterScalesEstimatorTemplate.html
https://www.itk.org/Doxygen/html/classitk_1_1AmoebaOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientDescentOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientDescentLineSearchOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ConjugateGradientLineSearchOptimizerv4.html

3.12. Optimizers 291

Figure 3.45: Class diagram of the optimizersv4 hierarchy.

292 Chapter 3. Registration

descent or ascent direction more precisely. However, computation of Hessian is usually ex-

pensive or unavailable. Alternatively Quasi-Newton methods can estimate a Hessian from the

gradients in previous steps. Here a specific Quasi-Newton method, BFGS, is used to compute

the Quasi-Newton steps (itk::QuasiNewtonOptimizerv4).

• LBFGS: Limited memory Broyden, Fletcher, Goldfarb and Shannon minimization. It is an

adaptor to an optimizer in vnl (itk::LBFGSOptimizerv4).

• LBFGSB: A modified version of the LBFGS optimizer that allows to specify bounds for the

parameters in the search space. It is an adaptor to an optimizer in netlib. Details on this

optimizer can be found in [10, 75] (itk::LBFGSBOptimizerv4).

• One Plus One Evolutionary: Strategy that simulates the biological evolution of a set of

samples in the search space. This optimizer is mainly used in the process of bias correction

of MRI images (itk::OnePlusOneEvolutionaryOptimizerv4). Details on this optimizer

can be found in [59].

• Regular Step Gradient Descent: Advances parameters in the direction of

the gradient where a bipartition scheme is used to compute the step size (

itk::RegularStepGradientDescentOptimizerv4). This optimizer is also used for

Versor transforms parameters, where the current rotation is composed with the gradient

rotation to produce the new rotation versor. The translational part of the transform parameters

are updated as usually done in a vector space. It follows the definition of versor gradients

defined by Hamilton [24]

• Powell Optimizer: Powell optimization method. For an N-dimensional parameter space,

each iteration minimizes(maximizes) the function in N (initially orthogonal) directions. This

optimizer is described in [49]. (itk::PowellOptimizerv4).

• Exhausive Optimizer: Fully samples a grid on the parameteric space. This optimizer is

equivalent to an exahaustive search in a discrete grid defined over the parametric space.

The grid is centered on the initial position. The subdivisions of the grid along each one

of the dimensions of the parametric space is defined by an array of number of steps (

itk::ExhaustiveOptimizerv4).

Figure 3.45 illustrates the full class hierarchy of optimizers in ITK. Optimizers in the lower right

corner are adaptor classes to optimizers existing in the vxl/vnl numerics toolkit. The optimizers

interact with the itk::CostFunction class. In the registration framework this cost function is

reimplemented in the form of ImageToImageMetric.

3.12.1 Registration using the One plus One Evolutionary Optimizer

The source code for this section can be found in the file

ImageRegistration11.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1QuasiNewtonOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1RegularStepGradientDescentOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1PowellOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1ExhaustiveOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1CostFunction.html

3.12. Optimizers 293

This example illustrates how to combine the MutualInformation metric with an Evolutionary algo-

rithm for optimization. Evolutionary algorithms are naturally well-suited for optimizing the Mutual

Information metric given its random and noisy behavior.

The structure of the example is almost identical to the one illustrated in ImageRegistration4. There-

fore we focus here on the setup that is specifically required for the evolutionary optimizer.

#include "itkImageRegistrationMethodv4.h"

#include "itkTranslationTransform.h"

#include "itkMattesMutualInformationImageToImageMetricv4.h"

#include "itkOnePlusOneEvolutionaryOptimizerv4.h"

#include "itkNormalVariateGenerator.h"

In this example the image types and all registration components, except the metric, are declared as

in Section 3.2. The Mattes mutual information metric type is instantiated using the image types.

using MetricType =

itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,

MovingImageType>;

The histogram bins metric parameter is set as follows.

metric->SetNumberOfHistogramBins(20);

As our previous discussion in section 3.5.1, only a subsample of the virtual domain is needed to

evaluate the metric. The number of spatial samples to be used depends on the content of the image,

and the user can define the sampling percentage and the way that sampling operation is managed by

the registration framework as follows. Sampling strategy can can be defined as REGULAR or RANDOM,

while the default value is NONE.

registration->SetMetricSamplingPercentage(samplingPercentage);

RegistrationType::MetricSamplingStrategyEnum samplingStrategy =

RegistrationType::MetricSamplingStrategyEnum::RANDOM;

registration->SetMetricSamplingStrategy(samplingStrategy);

Evolutionary algorithms are based on testing random variations of parameters. In order to sup-

port the computation of random values, ITK provides a family of random number generators. In

this example, we use the itk::NormalVariateGenerator which generates values with a normal

distribution.

using GeneratorType = itk::Statistics::NormalVariateGenerator;

auto generator = GeneratorType::New();

https://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

294 Chapter 3. Registration

The random number generator must be initialized with a seed.

generator->Initialize(12345);

Now we set the optimizer parameters.

optimizer->SetNormalVariateGenerator(generator);

optimizer->Initialize(10);

optimizer->SetEpsilon(1.0);

optimizer->SetMaximumIteration(4000);

This example is executed using the same multi-modality images as in the previous one. The regis-

tration converges after 24 iterations and produces the following results:

Translation X = 13.1719

Translation Y = 16.9006

These values are a very close match to the true misalignment introduced in the moving image.

3.12.2 Registration using masks constructed with Spatial objects

The source code for this section can be found in the file

ImageRegistration12.cxx.

This example illustrates the use of SpatialObjects as masks for selecting the pixels that should

contribute to the computation of Image Metrics. This example is almost identical to ImageReg-

istration6 with the exception that the SpatialObject masks are created and passed to the image

metric.

The most important header in this example is the one corresponding to the

itk::ImageMaskSpatialObject class.

#include "itkImageMaskSpatialObject.h"

Here we instantiate the type of the itk::ImageMaskSpatialObject using the same dimension of

the images to be registered.

using MaskType = itk::ImageMaskSpatialObject<Dimension>;

Then we use the type for creating the spatial object mask that will restrict the registration to a reduced

region of the image.

https://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageMaskSpatialObject.html

3.12. Optimizers 295

auto spatialObjectMask = MaskType::New();

The mask in this case is read from a binary file using the ImageFileReader instantiated for an

unsigned char pixel type.

using ImageMaskType = itk::Image<unsigned char, Dimension>;

using MaskReaderType = itk::ImageFileReader<ImageMaskType>;

The reader is constructed and a filename is passed to it.

auto maskReader = MaskReaderType::New();

maskReader->SetFileName(argv[3]);

As usual, the reader is triggered by invoking its Update() method. Since this may eventually throw

an exception, the call must be placed in a try/catch block. Note that a full fledged application will

place this try/catch block at a much higher level, probably under the control of the GUI.

try

{

maskReader->Update();

}

catch (const itk::ExceptionObject & err)

{

std::cerr << "ExceptionObject caught !" << std::endl;

std::cerr << err << std::endl;

return EXIT_FAILURE;

}

The output of the mask reader is connected as input to the ImageMaskSpatialObject.

spatialObjectMask->SetImage(maskReader->GetOutput());

spatialObjectMask->Update();

Finally, the spatial object mask is passed to the image metric.

metric->SetFixedImageMask(spatialObjectMask);

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySliceBorder20.png

• BrainProtonDensitySliceR10X13Y17.png

296 Chapter 3. Registration

The second image is the result of intentionally rotating the first image by 10 degrees and shifting it

13mm in X and 17mm in Y . Both images have unit-spacing and are shown in Figure 3.14.

The registration converges after 20 iterations and produces the following results:

Angle (radians) 0.174712

Angle (degrees) 10.0103

Translation X = 12.4521

Translation Y = 16.0765

These values are a very close match to the true misalignments introduced in the moving image.

Now we resample the moving image using the transform resulting from the registration process.

TransformType::MatrixType matrix = transform->GetMatrix();

TransformType::OffsetType offset = transform->GetOffset();

std::cout << "Matrix = " << std::endl << matrix << std::endl;

std::cout << "Offset = " << std::endl << offset << std::endl;

3.12.3 Rigid registrations incorporating prior knowledge

The source code for this section can be found in the file

ImageRegistration13.cxx.

This example illustrates how to do registration with a 2D Rigid Transform and with MutualInforma-

tion metric.

#include "itkMattesMutualInformationImageToImageMetricv4.h"

The Euler2DTransform applies a rigid transform in 2D space.

using TransformType = itk::Euler2DTransform<double>;

using MetricType =

itk::MattesMutualInformationImageToImageMetricv4<FixedImageType,

MovingImageType>;

3.12. Optimizers 297

metric->SetNumberOfHistogramBins(20);

double samplingPercentage = 0.20;

registration->SetMetricSamplingPercentage(samplingPercentage);

RegistrationType::MetricSamplingStrategyEnum samplingStrategy =

RegistrationType::MetricSamplingStrategyEnum::RANDOM;

registration->SetMetricSamplingStrategy(samplingStrategy);

The itk::Euler2DTransform is initialized with 3 parameters, indicating the angle of ro-

tation and the translation to be applied after rotation. The initialization is done by the

itk::CenteredTransformInitializer. The transform initializer can operate in two modes, the

first of which assumes that the anatomical objects to be registered are centered in their respective

images. Hence the best initial guess for the registration is the one that superimposes those two cen-

ters. This second approach assumes that the moments of the anatomical objects are similar for both

images and hence the best initial guess for registration is to superimpose both mass centers. The

center of mass is computed from the moments obtained from the gray level values. Here we adopt

the first approach. The GeometryOn() method toggles between the approaches.

using TransformInitializerType =

itk::CenteredTransformInitializer<TransformType,

FixedImageType,

MovingImageType>;

auto initializer = TransformInitializerType::New();

initializer->SetTransform(transform);

initializer->SetFixedImage(fixedImageReader->GetOutput());

initializer->SetMovingImage(movingImageReader->GetOutput());

initializer->GeometryOn();

initializer->InitializeTransform();

The optimizer scales the metrics (the gradient in this case) by the scales during each iteration. Here

we assume that the fixed and moving images are likely to be related by a translation.

using OptimizerScalesType = OptimizerType::ScalesType;

OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());

const double translationScale = 1.0 / 128.0;

optimizerScales[0] = 1.0;

optimizerScales[1] = translationScale;

optimizerScales[2] = translationScale;

optimizer->SetScales(optimizerScales);

optimizer->SetLearningRate(0.5);

optimizer->SetMinimumStepLength(0.0001);

optimizer->SetNumberOfIterations(400);

https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

298 Chapter 3. Registration

Let’s execute this example over some of the images provided in Examples/Data, for example:

• BrainProtonDensitySlice.png

• BrainProtonDensitySliceR10X13Y17.png

The second image is the result of intentionally rotating the first image by 10 degrees and shifting

it 13mm in X and 17mm in Y . Both images have unit-spacing and are shown in Figure 3.14. The

example yielded the following results.

Angle (radians) 0.174569

Angle (degrees) 10.0021

Translation X = 13.0958

Translation Y = 15.9156

These values match the true misalignment introduced in the moving image.

3.13. Deformable Registration 299

Figure 3.46: Checkerboard comparisons before and after FEM-based deformable registration.

3.13 Deformable Registration

3.13.1 FEM-Based Image Registration

The source code for this section can be found in the file

DeformableRegistration1.cxx.

The finite element (FEM) library within the Insight Toolkit can be used to solve deformable image

registration problems. The first step in implementing a FEM-based registration is to include the

appropriate header files.

#include "itkFEMRegistrationFilter.h"

Next, we use using type alias to instantiate all necessary classes. We define the image and element

types we plan to use to solve a two-dimensional registration problem. We define multiple element

types so that they can be used without recompiling the code.

using DiskImageType = itk::Image<unsigned char, 2>;

using ImageType = itk::Image<float, 2>;

using ElementType = itk::fem::Element2DC0LinearQuadrilateralMembrane;

using ElementType2 = itk::fem::Element2DC0LinearTriangularMembrane;

using FEMObjectType = itk::fem::FEMObject<2>;

Note that in order to solve a three-dimensional registration problem, we would simply define 3D

image and element types in lieu of those above. The following declarations could be used for a 3D

300 Chapter 3. Registration

problem:

using FileImage3DType = itk::Image<unsigned char, 3>;

using Image3DType = itk::Image<float, 3>;

using Element3DType = itk::fem::Element3DC0LinearHexahedronMembrane;

using Element3DType2 = itk::fem::Element3DC0LinearTetrahedronMembrane;

using FEMObject3DType = itk::fem::FEMObject<3>;

Once all the necessary components have been instantiated, we can instantiate the

itk::FEMRegistrationFilter, which depends on the image input and output types.

using RegistrationType =

itk::fem::FEMRegistrationFilter<ImageType, ImageType, FEMObjectType>;

In order to begin the registration, we declare an instance of the FEMRegistrationFilter and set

its parameters. For simplicity, we will call it registrationFilter.

auto registrationFilter = RegistrationType::New();

registrationFilter->SetMaxLevel(1);

registrationFilter->SetUseNormalizedGradient(true);

registrationFilter->ChooseMetric(0);

unsigned int maxiters = 20;

float E = 100;

float p = 1;

registrationFilter->SetElasticity(E, 0);

registrationFilter->SetRho(p, 0);

registrationFilter->SetGamma(1., 0);

registrationFilter->SetAlpha(1.);

registrationFilter->SetMaximumIterations(maxiters, 0);

registrationFilter->SetMeshPixelsPerElementAtEachResolution(4, 0);

registrationFilter->SetWidthOfMetricRegion(1, 0);

registrationFilter->SetNumberOfIntegrationPoints(2, 0);

registrationFilter->SetDoLineSearchOnImageEnergy(0);

registrationFilter->SetTimeStep(1.);

registrationFilter->SetEmployRegridding(false);

registrationFilter->SetUseLandmarks(false);

In order to initialize the mesh of elements, we must first create “dummy” material and element

objects and assign them to the registration filter. These objects are subsequently used to either read

a predefined mesh from a file or generate a mesh using the software. The values assigned to the

fields within the material object are arbitrary since they will be replaced with those specified earlier.

Similarly, the element object will be replaced with those from the desired mesh.

// Create the material properties

itk::fem::MaterialLinearElasticity::Pointer m;

m = itk::fem::MaterialLinearElasticity::New();

m->SetGlobalNumber(0);

https://www.itk.org/Doxygen/html/classitk_1_1FEMRegistrationFilter.html

3.13. Deformable Registration 301

// Young's modulus of the membrane

m->SetYoungsModulus(registrationFilter->GetElasticity());

m->SetCrossSectionalArea(1.0); // Cross-sectional area

m->SetThickness(1.0); // Thickness

m->SetMomentOfInertia(1.0); // Moment of inertia

m->SetPoissonsRatio(0.); // Poisson's ratio -- DONT CHOOSE 1.0!!

m->SetDensityHeatProduct(1.0); // Density-Heat capacity product

// Create the element type

auto e1 = ElementType::New();

e1->SetMaterial(m);

registrationFilter->SetElement(e1);

registrationFilter->SetMaterial(m);

Now we are ready to run the registration:

registrationFilter->RunRegistration();

To output the image resulting from the registration, we can call GetWarpedImage(). The image is

written in floating point format.

itk::ImageFileWriter<ImageType>::Pointer warpedImageWriter;

warpedImageWriter = itk::ImageFileWriter<ImageType>::New();

warpedImageWriter->SetInput(registrationFilter->GetWarpedImage());

warpedImageWriter->SetFileName("warpedMovingImage.mha");

try

{

warpedImageWriter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

We can also output the displacement field resulting from the registration; we can call

GetDisplacementField() to get the multi-component image.

using DispWriterType = itk::ImageFileWriter<RegistrationType::FieldType>;

auto dispWriter = DispWriterType::New();

dispWriter->SetInput(registrationFilter->GetDisplacementField());

dispWriter->SetFileName("displacement.mha");

try

{

dispWriter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << excp << std::endl;

302 Chapter 3. Registration

return EXIT_FAILURE;

}

Figure 3.46 presents the results of the FEM-based deformable registration applied to two time-

separated slices of a living rat dataset. Checkerboard comparisons of the two images are shown

before registration (left) and after registration (right). Both images were acquired from the same

living rat, the first after inspiration of air into the lungs and the second after exhalation. Deformation

occurs due to the relaxation of the diaphragm and the intercostal muscles, both of which exert force

on the lung tissue and cause air to be expelled.

The following is a documented sample parameter file that can be used with this deformable registra-

tion example. This example demonstrates the setup of a basic registration problem that does not use

multi-resolution strategies. As a result, only one value for the parameters between (# of pixels

per element) and (maximum iterations) is necessary. In order to use a multi-resolution strat-

egy, you would have to specify values for those parameters at each level of the pyramid.

3.13.2 BSplines Image Registration

The source code for this section can be found in the file

DeformableRegistration4.cxx.

This example illustrates the use of the itk::BSplineTransform class for performing registration

of two 2D images in an ITKv4 registration framework. Due to the large number of parameters of the

BSpline transform, we will use a itk::LBFGSOptimizerv4 instead of a simple steepest descent or

a conjugate gradient descent optimizer.

The following are the most relevant headers to this example.

#include "itkBSplineTransform.h"

#include "itkLBFGSOptimizerv4.h"

The parameter space of the BSplineTransform is composed by the set of all the deformations

associated with the nodes of the BSpline grid. This large number of parameters makes it possible to

represent a wide variety of deformations, at the cost of requiring a significant amount of computation

time.

We instantiate now the type of the BSplineTransform using as template parameters the type for

coordinates representation, the dimension of the space, and the order of the BSpline.

const unsigned int SpaceDimension = ImageDimension;

constexpr unsigned int SplineOrder = 3;

using CoordinateRepType = double;

using TransformType =

itk::BSplineTransform<CoordinateRepType, SpaceDimension, SplineOrder>;

https://www.itk.org/Doxygen/html/classitk_1_1BSplineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizerv4.html

3.13. Deformable Registration 303

The transform object is constructed below.

auto transform = TransformType::New();

Fixed parameters of the BSpline transform should be defined before the registration. These param-

eters define origin, dimension, direction and mesh size of the transform grid and are set based on

specifications of the fixed image space lattice. We can use itk::BSplineTransformInitializer

to initialize fixed parameters of a BSpline transform.

using InitializerType =

itk::BSplineTransformInitializer<TransformType, FixedImageType>;

auto transformInitializer = InitializerType::New();

unsigned int numberOfGridNodesInOneDimension = 8;

TransformType::MeshSizeType meshSize;

meshSize.Fill(numberOfGridNodesInOneDimension - SplineOrder);

transformInitializer->SetTransform(transform);

transformInitializer->SetImage(fixedImage);

transformInitializer->SetTransformDomainMeshSize(meshSize);

transformInitializer->InitializeTransform();

After setting the fixed parameters of the transform, we set the initial transform to be an identity

transform. It is like setting all the transform parameters to zero in created parameter space.

transform->SetIdentity();

Then, the initialized transform is connected to the registration object and is set to be optimized

directly during the registration process.

Calling InPlaceOn() means that the current initialized transform will optimized directly and is

grafted to the output, so it can be considered as the output transform object. Otherwise, the initial

transform will be copied or “cloned” to the output transform object, and the copied object will be

optimized during the registration process.

registration->SetInitialTransform(transform);

registration->InPlaceOn();

The itk::RegistrationParameterScalesFromPhysicalShift class is used to estimate the pa-

rameters scales before we set the optimizer.

using ScalesEstimatorType =

itk::RegistrationParameterScalesFromPhysicalShift<MetricType>;

auto scalesEstimator = ScalesEstimatorType::New();

https://www.itk.org/Doxygen/html/classitk_1_1BSplineTransformInitializer.html
https://www.itk.org/Doxygen/html/classitk_1_1RegistrationParameterScalesFromPhysicalShift.html

304 Chapter 3. Registration

scalesEstimator->SetMetric(metric);

scalesEstimator->SetTransformForward(true);

scalesEstimator->SetSmallParameterVariation(1.0);

Now the scale estimator is passed to the itk::LBFGSOptimizerv4 , and we set other parameters of

the optimizer as well.

optimizer->SetGradientConvergenceTolerance(5e-2);

optimizer->SetLineSearchAccuracy(1.2);

optimizer->SetDefaultStepLength(1.5);

optimizer->TraceOn();

optimizer->SetMaximumNumberOfFunctionEvaluations(1000);

optimizer->SetScalesEstimator(scalesEstimator);

Let’s execute this example using the rat lung images from the previous examples.

• RatLungSlice1.mha

• RatLungSlice2.mha

The transform object is updated during the registration process and is passed to the resampler to

map the moving image space onto the fixed image space.

OptimizerType::ParametersType finalParameters = transform->GetParameters();

3.13.3 Level Set Motion for Deformable Registration

The source code for this section can be found in the file

DeformableRegistration5.cxx.

This example demonstrates how to use the level set motion to deformably register two images. The

first step is to include the header files.

#include "itkLevelSetMotionRegistrationFilter.h"

#include "itkHistogramMatchingImageFilter.h"

#include "itkCastImageFilter.h"

#include "itkDisplacementFieldTransform.h"

#include "itkResampleImageFilter.h"

Second, we declare the types of the images.

https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizerv4.html

3.13. Deformable Registration 305

constexpr unsigned int Dimension = 2;

using PixelType = unsigned short;

using FixedImageType = itk::Image<PixelType, Dimension>;

using MovingImageType = itk::Image<PixelType, Dimension>;

Image file readers are set up in a similar fashion to previous examples. To support the re-mapping

of the moving image intensity, we declare an internal image type with a floating point pixel type and

cast the input images to the internal image type.

using InternalPixelType = float;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

using FixedImageCasterType =

itk::CastImageFilter<FixedImageType, InternalImageType>;

using MovingImageCasterType =

itk::CastImageFilter<MovingImageType, InternalImageType>;

auto fixedImageCaster = FixedImageCasterType::New();

auto movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());

movingImageCaster->SetInput(movingImageReader->GetOutput());

The level set motion algorithm relies on the assumption that pixels representing the same homolo-

gous point on an object have the same intensity on both the fixed and moving images to be registered.

In this example, we will preprocess the moving image to match the intensity between the images

using the itk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at a user-specified number of quantile

values. For robustness, the histograms are matched so that the background pixels are excluded from

both histograms. For MR images, a simple procedure is to exclude all gray values smaller than the

mean gray value of the image.

using MatchingFilterType =

itk::HistogramMatchingImageFilter<InternalImageType, InternalImageType>;

auto matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as the

reference image.

matcher->SetInput(movingImageCaster->GetOutput());

matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histograms and the number of points or quantile

values where the histogram is to be matched.

https://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html

306 Chapter 3. Registration

matcher->SetNumberOfHistogramLevels(1024);

matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at the mean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::LevelSetMotionRegistrationFilter, the deformation field is represented as an

image whose pixels are floating point vectors.

using VectorPixelType = itk::Vector<float, Dimension>;

using DisplacementFieldType = itk::Image<VectorPixelType, Dimension>;

using RegistrationFilterType =

itk::LevelSetMotionRegistrationFilter<InternalImageType,

InternalImageType,

DisplacementFieldType>;

auto filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving image

is the output of the histogram matching filter.

filter->SetFixedImage(fixedImageCaster->GetOutput());

filter->SetMovingImage(matcher->GetOutput());

The level set motion registration filter has two parameters: the number of iterations to be performed

and the standard deviation of the Gaussian smoothing kernel to be applied to the image prior to

calculating gradients.

filter->SetNumberOfIterations(50);

filter->SetGradientSmoothingStandardDeviations(4);

The registration algorithm is triggered by updating the filter. The filter output is the computed

deformation field.

filter->Update();

The itk::ResampleImageFilter can be used to warp the moving image with the output defor-

mation field. The itk::ResampleImageFilter requires specifications for the input image to be

resampled: an input image interpolator, a transform, and the output image’s meta-data can be set

from a reference image.

https://www.itk.org/Doxygen/html/classitk_1_1LevelSetMotionRegistrationFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

3.13. Deformable Registration 307

using InterpolatorPrecisionType = double;

using TransformPrecisionType = float;

using WarperType = itk::ResampleImageFilter<MovingImageType,

MovingImageType,

InterpolatorPrecisionType,

TransformPrecisionType>;

using InterpolatorType =

itk::LinearInterpolateImageFunction<MovingImageType,

InterpolatorPrecisionType>;

auto warper = WarperType::New();

auto interpolator = InterpolatorType::New();

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

warper->SetInput(movingImageReader->GetOutput());

warper->SetInterpolator(interpolator);

warper->UseReferenceImageOn();

warper->SetReferenceImage(fixedImage);

The displacement field is not an itk::Transform type. The ResampleImageFilter requires an

itk::Transform as input, so a DisplacementFieldTransform needs to be constructed. The resulting

warped or resampled image is written to file as per previous examples.

using DisplacementFieldTransformType =

itk::DisplacementFieldTransform<TransformPrecisionType, Dimension>;

auto displacementTransform = DisplacementFieldTransformType::New();

displacementTransform->SetDisplacementField(filter->GetOutput());

warper->SetTransform(displacementTransform);

Let’s execute this example using the rat lung data from the previous example. The associated data

files can be found in Examples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

The result of the demons-based deformable registration is presented in Figure 3.47. The checker-

board comparison shows that the algorithm was able to recover the misalignment due to expiration.

It may be also desirable to write the deformation field as an image of vectors. This can be done with

the following code.

using FieldWriterType = itk::ImageFileWriter<DisplacementFieldType>;

auto fieldWriter = FieldWriterType::New();

fieldWriter->SetFileName(argv[4]);

fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

308 Chapter 3. Registration

Figure 3.47: Checkerboard comparisons before and after demons-based deformable registration.

Note that the file format used for writing the deformation field must be capable of representing

multiple components per pixel. This is the case for the MetaImage and VTK file formats.

3.13.4 BSplines Multi-Grid Image Registration

The source code for this section can be found in the file

DeformableRegistration6.cxx.

This example illustrates the use of the itk::BSplineTransform class in a multi-resolution scheme.

Here we run 3 levels of resolutions. The first level of registration is performed with the spline grid

of low resolution. Then, a common practice is to increase the resolution of the B-spline mesh (or,

analogously, the control point grid size) at each level.

For this purpose, we introduce the concept of transform adaptors. Each level of each

stage is defined by a transform adaptor which describes how to adapt the transform to

the current level by increasing the resolution from the previous level. Here, we used

itk::BSplineTransformParametersAdaptor class to adapt the BSpline transform parameters

at each resolution level. Note that for many transforms, such as affine, the concept of an adaptor

may be nonsensical since the number of transform parameters does not change between resolution

levels.

This examples use the itk::LBFGS2Optimizerv4, which is the new implementation of the quasi-

Newton unbounded limited-memory Broyden Fletcher Goldfarb Shannon (LBFGS) optimizer. The

unbounded version does not require specification of the bounds of the parameters space, since the

number of parameters change at each B-Spline resolution this implementation is preferred.

Since this example is quite similar to the previous example on the use of the BSplineTransform

https://www.itk.org/Doxygen/html/classitk_1_1BSplineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1BSplineTransformParametersAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGS2Optimizerv4.html

3.13. Deformable Registration 309

we omit most of the details already discussed and will focus on the aspects related to the multi-

resolution approach.

We include the header files for the transform, optimizer and adaptor.

#include "itkBSplineTransform.h"

#include "itkLBFGS2Optimizerv4.h"

#include "itkBSplineTransformParametersAdaptor.h"

We instantiate the type of the BSplineTransform using as template parameters the type for coordi-

nates representation, the dimension of the space, and the order of the BSpline.

const unsigned int SpaceDimension = ImageDimension;

constexpr unsigned int SplineOrder = 3;

using CoordinateRepType = double;

using TransformType =

itk::BSplineTransform<CoordinateRepType, SpaceDimension, SplineOrder>;

We construct the transform object, initialize its parameters and connect that to the registration object.

auto outputBSplineTransform = TransformType::New();

// Initialize the fixed parameters of transform (grid size, etc).

//

using InitializerType =

itk::BSplineTransformInitializer<TransformType, FixedImageType>;

auto transformInitializer = InitializerType::New();

unsigned int numberOfGridNodesInOneDimension = 8;

TransformType::MeshSizeType meshSize;

meshSize.Fill(numberOfGridNodesInOneDimension - SplineOrder);

transformInitializer->SetTransform(outputBSplineTransform);

transformInitializer->SetImage(fixedImage);

transformInitializer->SetTransformDomainMeshSize(meshSize);

transformInitializer->InitializeTransform();

// Set transform to identity

//

using ParametersType = TransformType::ParametersType;

const unsigned int numberOfParameters =

outputBSplineTransform->GetNumberOfParameters();

ParametersType parameters(numberOfParameters);

parameters.Fill(0.0);

outputBSplineTransform->SetParameters(parameters);

registration->SetInitialTransform(outputBSplineTransform);

registration->InPlaceOn();

310 Chapter 3. Registration

The registration process is run in three levels. The shrink factors and smoothing sigmas are set for

each level.

constexpr unsigned int numberOfLevels = 3;

RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;

shrinkFactorsPerLevel.SetSize(numberOfLevels);

shrinkFactorsPerLevel[0] = 3;

shrinkFactorsPerLevel[1] = 2;

shrinkFactorsPerLevel[2] = 1;

RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;

smoothingSigmasPerLevel.SetSize(numberOfLevels);

smoothingSigmasPerLevel[0] = 2;

smoothingSigmasPerLevel[1] = 1;

smoothingSigmasPerLevel[2] = 0;

registration->SetNumberOfLevels(numberOfLevels);

registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);

registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);

Create the transform adaptors to modify the flexibility of the deformable transform for each level of

this multi-resolution scheme.

RegistrationType::TransformParametersAdaptorsContainerType adaptors;

// First, get fixed image physical dimensions

TransformType::PhysicalDimensionsType fixedPhysicalDimensions;

for (unsigned int i = 0; i < SpaceDimension; ++i)

{

fixedPhysicalDimensions[i] =

fixedImage->GetSpacing()[i] *

static_cast<double>(

fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);

}

// Create the transform adaptors specific to B-splines

for (unsigned int level = 0; level < numberOfLevels; ++level)

{

using ShrinkFilterType =

itk::ShrinkImageFilter<FixedImageType, FixedImageType>;

auto shrinkFilter = ShrinkFilterType::New();

shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]);

shrinkFilter->SetInput(fixedImage);

shrinkFilter->Update();

// A good heuristic is to double the b-spline mesh resolution at each

// level

//

TransformType::MeshSizeType requiredMeshSize;

for (unsigned int d = 0; d < ImageDimension; ++d)

{

3.13. Deformable Registration 311

requiredMeshSize[d] = meshSize[d] << level;

}

using BSplineAdaptorType =

itk::BSplineTransformParametersAdaptor<TransformType>;

auto bsplineAdaptor = BSplineAdaptorType::New();

bsplineAdaptor->SetTransform(outputBSplineTransform);

bsplineAdaptor->SetRequiredTransformDomainMeshSize(requiredMeshSize);

bsplineAdaptor->SetRequiredTransformDomainOrigin(

shrinkFilter->GetOutput()->GetOrigin());

bsplineAdaptor->SetRequiredTransformDomainDirection(

shrinkFilter->GetOutput()->GetDirection());

bsplineAdaptor->SetRequiredTransformDomainPhysicalDimensions(

fixedPhysicalDimensions);

adaptors.push_back(bsplineAdaptor);

}

registration->SetTransformParametersAdaptorsPerLevel(adaptors);

3.13.5 BSplines Multi-Grid Image Registration in 3D

The source code for this section can be found in the file

DeformableRegistration7.cxx.

This example illustrates the use of the itk::BSplineTransform class for performing registration

of two 3D images. The example code is for the most part identical to the code presented in Sec-

tion 3.13.4. The major difference is that in this example we set the image dimension to 3 and replace

the itk::LBFGSOptimizerv4 optimizer with the itk::LBFGSBOptimizerv4. We made the mod-

ification because we found that LBFGS does not behave well when the starting position is at or close

to optimal; instead we used LBFGSB in unconstrained mode.

The following are the most relevant headers to this example.

#include "itkBSplineTransform.h"

#include "itkLBFGSBOptimizerv4.h"

The parameter space of the BSplineTransform is composed by the set of all the deformations as-

sociated with the nodes of the BSpline grid. This large number of parameters enables it to represent

a wide variety of deformations, at the cost of requiring a significant amount of computation time.

We instantiate now the type of the BSplineTransform using as template parameters the type for

coordinates representation, the dimension of the space, and the order of the BSpline.

const unsigned int SpaceDimension = ImageDimension;

constexpr unsigned int SplineOrder = 3;

using CoordinateRepType = double;

https://www.itk.org/Doxygen/html/classitk_1_1BSplineTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSOptimizerv4.html
https://www.itk.org/Doxygen/html/classitk_1_1LBFGSBOptimizerv4.html

312 Chapter 3. Registration

using TransformType =

itk::BSplineTransform<CoordinateRepType, SpaceDimension, SplineOrder>;

The transform object is constructed, initialized like previous examples and passed to the registration

method.

auto outputBSplineTransform = TransformType::New();

registration->SetInitialTransform(outputBSplineTransform);

registration->InPlaceOn();

Next we set the parameters of the LBFGSB Optimizer. Note that this optimizer does not sup-

port scales estimator and sets all the parameters scales to one. Also, we should set the boundary

condition for each variable, where boundSelect[i] can be set as: UNBOUNDED, LOWERBOUNDED,

BOTHBOUNDED, UPPERBOUNDED.

const unsigned int numParameters =

outputBSplineTransform->GetNumberOfParameters();

OptimizerType::BoundSelectionType boundSelect(numParameters);

OptimizerType::BoundValueType upperBound(numParameters);

OptimizerType::BoundValueType lowerBound(numParameters);

boundSelect.Fill(OptimizerType::UNBOUNDED);

upperBound.Fill(0.0);

lowerBound.Fill(0.0);

optimizer->SetBoundSelection(boundSelect);

optimizer->SetUpperBound(upperBound);

optimizer->SetLowerBound(lowerBound);

optimizer->SetCostFunctionConvergenceFactor(1e+12);

optimizer->SetGradientConvergenceTolerance(1.0e-35);

optimizer->SetNumberOfIterations(500);

optimizer->SetMaximumNumberOfFunctionEvaluations(500);

optimizer->SetMaximumNumberOfCorrections(5);

3.13.6 Image Warping with Kernel Splines

The source code for this section can be found in the file

LandmarkWarping2.cxx.

This example illustrates how to deform an image using a KernelBase spline and two sets of land-

marks.

3.13. Deformable Registration 313

In addition to standard headers included in previous examples, this example requires the following

includes:

#include "itkVector.h"

#include "itkLandmarkDisplacementFieldSource.h"

#include <fstream>

After reading in the fixed and moving images, the deformer object is instantiated from the

itk::LandmarkDisplacementFieldSource class, and parameters of the image space and orienta-

tion are set.

using DisplacementSourceType =

itk::LandmarkDisplacementFieldSource<DisplacementFieldType>;

auto deformer = DisplacementSourceType::New();

deformer->SetOutputSpacing(fixedImage->GetSpacing());

deformer->SetOutputOrigin(fixedImage->GetOrigin());

deformer->SetOutputRegion(fixedImage->GetLargestPossibleRegion());

deformer->SetOutputDirection(fixedImage->GetDirection());

Source and target landmarks are then created, and the points themselves are read in from a file

stream.

using LandmarkContainerType = DisplacementSourceType::LandmarkContainer;

using LandmarkPointType = DisplacementSourceType::LandmarkPointType;

auto sourceLandmarks = LandmarkContainerType::New();

auto targetLandmarks = LandmarkContainerType::New();

LandmarkPointType sourcePoint;

LandmarkPointType targetPoint;

std::ifstream pointsFile;

pointsFile.open(argv[1]);

unsigned int pointId = 0;

pointsFile >> sourcePoint;

pointsFile >> targetPoint;

while (!pointsFile.fail())

{

sourceLandmarks->InsertElement(pointId, sourcePoint);

targetLandmarks->InsertElement(pointId, targetPoint);

++pointId;

pointsFile >> sourcePoint;

pointsFile >> targetPoint;

314 Chapter 3. Registration

}

pointsFile.close();

The source and target landmark objects are then assigned to deformer.

deformer->SetSourceLandmarks(sourceLandmarks);

deformer->SetTargetLandmarks(targetLandmarks);

After calling UpdateLargestPossibleRegion() on the deformer, the displacement field may be

obtained via the GetOutput() method.

3.13.7 Image Warping with BSplines

The source code for this section can be found in the file

BSplineWarping1.cxx.

This example illustrates how to deform a 2D image using a BSplineTransform.

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"

#include "itkBSplineTransform.h"

#include "itkTransformFileWriter.h"

First, we define the necessary types for the fixed and moving images and image readers.

constexpr unsigned int ImageDimension = 2;

using PixelType = unsigned char;

using FixedImageType = itk::Image<PixelType, ImageDimension>;

using MovingImageType = itk::Image<PixelType, ImageDimension>;

using FixedReaderType = itk::ImageFileReader<FixedImageType>;

using MovingReaderType = itk::ImageFileReader<MovingImageType>;

using MovingWriterType = itk::ImageFileWriter<MovingImageType>;

Use the values from the fixed image to set the corresponding values in the resampler.

3.13. Deformable Registration 315

FixedImageType::SpacingType fixedSpacing = fixedImage->GetSpacing();

FixedImageType::PointType fixedOrigin = fixedImage->GetOrigin();

FixedImageType::DirectionType fixedDirection = fixedImage->GetDirection();

resampler->SetOutputSpacing(fixedSpacing);

resampler->SetOutputOrigin(fixedOrigin);

resampler->SetOutputDirection(fixedDirection);

FixedImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();

FixedImageType::SizeType fixedSize = fixedRegion.GetSize();

resampler->SetSize(fixedSize);

resampler->SetOutputStartIndex(fixedRegion.GetIndex());

resampler->SetInput(movingReader->GetOutput());

movingWriter->SetInput(resampler->GetOutput());

We instantiate now the type of the BSplineTransform using as template parameters the type for

coordinates representation, the dimension of the space, and the order of the B-spline.

const unsigned int SpaceDimension = ImageDimension;

constexpr unsigned int SplineOrder = 3;

using CoordinateRepType = double;

using TransformType =

itk::BSplineTransform<CoordinateRepType, SpaceDimension, SplineOrder>;

auto bsplineTransform = TransformType::New();

Next, fill the parameters of the B-spline transform using values from the fixed image and mesh.

constexpr unsigned int numberOfGridNodes = 7;

TransformType::PhysicalDimensionsType fixedPhysicalDimensions;

TransformType::MeshSizeType meshSize;

for (unsigned int i = 0; i < SpaceDimension; ++i)

{

fixedPhysicalDimensions[i] =

fixedSpacing[i] * static_cast<double>(fixedSize[i] - 1);

}

meshSize.Fill(numberOfGridNodes - SplineOrder);

bsplineTransform->SetTransformDomainOrigin(fixedOrigin);

bsplineTransform->SetTransformDomainPhysicalDimensions(

fixedPhysicalDimensions);

bsplineTransform->SetTransformDomainMeshSize(meshSize);

bsplineTransform->SetTransformDomainDirection(fixedDirection);

316 Chapter 3. Registration

using ParametersType = TransformType::ParametersType;

const unsigned int numberOfParameters =

bsplineTransform->GetNumberOfParameters();

const unsigned int numberOfNodes = numberOfParameters / SpaceDimension;

ParametersType parameters(numberOfParameters);

The B-spline grid should now be fed with coefficients at each node. Since this is a two-dimensional

grid, each node should receive two coefficients. Each coefficient pair is representing a displacement

vector at this node. The coefficients can be passed to the B-spline in the form of an array where the

first set of elements are the first component of the displacements for all the nodes, and the second

set of elements is formed by the second component of the displacements for all the nodes.

In this example we read such displacements from a file, but for convenience we have written this

file using the pairs of (x,y) displacement for every node. The elements read from the file should

therefore be reorganized when assigned to the elements of the array. We do this by storing all the

odd elements from the file in the first block of the array, and all the even elements from the file

in the second block of the array. Finally the array is passed to the B-spline transform using the

SetParameters() method.

std::ifstream infile;

infile.open(argv[1]);

for (unsigned int n = 0; n < numberOfNodes; ++n)

{

infile >> parameters[n];

infile >> parameters[n + numberOfNodes];

}

infile.close();

Finally the array is passed to the B-spline transform using the SetParameters().

bsplineTransform->SetParameters(parameters);

At this point we are ready to use the transform as part of the resample filter. We trigger the execution

of the pipeline by invoking Update() on the last filter of the pipeline, in this case writer.

resampler->SetTransform(bsplineTransform);

try

{

movingWriter->Update();

}

catch (const itk::ExceptionObject & excp)

3.13. Deformable Registration 317

{

std::cerr << "Exception thrown " << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

318 Chapter 3. Registration

3.14 Demons Deformable Registration

For the problem of intra-modality deformable registration, the Insight Toolkit provides an imple-

mentation of Thirion’s “demons” algorithm [61, 62]. In this implementation, each image is viewed

as a set of iso-intensity contours. The main idea is that a regular grid of forces deform an image by

pushing the contours in the normal direction. The orientation and magnitude of the displacement is

derived from the instantaneous optical flow equation:

D(X) ·∇f(X) =−(m(X)− f(X)) (3.33)

In the above equation, f (X) is the fixed image, m(X) is the moving image to be registered, and D(X)
is the displacement or optical flow between the images. It is well known in optical flow literature that

Equation 3.33 is insufficient to specify D(X) locally and is usually determined using some form of

regularization. For registration, the projection of the vector on the direction of the intensity gradient

is used:

D(X) =− (m(X)− f(X))∇f(X)

‖∇f‖2
(3.34)

However, this equation becomes unstable for small values of the image gradient, resulting in large

displacement values. To overcome this problem, Thirion re-normalizes the equation such that:

D(X) =− (m(X)− f(X))∇f(X)

‖∇f‖2 +(m(X)− f(X))2 /K
(3.35)

Where K is a normalization factor that accounts for the units imbalance between intensities and

gradients. This factor is computed as the mean squared value of the pixel spacings. The inclusion

of K ensures the force computation is invariant to the pixel scaling of the images.

Starting with an initial deformation field D0(X), the demons algorithm iteratively updates the field

using Equation 3.35 such that the field at the N-th iteration is given by:

DN(X) = DN−1(X)−
(

m(X+DN−1(X))− f(X)
)

∇f(X)

‖∇f‖2 +(m(X+DN−1(X))− f(X))
2

(3.36)

Reconstruction of the deformation field is an ill-posed problem where matching the fixed and moving

images has many solutions. For example, since each image pixel is free to move independently, it is

possible that all pixels of one particular value in m(X) could map to a single image pixel in f (X) of

the same value. The resulting deformation field may be unrealistic for real-world applications. An

option to solve for the field uniquely is to enforce an elastic-like behavior, smoothing the deformation

field with a Gaussian filter between iterations.

In ITK, the demons algorithm is implemented as part of the finite difference solver (FDS) framework

and its use is demonstrated in the following example.

3.14. Demons Deformable Registration 319

3.14.1 Asymmetrical Demons Deformable Registration

The source code for this section can be found in the file

DeformableRegistration2.cxx.

This example demonstrates how to use the “demons” algorithm to deformably register two images.

The first step is to include the header files.

#include "itkDemonsRegistrationFilter.h"

#include "itkHistogramMatchingImageFilter.h"

#include "itkCastImageFilter.h"

#include "itkResampleImageFilter.h"

#include "itkDisplacementFieldTransform.h"

Second, we declare the types of the images.

constexpr unsigned int Dimension = 2;

using PixelType = unsigned short;

using FixedImageType = itk::Image<PixelType, Dimension>;

using MovingImageType = itk::Image<PixelType, Dimension>;

Image file readers are set up in a similar fashion to previous examples. To support the re-mapping

of the moving image intensity, we declare an internal image type with a floating point pixel type and

cast the input images to the internal image type.

using InternalPixelType = float;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

using FixedImageCasterType =

itk::CastImageFilter<FixedImageType, InternalImageType>;

using MovingImageCasterType =

itk::CastImageFilter<MovingImageType, InternalImageType>;

auto fixedImageCaster = FixedImageCasterType::New();

auto movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());

movingImageCaster->SetInput(movingImageReader->GetOutput());

The demons algorithm relies on the assumption that pixels representing the same homologous point

on an object have the same intensity on both the fixed and moving images to be registered. In this

example, we will preprocess the moving image to match the intensity between the images using the

itk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at a user-specified number of quantile

values. For robustness, the histograms are matched so that the background pixels are excluded from

both histograms. For MR images, a simple procedure is to exclude all gray values that are smaller

than the mean gray value of the image.

https://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html

320 Chapter 3. Registration

using MatchingFilterType =

itk::HistogramMatchingImageFilter<InternalImageType, InternalImageType>;

auto matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as the

reference image.

matcher->SetInput(movingImageCaster->GetOutput());

matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histograms and the number of points or quantile

values where the histogram is to be matched.

matcher->SetNumberOfHistogramLevels(1024);

matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at the mean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::DemonsRegistrationFilter , the deformation field is represented as an image whose

pixels are floating point vectors.

using VectorPixelType = itk::Vector<float, Dimension>;

using DisplacementFieldType = itk::Image<VectorPixelType, Dimension>;

using RegistrationFilterType =

itk::DemonsRegistrationFilter<InternalImageType,

InternalImageType,

DisplacementFieldType>;

auto filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving image

is the output of the histogram matching filter.

filter->SetFixedImage(fixedImageCaster->GetOutput());

filter->SetMovingImage(matcher->GetOutput());

The demons registration filter has two parameters: the number of iterations to be performed and the

standard deviation of the Gaussian smoothing kernel to be applied to the deformation field after each

iteration.

https://www.itk.org/Doxygen/html/classitk_1_1DemonsRegistrationFilter.html

3.14. Demons Deformable Registration 321

filter->SetNumberOfIterations(50);

filter->SetStandardDeviations(1.0);

The registration algorithm is triggered by updating the filter. The filter output is the computed

deformation field.

filter->Update();

The itk::ResampleImageFilter can be used to warp the moving image with the output deforma-

tion field. The default interpolator of the itk::ResampleImageFilter , is used but specification

of the output image spacing and origin are required.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

using InterpolatorPrecisionType = double;

using WarperType = itk::ResampleImageFilter<MovingImageType,

OutputImageType,

InterpolatorPrecisionType,

float>;

auto warper = WarperType::New();

warper->SetInput(movingImageReader->GetOutput());

warper->UseReferenceImageOn();

warper->SetReferenceImage(fixedImageReader->GetOutput());

The ResampleImageFilter requires a transform, so a itk::DisplacementFieldTransform

must be constructed then set as the transform of the ResampleImageFilter. The resulting warped

or resampled image is written to file as per previous examples.

using DisplacementFieldTransformType =

itk::DisplacementFieldTransform<InternalPixelType, Dimension>;

auto displacementTransform = DisplacementFieldTransformType::New();

displacementTransform->SetDisplacementField(filter->GetOutput());

warper->SetTransform(displacementTransform);

Let’s execute this example using the rat lung data from the previous example. The associated data

files can be found in Examples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1DisplacementFieldTransform.html

322 Chapter 3. Registration

Figure 3.48: Checkerboard comparisons before and after demons-based deformable registration.

The result of the demons-based deformable registration is presented in Figure 3.48. The checker-

board comparison shows that the algorithm was able to recover the misalignment due to expiration.

It may be also desirable to write the deformation field as an image of vectors. This can be done with

the following code.

using FieldWriterType = itk::ImageFileWriter<DisplacementFieldType>;

auto fieldWriter = FieldWriterType::New();

fieldWriter->SetFileName(argv[4]);

fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

Note that the file format used for writing the deformation field must be capable of representing mul-

tiple components per pixel. This is the case for the MetaImage and VTK file formats for example.

A variant of the force computation is also implemented in which the gradient of the deformed mov-

ing image is also involved. This provides a level of symmetry in the force calculation during one

iteration of the PDE update. The equation used in this case is

D(X) =−2(m(X)− f(X))(∇f(X)+∇g(X))

‖∇f+∇g‖2 +(m(X)− f(X))2 /K
(3.37)

The following example illustrates the use of this deformable registration method.

3.14. Demons Deformable Registration 323

3.14.2 Symmetrical Demons Deformable Registration

The source code for this section can be found in the file

DeformableRegistration3.cxx.

This example demonstrates how to use a variant of the “demons” algorithm to deformably register

two images. This variant uses a different formulation for computing the forces to be applied to

the image in order to compute the deformation fields. The variant uses both the gradient of the

fixed image and the gradient of the deformed moving image in order to compute the forces. This

mechanism for computing the forces introduces a symmetry with respect to the choice of the fixed

and moving images. This symmetry only holds during the computation of one iteration of the

PDE updates. It is unlikely that total symmetry may be achieved by this mechanism for the entire

registration process.

The first step for using this filter is to include the following header files.

#include "itkSymmetricForcesDemonsRegistrationFilter.h"

#include "itkHistogramMatchingImageFilter.h"

#include "itkCastImageFilter.h"

#include "itkDisplacementFieldTransform.h"

#include "itkResampleImageFilter.h"

Second, we declare the types of the images.

constexpr unsigned int Dimension = 2;

using PixelType = unsigned short;

using FixedImageType = itk::Image<PixelType, Dimension>;

using MovingImageType = itk::Image<PixelType, Dimension>;

Image file readers are set up in a similar fashion to previous examples. To support the re-mapping

of the moving image intensity, we declare an internal image type with a floating point pixel type and

cast the input images to the internal image type.

using InternalPixelType = float;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

using FixedImageCasterType =

itk::CastImageFilter<FixedImageType, InternalImageType>;

using MovingImageCasterType =

itk::CastImageFilter<MovingImageType, InternalImageType>;

auto fixedImageCaster = FixedImageCasterType::New();

auto movingImageCaster = MovingImageCasterType::New();

fixedImageCaster->SetInput(fixedImageReader->GetOutput());

movingImageCaster->SetInput(movingImageReader->GetOutput());

The demons algorithm relies on the assumption that pixels representing the same homologous point

324 Chapter 3. Registration

on an object have the same intensity on both the fixed and moving images to be registered. In this

example, we will preprocess the moving image to match the intensity between the images using the

itk::HistogramMatchingImageFilter.

The basic idea is to match the histograms of the two images at a user-specified number of quantile

values. For robustness, the histograms are matched so that the background pixels are excluded from

both histograms. For MR images, a simple procedure is to exclude all gray values that are smaller

than the mean gray value of the image.

using MatchingFilterType =

itk::HistogramMatchingImageFilter<InternalImageType, InternalImageType>;

auto matcher = MatchingFilterType::New();

For this example, we set the moving image as the source or input image and the fixed image as the

reference image.

matcher->SetInput(movingImageCaster->GetOutput());

matcher->SetReferenceImage(fixedImageCaster->GetOutput());

We then select the number of bins to represent the histograms and the number of points or quantile

values where the histogram is to be matched.

matcher->SetNumberOfHistogramLevels(1024);

matcher->SetNumberOfMatchPoints(7);

Simple background extraction is done by thresholding at the mean intensity.

matcher->ThresholdAtMeanIntensityOn();

In the itk::SymmetricForcesDemonsRegistrationFilter , the deformation field is represented

as an image whose pixels are floating point vectors.

using VectorPixelType = itk::Vector<float, Dimension>;

using DisplacementFieldType = itk::Image<VectorPixelType, Dimension>;

using RegistrationFilterType =

itk::SymmetricForcesDemonsRegistrationFilter<InternalImageType,

InternalImageType,

DisplacementFieldType>;

auto filter = RegistrationFilterType::New();

The input fixed image is simply the output of the fixed image casting filter. The input moving image

is the output of the histogram matching filter.

https://www.itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SymmetricForcesDemonsRegistrationFilter.html

3.14. Demons Deformable Registration 325

filter->SetFixedImage(fixedImageCaster->GetOutput());

filter->SetMovingImage(matcher->GetOutput());

The demons registration filter has two parameters: the number of iterations to be performed and the

standard deviation of the Gaussian smoothing kernel to be applied to the deformation field after each

iteration.

filter->SetNumberOfIterations(50);

filter->SetStandardDeviations(1.0);

The registration algorithm is triggered by updating the filter. The filter output is the computed

deformation field.

filter->Update();

The itk::ResampleImageFilter can be used to warp the moving image with the output defor-

mation field. The itk::ResampleImageFilter requires specifications for the input image to be

resampled: an input image interpolator, a transform and the output image’s meta-data can be set

from a reference image.

using InterpolatorPrecisionType = double;

using TransformPrecisionType = float;

using WarperType = itk::ResampleImageFilter<MovingImageType,

MovingImageType,

InterpolatorPrecisionType,

TransformPrecisionType>;

using InterpolatorType =

itk::LinearInterpolateImageFunction<MovingImageType,

InterpolatorPrecisionType>;

auto warper = WarperType::New();

auto interpolator = InterpolatorType::New();

FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

warper->SetInput(movingImageReader->GetOutput());

warper->SetInterpolator(interpolator);

warper->UseReferenceImageOn();

warper->SetReferenceImage(fixedImage);

The displacement field is not an itk::Transform type. The ResampleImageFilter requires an

itk::Transform as input, so a DisplacementFieldTransform needs to be constructed. The resulting

warped or resampled image is written to file as per previous examples.

using DisplacementFieldTransformType =

itk::DisplacementFieldTransform<TransformPrecisionType, Dimension>;

auto displacementTransform = DisplacementFieldTransformType::New();

displacementTransform->SetDisplacementField(filter->GetOutput());

warper->SetTransform(displacementTransform);

https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ResampleImageFilter.html

326 Chapter 3. Registration

Figure 3.49: Checkerboard comparisons before and after demons-based deformable registration.

Let’s execute this example using the rat lung data from the previous example. The associated data

files can be found in Examples/Data:

• RatLungSlice1.mha

• RatLungSlice2.mha

The result of the demons-based deformable registration is presented in Figure 3.49. The checker-

board comparison shows that the algorithm was able to recover the misalignment due to expiration.

It may be also desirable to write the deformation field as an image of vectors. This can be done with

the following code.

using FieldWriterType = itk::ImageFileWriter<DisplacementFieldType>;

auto fieldWriter = FieldWriterType::New();

fieldWriter->SetFileName(argv[4]);

fieldWriter->SetInput(filter->GetOutput());

fieldWriter->Update();

Note that the file format used for writing the deformation field must be capable of representing mul-

tiple components per pixel. This is the case for the MetaImage and VTK file formats for example.

3.15. Visualizing Deformation fields 327

3.15 Visualizing Deformation fields

Vector deformation fields may be visualized using ParaView. ParaView [25] is an open-source,

multi-platform visualization application and uses the Visualization Toolkit as the data processing

and rendering engine and has a user interface written using a unique blend of Tcl/Tk and C++. You

may download it from https://paraview.org.

3.15.1 Visualizing 2D deformation fields

Let us visualize the deformation field obtained from Demons Registration algorithm generated from

ITK/Examples/RegistrationITKv4/DeformableRegistration2.cxx.

Load the Deformation field in Paraview. (The deformation field must be capable of handling vector

data, such as MetaImages). Paraview shows a color map of the magnitudes of the deformation fields

as shown in 3.50.

Covert the deformation field to 3D vector data using a Calculator. The Calculator may be found in

the Filter pull down menu. A screenshot of the calculator tab is shown in Figure 3.51. Although

the deformation field is a 2D vector, we will generate a 3D vector with the third component set to 0

since Paraview generates glyphs only for 3D vectors. You may now apply a glyph of arrows to the

resulting 3D vector field by using Glyph on the menu bar. The glyphs obtained will be very dense

since a glyph is generated for each point in the data set. To better visualize the deformation field,

you may adopt one of the following approaches.

Reduce the number of glyphs by reducing the number in Max. Number of Glyphs to a reason-

able amount. This uniformly downsamples the number of glyphs. Alternatively, you may apply a

Threshold filter to the Magnitude of the vector dataset and then glyph the vector data that lie above

the threshold. This eliminates the smaller deformation fields that clutter the display. You may now

reduce the number of glyphs to a reasonable value.

Figure 3.52 shows the vector field visualized using Paraview by thresholding the vector magnitudes

by 2.1 and restricting the number of glyphs to 100.

3.15.2 Visualizing 3D deformation fields

Let us create a 3D deformation field. We will use Thin Plate Splines to warp a 3D dataset and create a

deformation field. We will pick a set of point landmarks and translate them to provide a specification

of correspondences at point landmarks. Note that the landmarks have been picked randomly for

purposes of illustration and are not intended to portray a true deformation. The landmarks may be

used to produce a deformation field in several ways. Most techniques minimize some regularizing

functional representing the irregularity of the deformation field, which is usually some function of

the spatial derivatives of the field. Here will we use thin plate splines. Thin plate splines minimize

the regularizing functional

328 Chapter 3. Registration

Figure 3.50: Deformation field magnitudes displayed using Paraview

Figure 3.51: Calculators and filters may be used to compute the vector magnitude, compose vectors etc.

3.15. Visualizing Deformation fields 329

Figure 3.52: Deformation field visualized using Paraview after thresholding and subsampling.

330 Chapter 3. Registration

Figure 3.53: 3D Deformation field visualized using Paraview.

I[f (x,y)] =

∫∫
(f 2

xx + 2 f 2
xy + f 2

yy)dxdy (3.38)

where the subscripts denote partial derivatives of f.

We may now proceed as before to visualize the deformation field using Paraview as shown in Figure

3.53.

Let us register the deformed volumes generated by Thin plate warping in the previous example

using DeformableRegistration4.cxx. Since ITK is in general N-dimensional, the only change in the

example is to replace the ImageDimension by 3.

The registration method uses B-splines and an LBFGS optimizer. The trace in Table. 3.17 prints the

trace of the optimizer through the search space.

Here ‖G‖ is the norm of the gradient at the current estimate of the minimum, x. “Function Value” is

the current value of the function, f(x).

3.15. Visualizing Deformation fields 331

Iteration Function

value

‖G‖ Step length

1 156.981 14.911 0.202

2 68.956 11.774 1.500

3 38.146 4.802 1.500

4 26.690 2.515 1.500

5 23.295 1.106 1.500

6 21.454 1.032 1.500

7 20.322 1.557 1.500

8 19.751 0.594 1.500

Table 3.17: LBFGS Optimizer trace.

The resulting deformation field that maps the moving to the fixed image is shown in 3.54. A dif-

ference image of two slices before and after registration is shown in 3.55. As can be seen from the

figures, the deformation field is in close agreement to the one generated from the Thin plate spline

warping.

332 Chapter 3. Registration

Figure 3.54: Resulting deformation field that maps the moving image to the fixed image.

Figure 3.55: Difference image from a slice before and after registration.

3.16. Model Based Registration 333

3.16 Model Based Registration

This section introduces the concept of

points

Optimizer

Transform

Interpolator

Metric

Moving Image

SpatialObject
fitness value

points

pixels

pixels

Parameters

Figure 3.56: The basic components of model based regis-

tration are an image, a spatial object, a transform, a met-

ric, an interpolator and an optimizer.

registering a geometrical model with

an image. We refer to this concept as

model based registration but this may

not be the most widespread terminol-

ogy. In this approach, a geometrical

model is built first and a number of

parameters are identified in the model.

Variations of these parameters make it

possible to adapt the model to the mor-

phology of a particular patient. The task

of registration is then to find the optimal combination of model parameters that will make this model

a good representation of the anatomical structures contained in an image.

For example, let’s say that in the axial view of a brain image we can roughly approximate the skull

with an ellipse. The ellipse becomes our simplified geometrical model, and registration is the task of

finding the best center for the ellipse, the measures of its axis lengths and its orientation in the plane.

This is illustrated in Figure 3.57. If we compare this approach with the image-to-image registration

problem, we can see that the main difference here is that in addition to mapping the spatial position

of the model, we can also customize internal parameters that change its shape.

Figure 3.56 illustrates the major components of the registration framework in ITK when a model-

based registration problem is configured. The basic input data for the registration is provided by

pixel data in an itk::Image and by geometrical data stored in a itk::SpatialObject. A metric

has to be defined in order to evaluate the fitness between the model and the image. This fitness value

can be improved by introducing variations in the spatial positioning of the SpatialObject and/or by

changing its internal parameters. The search space for the optimizer is now the composition of the

transform parameter and the shape internal parameters.

This same approach can be considered a segmentation technique, since once the model has been

optimally superimposed on the image we could label pixels according to their associations with spe-

cific parts of the model. The applications of model to image registration/segmentation are endless.

The main advantage of this approach is probably that, as opposed to image-to-image registration, it

actually provides Insight into the anatomical structure contained in the image. The adapted model

becomes a condensed representation of the essential elements of the anatomical structure.

ITK provides a hierarchy of classes intended to support the construction of shape models. This

hierarchy has the SpatialObject as its base class. A number of basic functionalities are defined at

this level, including the capacity to evaluate whether a given point is inside or outside of the model,

form complex shapes by creating hierarchical conglomerates of basic shapes, and support basic

spatial parameterizations like scale, orientation and position.

The following sections present examples of the typical uses of these powerful elements of the toolkit.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html

334 Chapter 3. Registration

Model and Image Before Registration Model and Image After Registration

Figure 3.57: Basic concept of Model-to-Image registration. A simplified geometrical model (ellipse) is regis-

tered against an anatomical structure (skull) by applying a spatial transform and modifying the model internal

parameters. This image is not the result of an actual registration, it is shown here only with the purpose of

illustrating the concept of model to image registration.

The source code for this section can be found in the file

ModelToImageRegistration1.cxx.

This example illustrates the use of the itk::SpatialObject as a component of the registration

framework in order to perform model based registration. The current example creates a geometrical

model composed of several ellipses. Then, it uses the model to produce a synthetic binary image of

the ellipses. Next, it introduces perturbations on the position and shape of the model, and finally it

uses the perturbed version as the input to a registration problem. A metric is defined to evaluate the

fitness between the geometric model and the image.

Let’s look first at the classes required to support SpatialObject. In this example we

use the itk::EllipseSpatialObject as the basic shape components and we use the

itk::GroupSpatialObject to group them together as a representation of a more complex shape.

Their respective headers are included below.

#include "itkEllipseSpatialObject.h"

#include "itkGroupSpatialObject.h"

In order to generate the initial synthetic image of the ellipses, we use the

itk::SpatialObjectToImageFilter that tests—for every pixel in the image—whether the

pixel (and hence the spatial object) is inside or outside the geometric model.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1GroupSpatialObject.html
https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html

3.16. Model Based Registration 335

#include "itkSpatialObjectToImageFilter.h"

A metric is defined to evaluate the fitness between the SpatialObject and the Image. The base class

for this type of metric is the itk::ImageToSpatialObjectMetric, whose header is included

below.

#include "itkImageToSpatialObjectMetric.h"

As in previous registration problems, we have to evaluate the image intensity in non-grid positions.

The itk::LinearInterpolateImageFunction is used here for this purpose.

#include "itkLinearInterpolateImageFunction.h"

The SpatialObject is mapped from its own space into the image space by using a itk::Transform.

In this example, we use the itk::Euler2DTransform.

#include "itkEuler2DTransform.h"

Registration is fundamentally an optimization problem. Here we include the optimizer used to search

the parameter space and identify the best transformation that will map the shape model on top of

the image. The optimizer used in this example is the itk::OnePlusOneEvolutionaryOptimizer

that implements an evolutionary algorithm.

#include "itkOnePlusOneEvolutionaryOptimizer.h"

As in previous registration examples, it is important to track the evolution of the optimizer as it

progresses through the parameter space. This is done by using the Command/Observer paradigm.

The following lines of code implement the itk::Command observer that monitors the progress of

the registration. The code is quite similar to what we have used in previous registration examples.

#include "itkCommand.h"

template <class TOptimizer>

class IterationCallback : public itk::Command

{

public:

using Self = IterationCallback;

using Superclass = itk::Command;

using Pointer = itk::SmartPointer<Self>;

using ConstPointer = itk::SmartPointer<const Self>;

itkOverrideGetNameOfClassMacro(IterationCallback);

itkNewMacro(Self);

/** Type defining the optimizer. */

https://www.itk.org/Doxygen/html/classitk_1_1ImageToSpatialObjectMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1LinearInterpolateImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Transform.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html
http://www.aic.nrl.navy.mil/galist/
https://www.itk.org/Doxygen/html/classitk_1_1Command.html

336 Chapter 3. Registration

using OptimizerType = TOptimizer;

/** Method to specify the optimizer. */

void

SetOptimizer(OptimizerType * optimizer)

{

m_Optimizer = optimizer;

m_Optimizer->AddObserver(itk::IterationEvent(), this);

}

/** Execute method will print data at each iteration */

void

Execute(itk::Object * caller, const itk::EventObject & event) override

{

Execute((const itk::Object *)caller, event);

}

void

Execute(const itk::Object *, const itk::EventObject & event) override

{

if (typeid(event) == typeid(itk::StartEvent))

{

std::cout << std::endl << "Position Value";

std::cout << std::endl << std::endl;

}

else if (typeid(event) == typeid(itk::IterationEvent))

{

std::cout << m_Optimizer->GetCurrentIteration() << " ";

std::cout << m_Optimizer->GetValue() << " ";

std::cout << m_Optimizer->GetCurrentPosition() << std::endl;

}

else if (typeid(event) == typeid(itk::EndEvent))

{

std::cout << std::endl << std::endl;

std::cout << "After " << m_Optimizer->GetCurrentIteration();

std::cout << " iterations " << std::endl;

std::cout << "Solution is = " << m_Optimizer->GetCurrentPosition();

std::cout << std::endl;

}

}

This command will be invoked at every iteration of the optimizer and will print out the current

combination of transform parameters.

Consider now the most critical component of this new registration approach: the metric. This com-

ponent evaluates the match between the SpatialObject and the Image. The smoothness and regularity

of the metric determine the difficulty of the task assigned to the optimizer. In this case, we use a very

robust optimizer that should be able to find its way even in the most discontinuous cost functions.

The metric to be implemented should derive from the ImageToSpatialObjectMetric class.

The following code implements a simple metric that computes the sum of the pixels that are inside

the spatial object. In fact, the metric maximum is obtained when the model and the image are

3.16. Model Based Registration 337

aligned. The metric is templated over the type of the SpatialObject and the type of the Image.

template <typename TFixedImage, typename TMovingSpatialObject>

class SimpleImageToSpatialObjectMetric

: public itk::ImageToSpatialObjectMetric<TFixedImage, TMovingSpatialObject>

{

The fundamental operation of the metric is its GetValue() method. It is in this method that the

fitness value is computed. In our current example, the fitness is computed over the points of the

SpatialObject. For each point, its coordinates are mapped through the transform into image space.

The resulting point is used to evaluate the image and the resulting value is accumulated in a sum.

Since we are not allowing scale changes, the optimal value of the sum will result when all the

SpatialObject points are mapped on the white regions of the image. Note that the argument for the

GetValue() method is the array of parameters of the transform.

MeasureType

GetValue(const ParametersType & parameters) const override

{

double value;

this->m_Transform->SetParameters(parameters);

value = 0;

for (auto it : m_PointList)

{

PointType transformedPoint = this->m_Transform->TransformPoint(it);

if (this->m_Interpolator->IsInsideBuffer(transformedPoint))

{

value += this->m_Interpolator->Evaluate(transformedPoint);

}

}

return value;

}

Having defined all the registration components we are ready to put the pieces together and implement

the registration process.

First we instantiate the GroupSpatialObject and EllipseSpatialObject. These two objects are param-

eterized by the dimension of the space. In our current example a 2D instantiation is created.

using GroupType = itk::GroupSpatialObject<2>;

using EllipseType = itk::EllipseSpatialObject<2>;

The image is instantiated in the following lines using the pixel type and the space dimension. This

image uses a float pixel type since we plan to blur it in order to increase the capture radius of the

optimizer. Images of real pixel type behave better under blurring than those of integer pixel type.

338 Chapter 3. Registration

using ImageType = itk::Image<float, 2>;

Here is where the fun begins! In the following lines we create the EllipseSpatialObjects using their

New() methods, and assigning the results to SmartPointers. These lines will create three ellipses.

auto ellipse1 = EllipseType::New();

auto ellipse2 = EllipseType::New();

auto ellipse3 = EllipseType::New();

Every class deriving from SpatialObject has particular parameters enabling the user to tailor its

shape. In the case of the EllipseSpatialObject, SetRadius() is used to define the ellipse size. An

additional SetRadius(Array) method allows the user to define the ellipse axes independently.

ellipse1->SetRadiusInObjectSpace(10.0);

ellipse2->SetRadiusInObjectSpace(10.0);

ellipse3->SetRadiusInObjectSpace(10.0);

The ellipses are created centered in space by default. We use the following lines of code to ar-

range the ellipses in a triangle. The spatial transform intrinsically associated with the object is

accessed by the GetTransform() method. This transform can define a translation in space with the

SetOffset() method. We take advantage of this feature to place the ellipses at particular points in

space.

EllipseType::TransformType::OffsetType offset;

offset[0] = 100.0;

offset[1] = 40.0;

ellipse1->GetModifiableObjectToParentTransform()->SetOffset(offset);

ellipse1->Update();

offset[0] = 40.0;

offset[1] = 150.0;

ellipse2->GetModifiableObjectToParentTransform()->SetOffset(offset);

ellipse2->Update();

offset[0] = 150.0;

offset[1] = 150.0;

ellipse3->GetModifiableObjectToParentTransform()->SetOffset(offset);

ellipse3->Update();

Note that after a change has been made in the transform, the SpatialObject invokes the method

ComputeGlobalTransform() in order to update its global transform. The reason for doing this is

that SpatialObjects can be arranged in hierarchies. It is then possible to change the position of a set

of spatial objects by moving the parent of the group.

Now we add the three EllipseSpatialObjects to a GroupSpatialObject that will be subsequently

passed on to the registration method. The GroupSpatialObject facilitates the management of the

3.16. Model Based Registration 339

three ellipses as a higher level structure representing a complex shape. Groups can be nested any

number of levels in order to represent shapes with higher detail.

auto group = GroupType::New();

group->AddChild(ellipse1);

group->AddChild(ellipse2);

group->AddChild(ellipse3);

Having the geometric model ready, we proceed to generate the binary image representing the imprint

of the space occupied by the ellipses. The SpatialObjectToImageFilter is used to that end. Note that

this filter is instantiated over the spatial object used and the image type to be generated.

using SpatialObjectToImageFilterType =

itk::SpatialObjectToImageFilter<GroupType, ImageType>;

With the defined type, we construct a filter using the New() method. The newly created filter is

assigned to a SmartPointer.

auto imageFilter = SpatialObjectToImageFilterType::New();

The GroupSpatialObject is passed as input to the filter.

imageFilter->SetInput(group);

The itk::SpatialObjectToImageFilter acts as a resampling filter. Therefore it requires the

user to define the size of the desired output image. This is specified with the SetSize() method.

ImageType::SizeType size;

size[0] = 200;

size[1] = 200;

imageFilter->SetSize(size);

Finally we trigger the execution of the filter by calling the Update() method.

imageFilter->Update();

In order to obtain a smoother metric, we blur the image using a

itk::DiscreteGaussianImageFilter. This extends the capture radius of the metric and

produce a more continuous cost function to optimize. The following lines instantiate the Gaussian

filter and create one object of this type using the New() method.

https://www.itk.org/Doxygen/html/classitk_1_1SpatialObjectToImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1DiscreteGaussianImageFilter.html

340 Chapter 3. Registration

using GaussianFilterType =

itk::DiscreteGaussianImageFilter<ImageType, ImageType>;

auto gaussianFilter = GaussianFilterType::New();

The output of the SpatialObjectToImageFilter is connected as input to the DiscreteGaussianImage-

Filter.

gaussianFilter->SetInput(imageFilter->GetOutput());

The variance of the filter is defined as a large value in order to increase the capture radius. Finally

the execution of the filter is triggered using the Update() method.

constexpr double variance = 20;

gaussianFilter->SetVariance(variance);

gaussianFilter->Update();

Below we instantiate the type of the itk::ImageToSpatialObjectRegistrationMethod method

and instantiate a registration object with the New() method. Note that the registration type is tem-

plated over the Image and the SpatialObject types. The spatial object in this case is the group of

spatial objects.

using RegistrationType =

itk::ImageToSpatialObjectRegistrationMethod<ImageType, GroupType>;

auto registration = RegistrationType::New();

Now we instantiate the metric that is templated over the image type and the spatial object type. As

usual, the New() method is used to create an object.

using MetricType = SimpleImageToSpatialObjectMetric<ImageType, GroupType>;

auto metric = MetricType::New();

An interpolator will be needed to evaluate the image at non-grid positions. Here we instantiate a

linear interpolator type.

using InterpolatorType =

itk::LinearInterpolateImageFunction<ImageType, double>;

auto interpolator = InterpolatorType::New();

The following lines instantiate the evolutionary optimizer.

using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer;

auto optimizer = OptimizerType::New();

https://www.itk.org/Doxygen/html/classitk_1_1ImageToSpatialObjectRegistrationMethod.html

3.16. Model Based Registration 341

Next, we instantiate the transform class. In this case we use the Euler2DTransform that implements

a rigid transform in 2D space.

using TransformType = itk::Euler2DTransform<>;

auto transform = TransformType::New();

Evolutionary algorithms are based on testing random variations of parameters. In order to sup-

port the computation of random values, ITK provides a family of random number generators. In

this example, we use the itk::NormalVariateGenerator which generates values with a normal

distribution.

auto generator = itk::Statistics::NormalVariateGenerator::New();

The random number generator must be initialized with a seed.

generator->Initialize(12345);

The OnePlusOneEvolutionaryOptimizer is initialized by specifying the random number generator,

the number of samples for the initial population and the maximum number of iterations.

optimizer->SetNormalVariateGenerator(generator);

optimizer->Initialize(10);

optimizer->SetMaximumIteration(400);

As in previous registration examples, we take care to normalize the dynamic range of the different

transform parameters. In particular, the we must compensate for the ranges of the angle and trans-

lations of the Euler2DTransform. In order to achieve this goal, we provide an array of scales to the

optimizer.

TransformType::ParametersType parametersScale;

parametersScale.set_size(3);

parametersScale[0] = 1000; // angle scale

for (unsigned int i = 1; i < 3; ++i)

{

parametersScale[i] = 2; // offset scale

}

optimizer->SetScales(parametersScale);

Here we instantiate the Command object that will act as an observer of the registration method and

print out parameters at each iteration. Earlier, we defined this command as a class templated over the

optimizer type. Once it is created with the New() method, we connect the optimizer to the command.

https://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

342 Chapter 3. Registration

using IterationCallbackType = IterationCallback<OptimizerType>;

auto callback = IterationCallbackType::New();

callback->SetOptimizer(optimizer);

All the components are plugged into the ImageToSpatialObjectRegistrationMethod object. The typ-

ical Set() methods are used here. Note the use of the SetMovingSpatialObject() method for

connecting the spatial object. We provide the blurred version of the original synthetic binary image

as the input image.

registration->SetFixedImage(gaussianFilter->GetOutput());

registration->SetMovingSpatialObject(group);

registration->SetTransform(transform);

registration->SetInterpolator(interpolator);

registration->SetOptimizer(optimizer);

registration->SetMetric(metric);

The initial set of transform parameters is passed to the registration method using the

SetInitialTransformParameters() method. Note that since our original model is already reg-

istered with the synthetic image, we introduce an artificial mis-registration in order to initialize the

optimization at some point away from the optimal value.

TransformType::ParametersType initialParameters(

transform->GetNumberOfParameters());

initialParameters[0] = 0.2; // Angle

initialParameters[1] = 7.0; // Offset X

initialParameters[2] = 6.0; // Offset Y

registration->SetInitialTransformParameters(initialParameters);

Due to the character of the metric used to evaluate the fitness between the spatial object and the

image, we must tell the optimizer that we are interested in finding the maximum value of the metric.

Some metrics associate low numeric values with good matching, while others associate high numeric

values with good matching. The MaximizeOn() and MaximizeOff() methods allow the user to deal

with both types of metrics.

optimizer->MaximizeOn();

Finally, we trigger the execution of the registration process with the Update() method. We place

this call in a try/catch block in case any exception is thrown during the process.

try

{

registration->Update();

std::cout << "Optimizer stop condition: "

<< registration->GetOptimizer()->GetStopConditionDescription()

3.17. Point Set Registration 343

<< std::endl;

}

catch (const itk::ExceptionObject & exp)

{

std::cerr << "Exception caught ! " << std::endl;

std::cerr << exp << std::endl;

}

The set of transform parameters resulting from the registration can be recovered with the

GetLastTransformParameters() method. This method returns the array of transform parame-

ters that should be interpreted according to the implementation of each transform. In our current

example, the Euler2DTransform has three parameters: the rotation angle, the translation in x and the

translation in y.

RegistrationType::ParametersType finalParameters =

registration->GetLastTransformParameters();

std::cout << "Final Solution is : " << finalParameters << std::endl;

The results are presented in Figure 3.58. The left side shows the evolution of the angle parameter as

a function of iteration numbers, while the right side shows the (x,y) translation.

3.17 Point Set Registration

PointSet-to-PointSet registration is a common problem in medical image analysis. It usually arises

in cases where landmarks are extracted from images and are used for establishing the spatial cor-

respondence between the images. This type of registration can be considered to be the simplest

case of feature-based registration. In general terms, feature-based registration is more efficient than

the intensity based method that we have presented so far. However, feature-base registration brings

the new problem of identifying and extracting the features from the images, which is not a minor

challenge.

The two most common scenarios in PointSet to PointSet registration are

• Two PointSets with the same number of points, and where each point in one set has a known

correspondence to exactly one point in the second set.

• Two PointSets without known correspondences between the points of one set and the points

of the other. In this case the PointSets may have different numbers of points.

The first case can be solved with a closed form solution when we are dealing

with a Rigid or an Affine Transform [26]. This is done in ITK with the class

344 Chapter 3. Registration

Iteration No.

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

R
ot

at
io

n
A

ng
le

 (
de

gr
ee

s)

0

Translation X (mm)

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30

T
ra

ns
la

tio
n

Y
 (

m
m

)

−25

Figure 3.58: Plots of the angle and translation parameters for a registration process between an spatial object

and an image.

3.17. Point Set Registration 345

itk::LandmarkBasedTransformInitializer. If we are interested in a deformable Transforma-

tion then the problem can be solved with the itk::KernelTransform family of classes, which

includes Thin Plate Splines among others [51]. In both circumstances, the availability o f correspon-

dences between the points make possible to apply a straight forward solution to the problem.

The classical algorithm for performing PointSet to PointSet registration is the Iterative Closest Point

(ICP) algorithm. The following examples illustrate how this can be used in ITK.

3.17.1 Point Set Registration in 2D

The source code for this section can be found in the file

IterativeClosestPoint1.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK. The main

class featured in this section is the itk::EuclideanDistancePointMetric.

The first step is to include the relevant headers.

#include "itkTranslationTransform.h"

#include "itkEuclideanDistancePointMetric.h"

#include "itkLevenbergMarquardtOptimizer.h"

#include "itkPointSetToPointSetRegistrationMethod.h"

Next, define the necessary types for the fixed and moving pointsets and point containers.

constexpr unsigned int Dimension = 2;

using PointSetType = itk::PointSet<float, Dimension>;

auto fixedPointSet = PointSetType::New();

auto movingPointSet = PointSetType::New();

using PointType = PointSetType::PointType;

using PointsContainer = PointSetType::PointsContainer;

auto fixedPointContainer = PointsContainer::New();

auto movingPointContainer = PointsContainer::New();

PointType fixedPoint;

PointType movingPoint;

After the points are read in from files, set up the metric type.

using MetricType =

itk::EuclideanDistancePointMetric<PointSetType, PointSetType>;

auto metric = MetricType::New();

https://www.itk.org/Doxygen/html/classitk_1_1LandmarkBasedTransformInitializer.html
https://www.itk.org/Doxygen/html/classitk_1_1KernelTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1EuclideanDistancePointMetric.html

346 Chapter 3. Registration

Now, setup the transform, optimizers, and registration method using the point set types defined

earlier.

using TransformType = itk::TranslationTransform<double, Dimension>;

auto transform = TransformType::New();

// Optimizer Type

using OptimizerType = itk::LevenbergMarquardtOptimizer;

auto optimizer = OptimizerType::New();

optimizer->SetUseCostFunctionGradient(false);

// Registration Method

using RegistrationType =

itk::PointSetToPointSetRegistrationMethod<PointSetType, PointSetType>;

auto registration = RegistrationType::New();

// Scale the translation components of the Transform in the Optimizer

OptimizerType::ScalesType scales(transform->GetNumberOfParameters());

scales.Fill(0.01);

Next we setup the convergence criteria, and other properties required by the optimizer.

unsigned long numberOfIterations = 100;

double gradientTolerance = 1e-5; // convergence criterion

double valueTolerance = 1e-5; // convergence criterion

double epsilonFunction = 1e-6; // convergence criterion

optimizer->SetScales(scales);

optimizer->SetNumberOfIterations(numberOfIterations);

optimizer->SetValueTolerance(valueTolerance);

optimizer->SetGradientTolerance(gradientTolerance);

optimizer->SetEpsilonFunction(epsilonFunction);

In this case we start from an identity transform, but in reality the user will usually be able to provide

a better guess than this.

transform->SetIdentity();

Finally, connect all the components required for the registration, and an observer.

registration->SetMetric(metric);

registration->SetOptimizer(optimizer);

registration->SetTransform(transform);

registration->SetFixedPointSet(fixedPointSet);

3.17. Point Set Registration 347

registration->SetMovingPointSet(movingPointSet);

// Connect an observer

auto observer = CommandIterationUpdate::New();

optimizer->AddObserver(itk::IterationEvent(), observer);

3.17.2 Point Set Registration in 3D

The source code for this section can be found in the file

IterativeClosestPoint2.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK using sets

of 3D points.

The first step is to include the relevant headers.

#include "itkEuler3DTransform.h"

#include "itkEuclideanDistancePointMetric.h"

#include "itkLevenbergMarquardtOptimizer.h"

#include "itkPointSetToPointSetRegistrationMethod.h"

#include <iostream>

#include <fstream>

First, define the necessary types for the moving and fixed point sets.

using PointSetType = itk::PointSet<float, Dimension>;

auto fixedPointSet = PointSetType::New();

auto movingPointSet = PointSetType::New();

using PointType = PointSetType::PointType;

using PointsContainer = PointSetType::PointsContainer;

auto fixedPointContainer = PointsContainer::New();

auto movingPointContainer = PointsContainer::New();

PointType fixedPoint;

PointType movingPoint;

After the points are read in from files, setup the metric to be used later by the registration.

using MetricType =

itk::EuclideanDistancePointMetric<PointSetType, PointSetType>;

auto metric = MetricType::New();

348 Chapter 3. Registration

Next, setup the transform, optimizers, and registration.

using TransformType = itk::Euler3DTransform<double>;

auto transform = TransformType::New();

// Optimizer Type

using OptimizerType = itk::LevenbergMarquardtOptimizer;

auto optimizer = OptimizerType::New();

optimizer->SetUseCostFunctionGradient(false);

// Registration Method

using RegistrationType =

itk::PointSetToPointSetRegistrationMethod<PointSetType, PointSetType>;

auto registration = RegistrationType::New();

Scale the translation components of the Transform in the Optimizer

OptimizerType::ScalesType scales(transform->GetNumberOfParameters());

Next, set the scales and ranges for translations and rotations in the transform. Also, set the conver-

gence criteria and number of iterations to be used by the optimizer.

constexpr double translationScale = 1000.0; // dynamic range of translations

constexpr double rotationScale = 1.0; // dynamic range of rotations

scales[0] = 1.0 / rotationScale;

scales[1] = 1.0 / rotationScale;

scales[2] = 1.0 / rotationScale;

scales[3] = 1.0 / translationScale;

scales[4] = 1.0 / translationScale;

scales[5] = 1.0 / translationScale;

unsigned long numberOfIterations = 2000;

double gradientTolerance = 1e-4; // convergence criterion

double valueTolerance = 1e-4; // convergence criterion

double epsilonFunction = 1e-5; // convergence criterion

optimizer->SetScales(scales);

optimizer->SetNumberOfIterations(numberOfIterations);

optimizer->SetValueTolerance(valueTolerance);

optimizer->SetGradientTolerance(gradientTolerance);

optimizer->SetEpsilonFunction(epsilonFunction);

Here we start with an identity transform, although the user will usually be able to provide a better

3.17. Point Set Registration 349

guess than this.

transform->SetIdentity();

Connect all the components required for the registration.

registration->SetMetric(metric);

registration->SetOptimizer(optimizer);

registration->SetTransform(transform);

registration->SetFixedPointSet(fixedPointSet);

registration->SetMovingPointSet(movingPointSet);

3.17.3 Point Set to Distance Map Metric

The source code for this section can be found in the file

IterativeClosestPoint3.cxx.

This example illustrates how to perform Iterative Closest Point (ICP) registration in ITK using a

DistanceMap in order to increase the performance. There is of course a trade-off between the time

needed for computing the DistanceMap and the time saved by its repeated use during the iterative

computation of the point-to-point distances. It is then necessary in practice to ponder both factors.

itk::EuclideanDistancePointMetric.

The first step is to include the relevant headers.

#include "itkTranslationTransform.h"

#include "itkEuclideanDistancePointMetric.h"

#include "itkLevenbergMarquardtOptimizer.h"

#include "itkPointSetToPointSetRegistrationMethod.h"

#include "itkDanielssonDistanceMapImageFilter.h"

#include "itkPointSetToImageFilter.h"

#include <iostream>

#include <fstream>

Next, define the necessary types for the fixed and moving point sets.

using PointSetType = itk::PointSet<float, Dimension>;

auto fixedPointSet = PointSetType::New();

auto movingPointSet = PointSetType::New();

using PointType = PointSetType::PointType;

using PointsContainer = PointSetType::PointsContainer;

auto fixedPointContainer = PointsContainer::New();

https://www.itk.org/Doxygen/html/classitk_1_1EuclideanDistancePointMetric.html

350 Chapter 3. Registration

auto movingPointContainer = PointsContainer::New();

PointType fixedPoint;

PointType movingPoint;

Setup the metric, transform, optimizers and registration in a manner similar to the previous two

examples.

In the preparation of the distance map, we first need to map the fixed points into a binary image.

using BinaryImageType = itk::Image<unsigned char, Dimension>;

using PointsToImageFilterType =

itk::PointSetToImageFilter<PointSetType, BinaryImageType>;

auto pointsToImageFilter = PointsToImageFilterType::New();

pointsToImageFilter->SetInput(fixedPointSet);

BinaryImageType::SpacingType spacing;

spacing.Fill(1.0);

BinaryImageType::PointType origin;

origin.Fill(0.0);

Continue to prepare the distance map, in order to accelerate the distance computations.

pointsToImageFilter->SetSpacing(spacing);

pointsToImageFilter->SetOrigin(origin);

pointsToImageFilter->Update();

BinaryImageType::Pointer binaryImage = pointsToImageFilter->GetOutput();

using DistanceImageType = itk::Image<unsigned short, Dimension>;

using DistanceFilterType =

itk::DanielssonDistanceMapImageFilter<BinaryImageType, DistanceImageType>;

auto distanceFilter = DistanceFilterType::New();

distanceFilter->SetInput(binaryImage);

distanceFilter->Update();

metric->SetDistanceMap(distanceFilter->GetOutput());

3.18 Registration Troubleshooting

So you read the previous sections, you wrote the code, it compiles and links fine, but when you run

it the registration results are not what you were expecting. In that case, this section is for you. This

is a compilation of the most common problems that users face when performing image registration.

3.18. Registration Troubleshooting 351

It provides explanations on the potential sources of the problems, and advice on how to deal with

those problems.

Most of the material in this section has been taken from frequently asked questions of the ITK users

list.

3.18.1 Too many samples outside moving image buffer

https://public.kitware.com/pipermail/insight-users/2007-March/021442.html

This is a common error message in image registration.

It means that at the current iteration of the optimization, the two images as so off-registration that

their spatial overlap is not large enough for bringing them back into registration.

The common causes of this problem are:

• Poor initialization: You must initialize the transform properly. Please familiarize yourself

with the itk::CenteredTransformInitializer class.

• Optimizer steps too large. If you optimizer takes steps that are too large, it risks to become

unstable and to send the images too far apart. You may want to start the optimizer with a

maximum step length of 1.0, and only increase it once you have managed to fine tune all other

registration parameters.

Increasing the step length makes your program faster, but it also makes it more unstable.

• Poor set up of the transform parameters scaling. This is extremely critical in registration.

You must make sure that you balance the relative difference of scale between the rotation

parameters and the translation parameters.

In typical medical datasets such as CT and MR, translations are measured in millimeters, and

therefore are in the range of -100:100, while rotations are measured in radians, and therefore

they tend to be in the range of -1:1.

A rotation of 3 radians is catastrophic, while a translation of 3 millimeters is rather inoffensive.

That difference in scale is the one that must be accounted for.

3.18.2 General heuristics for parameter fine-tunning

https://public.kitware.com/pipermail/insight-users/2007-March/021435.html

Here is some advice on how to fine tune the parameters of the registration process.

1) Set Maximum step length to 0.1 and do not change it until all other parameters are stable.

2) Set Minimum step length to 0.001 and do not change it.

You could interpret these two parameters as if their units were radians. So, 0.1 radian = 5.7 degrees.

https://www.itk.org/Doxygen/html/classitk_1_1CenteredTransformInitializer.html

352 Chapter 3. Registration

3) Number of histogram bins:

First plot the histogram of your image using the example program in

Insight/Examples/Statistics/ImageHistogram2.cxx

In that program use first a large number of bins (for example 2000) and identify the different popu-

lations of intensity level and to what anatomical structures they correspond.

Once you identify the anatomical structures in the histogram, then rerun that same program with less

and less number of bins, until you reach the minimun number of bins for which all the tissues that

are important for your application, are still distinctly differentiated in the histogram. At that point,

take that number of bins and us it for your Mutual Information metric.

4) Number of Samples: The trade-off with the number of samples is the following:

a) computation time of registration is linearly proportional to the number of samples b) the samples

must be enough to significantly populate the joint histogram. c) Once the histogram is populated,

there is not much use in adding more samples. Therefore do the following:

Plot the joint histogram of both images, using the number of bins that you selected in item (3). You

can do this by modifying the code of the example:

Insight/Examples/Statistics/ ImageMutualInformation1.cxx you have to change the code to print out

the values of the bins. Then use a plotting program such as gnuplot, or Matlab, or even Excel and

look at the distribution. The number of samples to take must be enough for producing the same

”appearance” of the joint histogram. As an arbitrary rule of thumb you may want to start using

a high number of samples (80% - 100%). And do not change it until you have mastered the other

parameters of the registration. Once you get your registration to converge you can revisit the number

of samples and reduce it in order to make the registration run faster. You can simply reduce it until

you find that the registration becomes unstable. That’s your critical bound for the minimum number

of samples. Take that number and multiply it by the magic number 1.5, to send it back to a stable

region, or if your application is really critical, then use an even higher magic number x2.0.

This is just engineering: you figure out what is the minimal size of a piece of steel that will support

a bridge, and then you enlarge it to keep it away from the critical value.

5) The MOST critical values of the registration process are the scaling parameters that define the

proportions between the parameters of the transform. In your case, for an Affine Transform in 2D,

you have 6 parameters. The first four are the ones of the Matrix, and the last two are the translation.

The rotation matrix value must be in the ranges of radians which is typically [-1 to 1], while the

translation values are in the ranges of millimeters (your image size units). You want to start by

setting the scaling of the matrix parameters to 1.0, and the scaling of the Translation parameters to

the holy esoteric values:

1.0 / (10.0 * pixelspacing[0] * imagesize[0]) 1.0 / (10.0 * pixelspacing[1] * imagesize[1])

This is telling the optimizer that you consider that rotating the image by 57 degrees is as ”significant”

as translating the image by half its physical extent.

3.18. Registration Troubleshooting 353

Note that esoteric value has included the arbitrary number 10.0 in the denominator, for no other

reason that we have been lucky when using that factor. This of course is just a superstition, so you

should feel free to experiment with different values of this number.

Just keep in mind that what the optimizer will do is to “jump” in a parametric space of 6 dimensions,

and that the component of the jump on every dimension will be proportional to 1/scaling factor *

OptimizerStepLength. Since you set the optimizer Step Length to 0.1, the optimizer will start by

exploring the rotations at jumps of about 5 degrees, which is a conservative rotation for most medical

applications.

If you have reasons to think that your rotations are larger or smaller, then you should modify the

scaling factor of the matrix parameters accordingly.

In the same way, if you think that 1/10 of the image size is too large as the first step for exploring

the translations, then you should modify the scaling of translation parameters accordingly.

In order to drive all these you need to analyze the feedback that the observer is providing you. For

example, plot the metric values, and plot the translation coordinates so that you can get a feeling of

how the registration is behaving.

Note also that image registration is not a science. It is a pure engineerig practice, and therefore,

there are no correct answers, nor “truths” to be found. It is all about how much quality you want,

and how must computation time, and development time you are willing to pay for that quality. The

“satisfying” answer for your specific application must be found by exploring the trade-offs between

the different parameters that regulate the image registration process.

If you are proficient in VTK you may want to consider attaching some visualization to the Event

observer, so that you can have a visual feedback on the progress of the registration. This is a lot

more productive than trying to interpret the values printed out on the console by the observer.

CHAPTER

FOUR

SEGMENTATION

Segmentation of medical images is a challenging task. A myriad of different methods have been

proposed and implemented in recent years. In spite of the huge effort invested in this problem, there

is no single approach that can generally solve the problem of segmentation for the large variety of

image modalities existing today.

The most effective segmentation algorithms are obtained by carefully customizing combinations of

components. The parameters of these components are tuned for the characteristics of the image

modality used as input and the features of the anatomical structure to be segmented.

The Insight Toolkit provides a basic set of algorithms that can be used to develop and customize

a full segmentation application. Some of the most commonly used segmentation components are

described in the following sections.

4.1 Region Growing

Region growing algorithms have proven to be an effective approach for image segmentation. The

basic approach of a region growing algorithm is to start from a seed region (typically one or more

pixels) that are considered to be inside the object to be segmented. The pixels neighboring this

region are evaluated to determine if they should also be considered part of the object. If so, they are

added to the region and the process continues as long as new pixels are added to the region. Region

growing algorithms vary depending on the criteria used to decide whether a pixel should be included

in the region or not, the type connectivity used to determine neighbors, and the strategy used to visit

neighboring pixels.

Several implementations of region growing are available in ITK. This section describes some of the

most commonly used.

356 Chapter 4. Segmentation

4.1.1 Connected Threshold

A simple criterion for including pixels in a growing region is to evaluate intensity value inside a

specific interval.

The source code for this section can be found in the file

ConnectedThresholdImageFilter.cxx.

The following example illustrates the use of the itk::ConnectedThresholdImageFilter. This

filter uses the flood fill iterator. Most of the algorithmic complexity of a region growing method

comes from visiting neighboring pixels. The flood fill iterator assumes this responsibility and greatly

simplifies the implementation of the region growing algorithm. Thus the algorithm is left to establish

a criterion to decide whether a particular pixel should be included in the current region or not.

The criterion used by the ConnectedThresholdImageFilter is based on an interval of intensity

values provided by the user. Lower and upper threshold values should be provided. The region-

growing algorithm includes those pixels whose intensities are inside the interval.

I(X) ∈ [lower,upper] (4.1)

Let’s look at the minimal code required to use this algorithm. First, the following header defining

the ConnectedThresholdImageFilter class must be included.

#include "itkConnectedThresholdImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large regions. When faced

with noisy images, it is usually convenient to pre-process the image by using an edge-preserving

smoothing filter. Any of the filters discussed in Section 2.7.3 could be used to this end. In this

particular example we use the itk::CurvatureFlowImageFilter , so we need to include its header

file.

#include "itkCurvatureFlowImageFilter.h"

We declare the image type based on a particular pixel type and dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The smoothing filter is instantiated using the image type as a template parameter.

https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

4.1. Region Growing 357

using CurvatureFlowImageFilterType =

itk::CurvatureFlowImageFilter<InternalImageType, InternalImageType>;

Then the filter is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto smoothing = CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the

ConnectedThresholdImageFilter.

using ConnectedFilterType =

itk::ConnectedThresholdImageFilter<InternalImageType, InternalImageType>;

Then we construct one filter of this class using the New() method.

auto connectedThreshold = ConnectedFilterType::New();

Now it is time to connect a simple, linear pipeline. A file reader is added at the beginning of the

pipeline and a cast filter and writer are added at the end. The cast filter is required to convert float

pixel types to integer types since only a few image file formats support float types.

smoothing->SetInput(reader->GetOutput());

connectedThreshold->SetInput(smoothing->GetOutput());

caster->SetInput(connectedThreshold->GetOutput());

writer->SetInput(caster->GetOutput());

CurvatureFlowImageFilter requires a couple of parameters. The following are typical values

for 2D images. However, these values may have to be adjusted depending on the amount of noise

present in the input image.

smoothing->SetNumberOfIterations(5);

smoothing->SetTimeStep(0.125);

We now set the lower and upper threshold values. Any pixel whose value is between

lowerThreshold and upperThreshold will be included in the region, and any pixel whose value is

outside will be excluded. Setting these values too close together will be too restrictive for the region

to grow; setting them too far apart will cause the region to engulf the image.

connectedThreshold->SetLower(lowerThreshold);

connectedThreshold->SetUpper(upperThreshold);

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

358 Chapter 4. Segmentation

Structure Seed Index Lower Upper Output Image

White matter (60,116) 150 180 Second from left in Figure 4.1

Ventricle (81,112) 210 250 Third from left in Figure 4.1

Gray matter (107,69) 180 210 Fourth from left in Figure 4.1

Table 4.1: Parameters used for segmenting some brain structures shown in Figure 4.1 with the filter

itk::ConnectedThresholdImageFilter.

The output of this filter is a binary image with zero-value pixels everywhere except on the extracted

region. The intensity value set inside the region is selected with the method SetReplaceValue().

connectedThreshold->SetReplaceValue(255);

The algorithm must be initialized by setting a seed point (i.e., the itk::Index of the pixel from

which the region will grow) using the SetSeed() method. It is convenient to initialize with a point

in a typical region of the anatomical structure to be segmented.

connectedThreshold->SetSeed(index);

Invocation of the Update() method on the writer triggers execution of the pipeline. It is usually

wise to put update calls in a try/catch block in case errors occur and exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Let’s run this example using as input the image BrainProtonDensitySlice.png provided in the

directory Examples/Data. We can easily segment the major anatomical structures by providing

seeds in the appropriate locations and defining values for the lower and upper thresholds. Figure 4.1

illustrates several examples of segmentation. The parameters used are presented in Table 4.1.

Notice that the gray matter is not being completely segmented. This illustrates the vulnerability of

the region-growing methods when the anatomical structures to be segmented do not have a homo-

geneous statistical distribution over the image space. You may want to experiment with different

values of the lower and upper thresholds to verify how the accepted region will extend.

Another option for segmenting regions is to take advantage of the functionality provided by the

ConnectedThresholdImageFilter for managing multiple seeds. The seeds can be passed one-

https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html

4.1. Region Growing 359

Figure 4.1: Segmentation results for the ConnectedThreshold filter for various seed points.

by-one to the filter using the AddSeed() method. You could imagine a user interface in which an

operator clicks on multiple points of the object to be segmented and each selected point is passed as

a seed to this filter.

4.1.2 Otsu Segmentation

Another criterion for classifying pixels is to minimize the error of misclassification. The goal is to

find a threshold that classifies the image into two clusters such that we minimize the area under the

histogram for one cluster that lies on the other cluster’s side of the threshold. This is equivalent to

minimizing the within class variance or equivalently maximizing the between class variance.

The source code for this section can be found in the file

OtsuThresholdImageFilter.cxx.

This example illustrates how to use the itk::OtsuThresholdImageFilter.

#include "itkOtsuThresholdImageFilter.h"

The next step is to decide which pixel types to use for the input and output images, and to define the

image dimension.

using InputPixelType = unsigned char;

using OutputPixelType = unsigned char;

constexpr unsigned int Dimension = 2;

The input and output image types are now defined using their respective pixel types and dimensions.

using InputImageType = itk::Image<InputPixelType, Dimension>;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The filter type can be instantiated using the input and output image types defined above.

https://www.itk.org/Doxygen/html/classitk_1_1OtsuThresholdImageFilter.html

360 Chapter 4. Segmentation

using FilterType =

itk::OtsuThresholdImageFilter<InputImageType, OutputImageType>;

An itk::ImageFileReader class is also instantiated in order to read image data from a file. (See

Section 1 on page 1 for more information about reading and writing data.)

using ReaderType = itk::ImageFileReader<InputImageType>;

An itk::ImageFileWriter is instantiated in order to write the output image to a file.

using WriterType = itk::ImageFileWriter<OutputImageType>;

Both the filter and the reader are created by invoking their New() methods and assigning the result

to itk::SmartPointers.

auto reader = ReaderType::New();

auto filter = FilterType::New();

The image obtained with the reader is passed as input to the OtsuThresholdImageFilter.

filter->SetInput(reader->GetOutput());

The method SetOutsideValue() defines the intensity value to be assigned to those pixels

whose intensities are outside the range defined by the lower and upper thresholds. The method

SetInsideValue() defines the intensity value to be assigned to pixels with intensities falling in-

side the threshold range.

filter->SetOutsideValue(outsideValue);

filter->SetInsideValue(insideValue);

Execution of the filter is triggered by invoking the Update() method, which we wrap in a

try/catch block. If the filter’s output has been passed as input to subsequent filters, the Update()

call on any downstream filters in the pipeline will indirectly trigger the update of this filter.

try

{

filter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Exception thrown " << excp << std::endl;

}

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.1. Region Growing 361

Figure 4.2: Effect of the OtsuThresholdImageFilter on a slice from a MRI proton density image of the brain.

We can now retrieve the internally-computed threshold value with the GetThreshold() method and

print it to the console.

int threshold = filter->GetThreshold();

std::cout << "Threshold = " << threshold << std::endl;

Figure 4.2 illustrates the effect of this filter on a MRI proton density image of the brain. This

figure shows the limitations of this filter for performing segmentation by itself. These limitations

are particularly noticeable in noisy images and in images lacking spatial uniformity as is the case

with MRI due to field bias.

The following classes provide similar functionality:

• itk::ThresholdImageFilter

The source code for this section can be found in the file

OtsuMultipleThresholdImageFilter.cxx.

This example illustrates how to use the itk::OtsuMultipleThresholdsCalculator .

#include "itkOtsuMultipleThresholdsCalculator.h"

OtsuMultipleThresholdsCalculator calculates thresholds for a given histogram so as to max-

imize the between-class variance. We use ScalarImageToHistogramGenerator to generate his-

https://www.itk.org/Doxygen/html/classitk_1_1ThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1OtsuMultipleThresholdsCalculator.html

362 Chapter 4. Segmentation

tograms. The histogram type defined by the generator is then used to instantiate the type of the Otsu

threshold calculator.

using ScalarImageToHistogramGeneratorType =

itk::Statistics::ScalarImageToHistogramGenerator<InputImageType>;

using HistogramType = ScalarImageToHistogramGeneratorType::HistogramType;

using CalculatorType = itk::OtsuMultipleThresholdsCalculator<HistogramType>;

Once thresholds are computed we will use BinaryThresholdImageFilter to segment the input

image.

using FilterType =

itk::BinaryThresholdImageFilter<InputImageType, OutputImageType>;

Create a histogram generator and calculator using the standard New() method.

ScalarImageToHistogramGeneratorType::Pointer

scalarImageToHistogramGenerator =

ScalarImageToHistogramGeneratorType::New();

auto calculator = CalculatorType::New();

auto filter = FilterType::New();

Set the following properties for the histogram generator and the calculators, in this case grabbing

the number of thresholds from the command line.

scalarImageToHistogramGenerator->SetNumberOfBins(128);

calculator->SetNumberOfThresholds(std::stoi(argv[4]));

The pipeline will look as follows:

scalarImageToHistogramGenerator->SetInput(reader->GetOutput());

calculator->SetInputHistogram(scalarImageToHistogramGenerator->GetOutput());

filter->SetInput(reader->GetOutput());

writer->SetInput(filter->GetOutput());

Here we obtain a const reference to the thresholds by calling the GetOutput() method.

const CalculatorType::OutputType & thresholdVector =

calculator->GetOutput();

We now iterate through thresholdVector, printing each value to the console and writing an image

thresholded with adjacent values from the container. (In the edge cases, the minimum and maximum

values of the InternalPixelType are used).

4.1. Region Growing 363

for (auto itNum = thresholdVector.begin(); itNum != thresholdVector.end();

++itNum)

{

std::cout

<< "OtsuThreshold[" << static_cast<int>(itNum - thresholdVector.begin())

<< "] = "

<< static_cast<

itk::NumericTraits<CalculatorType::MeasurementType>::PrintType>(

*itNum)

<< std::endl;

Also write out the image thresholded between the upper threshold and the max intensity.

upperThreshold = itk::NumericTraits<InputPixelType>::max();

filter->SetLowerThreshold(lowerThreshold);

filter->SetUpperThreshold(upperThreshold);

4.1.3 Neighborhood Connected

The source code for this section can be found in the file

NeighborhoodConnectedImageFilter.cxx.

The following example illustrates the use of the itk::NeighborhoodConnectedImageFilter.

This filter is a close variant of the itk::ConnectedThresholdImageFilter. On one hand, the

ConnectedThresholdImageFilter considers only the value of the pixel itself when determining

whether it belongs to the region: if its value is within the interval [lowerThreshold,upperThreshold]

it is included, otherwise it is excluded. NeighborhoodConnectedImageFilter, on the other hand,

considers a user-defined neighborhood surrounding the pixel, requiring that the intensity of each

neighbor be within the interval for it to be included.

The reason for considering the neighborhood intensities instead of only the current pixel intensity

is that small structures are less likely to be accepted in the region. The operation of this filter

is equivalent to applying ConnectedThresholdImageFilter followed by mathematical morphol-

ogy erosion using a structuring element of the same shape as the neighborhood provided to the

NeighborhoodConnectedImageFilter.

#include "itkNeighborhoodConnectedImageFilter.h"

The itk::CurvatureFlowImageFilter is used here to smooth the image while preserving edges.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a particular pixel type and image dimension. In this case the

float type is used for the pixels due to the requirements of the smoothing filter.

https://www.itk.org/Doxygen/html/classitk_1_1NeighborhoodConnectedImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

364 Chapter 4. Segmentation

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The smoothing filter type is instantiated using the image type as a template parameter.

using CurvatureFlowImageFilterType =

itk::CurvatureFlowImageFilter<InternalImageType, InternalImageType>;

Then, the filter is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto smoothing = CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the NeighborhoodConnected-

ImageFilter.

using ConnectedFilterType =

itk::NeighborhoodConnectedImageFilter<InternalImageType,

InternalImageType>;

One filter of this class is constructed using the New() method.

auto neighborhoodConnected = ConnectedFilterType::New();

Now it is time to create a simple, linear data processing pipeline. A file reader is added at the

beginning of the pipeline and a cast filter and writer are added at the end. The cast filter is required

to convert float pixel types to integer types since only a few image file formats support float

types.

smoothing->SetInput(reader->GetOutput());

neighborhoodConnected->SetInput(smoothing->GetOutput());

caster->SetInput(neighborhoodConnected->GetOutput());

writer->SetInput(caster->GetOutput());

CurvatureFlowImageFilter requires a couple of parameters. The following are typical values for

2D images. However, they may have to be adjusted depending on the amount of noise present in the

input image.

smoothing->SetNumberOfIterations(5);

smoothing->SetTimeStep(0.125);

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.1. Region Growing 365

NeighborhoodConnectedImageFilter requires that two main parameters are specified. They are

the lower and upper thresholds of the interval in which intensity values must fall to be included in

the region. Setting these two values too close will not allow enough flexibility for the region to grow.

Setting them too far apart will result in a region that engulfs the image.

neighborhoodConnected->SetLower(lowerThreshold);

neighborhoodConnected->SetUpper(upperThreshold);

Here, we add the crucial parameter that defines the neighborhood size used to determine whether a

pixel lies in the region. The larger the neighborhood, the more stable this filter will be against noise

in the input image, but also the longer the computing time will be. Here we select a filter of radius

2 along each dimension. This results in a neighborhood of 5× 5 pixels.

InternalImageType::SizeType radius;

radius[0] = 2; // two pixels along X

radius[1] = 2; // two pixels along Y

neighborhoodConnected->SetRadius(radius);

As in the ConnectedThresholdImageFilter example, we must provide the intensity value to be

used for the output pixels accepted in the region and at least one seed point to define the starting

point.

neighborhoodConnected->SetSeed(index);

neighborhoodConnected->SetReplaceValue(255);

Invocation of the Update() method on the writer triggers the execution of the pipeline. It is usually

wise to put update calls in a try/catch block in case errors occur and exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Now we’ll run this example using the image BrainProtonDensitySlice.png as input available

from the directory Examples/Data. We can easily segment the major anatomical structures by

providing seeds in the appropriate locations and defining values for the lower and upper thresholds.

For example

366 Chapter 4. Segmentation

Figure 4.3: Segmentation results of the NeighborhoodConnectedImageFilter for various seed points.

Structure Seed Index Lower Upper Output Image

White matter (60,116) 150 180 Second from left in Figure 4.3

Ventricle (81,112) 210 250 Third from left in Figure 4.3

Gray matter (107,69) 180 210 Fourth from left in Figure 4.3

As with the ConnectedThresholdImageFilter example, several seeds could be provided to

the filter by repeatedly calling the AddSeed() method with different indices. Compare Figures

4.3 and 4.1, demonstrating the outputs of NeighborhoodConnectedThresholdImageFilter and

ConnectedThresholdImageFilter, respectively. It is instructive to adjust the neighborhood radii

and observe its effect on the smoothness of segmented object borders, size of the segmented region,

and computing time.

4.1.4 Confidence Connected

The source code for this section can be found in the file

ConfidenceConnected.cxx.

The following example illustrates the use of the itk::ConfidenceConnectedImageFilter. The

criterion used by the ConfidenceConnectedImageFilter is based on simple statistics of the current

region. First, the algorithm computes the mean and standard deviation of intensity values for all

the pixels currently included in the region. A user-provided factor is used to multiply the standard

deviation and define a range around the mean. Neighbor pixels whose intensity values fall inside the

range are accepted and included in the region. When no more neighbor pixels are found that satisfy

the criterion, the algorithm is considered to have finished its first iteration. At that point, the mean

and standard deviation of the intensity levels are recomputed using all the pixels currently included

in the region. This mean and standard deviation defines a new intensity range that is used to visit

current region neighbors and evaluate whether their intensity falls inside the range. This iterative

process is repeated until no more pixels are added or the maximum number of iterations is reached.

The following equation illustrates the inclusion criterion used by this filter,

https://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectedImageFilter.html

4.1. Region Growing 367

I(X) ∈ [m− f σ,m+ f σ] (4.2)

where m and σ are the mean and standard deviation of the region intensities, f is a factor defined by

the user, I() is the image and X is the position of the particular neighbor pixel being considered for

inclusion in the region.

Let’s look at the minimal code required to use this algorithm. First, the following header defining

the itk::ConfidenceConnectedImageFilter class must be included.

#include "itkConfidenceConnectedImageFilter.h"

Noise present in the image can reduce the capacity of this filter to grow large regions. When faced

with noisy images, it is usually convenient to pre-process the image by using an edge-preserving

smoothing filter. Any of the filters discussed in Section 2.7.3 can be used to this end. In this

particular example we use the itk::CurvatureFlowImageFilter, hence we need to include its

header file.

#include "itkCurvatureFlowImageFilter.h"

We now define the image type using a pixel type and a particular dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The smoothing filter type is instantiated using the image type as a template parameter.

using CurvatureFlowImageFilterType =

itk::CurvatureFlowImageFilter<InternalImageType, InternalImageType>;

Next the filter is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto smoothing = CurvatureFlowImageFilterType::New();

We now declare the type of the region growing filter. In this case it is the

ConfidenceConnectedImageFilter.

using ConnectedFilterType =

itk::ConfidenceConnectedImageFilter<InternalImageType, InternalImageType>;

https://www.itk.org/Doxygen/html/classitk_1_1ConfidenceConnectedImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

368 Chapter 4. Segmentation

Then, we construct one filter of this class using the New() method.

auto confidenceConnected = ConnectedFilterType::New();

Now it is time to create a simple, linear pipeline. A file reader is added at the beginning of the

pipeline and a cast filter and writer are added at the end. The cast filter is required here to convert

float pixel types to integer types since only a few image file formats support float types.

smoothing->SetInput(reader->GetOutput());

confidenceConnected->SetInput(smoothing->GetOutput());

caster->SetInput(confidenceConnected->GetOutput());

writer->SetInput(caster->GetOutput());

CurvatureFlowImageFilter requires two parameters. The following are typical values for 2D

images. However they may have to be adjusted depending on the amount of noise present in the

input image.

smoothing->SetNumberOfIterations(5);

smoothing->SetTimeStep(0.125);

ConfidenceConnectedImageFilter also requires two parameters. First, the factor f defines how

large the range of intensities will be. Small values of the multiplier will restrict the inclusion of

pixels to those having very similar intensities to those in the current region. Larger values of the

multiplier will relax the accepting condition and will result in more generous growth of the region.

Values that are too large will cause the region to grow into neighboring regions which may belong

to separate anatomical structures. This is not desirable behavior.

confidenceConnected->SetMultiplier(2.5);

The number of iterations is specified based on the homogeneity of the intensities of the anatomical

structure to be segmented. Highly homogeneous regions may only require a couple of iterations. Re-

gions with ramp effects, like MRI images with inhomogeneous fields, may require more iterations.

In practice, it seems to be more important to carefully select the multiplier factor than the number

of iterations. However, keep in mind that there is no guarantee that this algorithm will converge on

a stable region. It is possible that by letting the algorithm run for more iterations the region will end

up engulfing the entire image.

confidenceConnected->SetNumberOfIterations(5);

The output of this filter is a binary image with zero-value pixels everywhere except on the ex-

tracted region. The intensity value to be set inside the region is selected with the method

SetReplaceValue().

4.1. Region Growing 369

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. It is convenient to select

this point to be placed in a typical region of the anatomical structure to be segmented. A small

neighborhood around the seed point will be used to compute the initial mean and standard deviation

for the inclusion criterion. The seed is passed in the form of an itk::Index to the SetSeed()

method.

confidenceConnected->SetSeed(index);

The size of the initial neighborhood around the seed is defined with the method

SetInitialNeighborhoodRadius(). The neighborhood will be defined as an N-dimensional rect-

angular region with 2r+ 1 pixels on the side, where r is the value passed as initial neighborhood

radius.

confidenceConnected->SetInitialNeighborhoodRadius(2);

The invocation of the Update() method on the writer triggers the execution of the pipeline. It is

recommended to place update calls in a try/catch block in case errors occur and exceptions are

thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Let’s now run this example using as input the image BrainProtonDensitySlice.png provided in

the directory Examples/Data. We can easily segment the major anatomical structures by providing

seeds in the appropriate locations. For example

Structure Seed Index Output Image

White matter (60,116) Second from left in Figure 4.4

Ventricle (81,112) Third from left in Figure 4.4

Gray matter (107,69) Fourth from left in Figure 4.4

Note that the gray matter is not being completely segmented. This illustrates the vulnerability of the

region growing methods when the anatomical structures to be segmented do not have a homogeneous

statistical distribution over the image space. You may want to experiment with different numbers of

iterations to verify how the accepted region will extend.

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

370 Chapter 4. Segmentation

Figure 4.4: Segmentation results for the ConfidenceConnected filter for various seed points.

Application of the Confidence Connected filter on the Brain Web Data

This section shows some results obtained by applying the Confidence Connected filter on the Brain-

Web database. The filter was applied on a 181 × 217 × 181 crosssection of the brainweb165a10f17

dataset. The data is a MR T1 acquisition, with an intensity non-uniformity of 20% and a slice thick-

ness 1mm. The dataset may be obtained from https://www.bic.mni.mcgill.ca/brainweb/ or

https://data.kitware.com/#folder/5882712d8d777f4f3f3072df

The previous code was used in this example replacing the image dimension by 3. Gradient

Anistropic diffusion was applied to smooth the image. The filter used 2 iterations, a time step of

0.05 and a conductance value of 3. The smoothed volume was then segmented using the Confidence

Connected approach. Five seed points were used at coordinate locations (118,85,92), (63,87,94),

(63,157,90), (111,188,90), (111,50,88). The ConfidenceConnnected filter used the parameters, a

neighborhood radius of 2, 5 iterations and an f of 2.5 (the same as in the previous example). The

results were then rendered using VolView.

Figure 4.5 shows the rendered volume. Figure 4.6 shows an axial, saggital and a coronal slice of the

volume.

4.1.5 Isolated Connected

The source code for this section can be found in the file

IsolatedConnectedImageFilter.cxx.

The following example illustrates the use of the itk::IsolatedConnectedImageFilter. This

filter is a close variant of the itk::ConnectedThresholdImageFilter. In this filter two seeds

and a lower threshold are provided by the user. The filter will grow a region connected to the first

seed and not connected to the second one. In order to do this, the filter finds an intensity value that

could be used as upper threshold for the first seed. A binary search is used to find the value that

separates both seeds.

This example closely follows the previous ones. Only the relevant pieces of code are highlighted

https://www.itk.org/Doxygen/html/classitk_1_1IsolatedConnectedImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html

4.1. Region Growing 371

Figure 4.5: White matter segmented using Confidence Connected region growing.

Figure 4.6: Axial, sagittal and coronal slice segmented using Confidence Connected region growing.

372 Chapter 4. Segmentation

here.

The header of the IsolatedConnectedImageFilter is included below.

#include "itkIsolatedConnectedImageFilter.h"

We define the image type using a pixel type and a particular dimension.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The IsolatedConnectedImageFilter is instantiated in the lines below.

using ConnectedFilterType =

itk::IsolatedConnectedImageFilter<InternalImageType, InternalImageType>;

One filter of this class is constructed using the New() method.

auto isolatedConnected = ConnectedFilterType::New();

Now it is time to connect the pipeline.

smoothing->SetInput(reader->GetOutput());

isolatedConnected->SetInput(smoothing->GetOutput());

caster->SetInput(isolatedConnected->GetOutput());

writer->SetInput(caster->GetOutput());

The IsolatedConnectedImageFilter expects the user to specify a threshold and two seeds. In

this example, we take all of them from the command line arguments.

isolatedConnected->SetLower(lowerThreshold);

isolatedConnected->AddSeed1(indexSeed1);

isolatedConnected->AddSeed2(indexSeed2);

As in the itk::ConnectedThresholdImageFilter we must now specify the intensity value to be

set on the output pixels and at least one seed point to define the initial region.

isolatedConnected->SetReplaceValue(255);

The invocation of the Update() method on the writer triggers the execution of the pipeline.

https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html

4.1. Region Growing 373

Adjacent Structures Seed1 Seed2 Lower Isolated value found

Gray matter vs White matter (61,140) (63,43) 150 183.31

Table 4.2: Parameters used for separating white matter from gray matter in Figure 4.7 using the IsolatedCon-

nectedImageFilter.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

The intensity value allowing us to separate both regions can be recovered with the method

GetIsolatedValue().

std::cout << "Isolated Value Found = ";

std::cout << isolatedConnected->GetIsolatedValue() << std::endl;

Let’s now run this example using the image BrainProtonDensitySlice.png provided in the di-

rectory Examples/Data. We can easily segment the major anatomical structures by providing seed

pairs in the appropriate locations and defining values for the lower threshold. It is important to

keep in mind in this and the previous examples that the segmentation is being performed using the

smoothed version of the image. The selection of threshold values should therefore be performed

in the smoothed image since the distribution of intensities could be quite different from that of the

input image. As a reminder of this fact, Figure 4.7 presents, from left to right, the input image and

the result of smoothing with the itk::CurvatureFlowImageFilter followed by segmentation

results.

This filter is intended to be used in cases where adjacent anatomical structures are difficult to sep-

arate. Selecting one seed in one structure and the other seed in the adjacent structure creates the

appropriate setup for computing the threshold that will separate both structures. Table 4.2 presents

the parameters used to obtain the images shown in Figure 4.7.

4.1.6 Confidence Connected in Vector Images

The source code for this section can be found in the file

VectorConfidenceConnected.cxx.

This example illustrates the use of the confidence connected concept applied to images with

https://www.itk.org/Doxygen/html/classitk_1_1CurvatureFlowImageFilter.html

374 Chapter 4. Segmentation

Figure 4.7: Segmentation results of the IsolatedConnectedImageFilter.

vector pixel types. The confidence connected algorithm is implemented for vector images

in the class itk::VectorConfidenceConnected. The basic difference between the scalar

and vector version is that the vector version uses the covariance matrix instead of a vari-

ance, and a vector mean instead of a scalar mean. The membership of a vector pixel

value to the region is measured using the Mahalanobis distance as implemented in the class

itk::Statistics::MahalanobisDistanceThresholdImageFunction .

#include "itkVectorConfidenceConnectedImageFilter.h"

We now define the image type using a particular pixel type and dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

constexpr unsigned int Dimension = 2;

using PixelComponentType = unsigned char;

using InputPixelType = itk::RGBPixel<PixelComponentType>;

using InputImageType = itk::Image<InputPixelType, Dimension>;

We now declare the type of the region-growing filter. In this case it is the

itk::VectorConfidenceConnectedImageFilter.

using ConnectedFilterType =

itk::VectorConfidenceConnectedImageFilter<InputImageType,

OutputImageType>;

Then, we construct one filter of this class using the New() method.

https://www.itk.org/Doxygen/html/classitk_1_1VectorConfidenceConnected.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MahalanobisDistanceThresholdImageFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorConfidenceConnectedImageFilter.html

4.1. Region Growing 375

auto confidenceConnected = ConnectedFilterType::New();

Next we create a simple, linear data processing pipeline.

confidenceConnected->SetInput(reader->GetOutput());

writer->SetInput(confidenceConnected->GetOutput());

VectorConfidenceConnectedImageFilter requires two parameters. First, the multiplier factor

f defines how large the range of intensities will be. Small values of the multiplier will restrict the

inclusion of pixels to those having similar intensities to those already in the current region. Larger

values of the multiplier relax the accepting condition and result in more generous growth of the

region. Values that are too large will cause the region to grow into neighboring regions which may

actually belong to separate anatomical structures.

confidenceConnected->SetMultiplier(multiplier);

The number of iterations is typically determined based on the homogeneity of the image intensity

representing the anatomical structure to be segmented. Highly homogeneous regions may only

require a couple of iterations. Regions with ramp effects, like MRI images with inhomogeneous

fields, may require more iterations. In practice, it seems to be more relevant to carefully select

the multiplier factor than the number of iterations. However, keep in mind that there is no reason

to assume that this algorithm should converge to a stable region. It is possible that by letting the

algorithm run for more iterations the region will end up engulfing the entire image.

confidenceConnected->SetNumberOfIterations(iterations);

The output of this filter is a binary image with zero-value pixels everywhere except on the ex-

tracted region. The intensity value to be put inside the region is selected with the method

SetReplaceValue().

confidenceConnected->SetReplaceValue(255);

The initialization of the algorithm requires the user to provide a seed point. This point should be

placed in a typical region of the anatomical structure to be segmented. A small neighborhood around

the seed point will be used to compute the initial mean and standard deviation for the inclusion

criterion. The seed is passed in the form of an itk::Index to the SetSeed() method.

confidenceConnected->SetSeed(index);

The size of the initial neighborhood around the seed is defined with the method

SetInitialNeighborhoodRadius(). The neighborhood will be defined as an N-Dimensional rect-

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

376 Chapter 4. Segmentation

Figure 4.8: Segmentation results of the VectorConfidenceConnected filter for various seed points.

angular region with 2r+ 1 pixels on the side, where r is the value passed as initial neighborhood

radius.

confidenceConnected->SetInitialNeighborhoodRadius(3);

The invocation of the Update() method on the writer triggers the execution of the pipeline. It is

usually wise to put update calls in a try/catch block in case errors occur and exceptions are thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

}

Now let’s run this example using as input the image VisibleWomanEyeSlice.png provided in the

directory Examples/Data. We can easily segment the major anatomical structures by providing

seeds in the appropriate locations. For example,

Structure Seed Index Multiplier Iterations Output Image

Rectum (70,120) 7 1 Second from left in Figure 4.8

Rectum (23,93) 7 1 Third from left in Figure 4.8

Vitreo (66,66) 3 1 Fourth from left in Figure 4.8

The coloration of muscular tissue makes it easy to distinguish them from the surrounding anatomical

structures. The optic vitrea on the other hand has a coloration that is not very homogeneous inside

the eyeball and does not facilitate a full segmentation based only on color.

4.2. Segmentation Based on Watersheds 377

The values of the final mean vector and covariance matrix used for the last iteration can be queried

using the methods GetMean() and GetCovariance().

using MeanVectorType = ConnectedFilterType::MeanVectorType;

using CovarianceMatrixType = ConnectedFilterType::CovarianceMatrixType;

const MeanVectorType & mean = confidenceConnected->GetMean();

const CovarianceMatrixType & covariance =

confidenceConnected->GetCovariance();

std::cout << "Mean vector = " << mean << std::endl;

std::cout << "Covariance matrix = " << covariance << std::endl;

4.2 Segmentation Based on Watersheds

4.2.1 Overview

Watershed segmentation classifies pixels into regions using gradient descent on image features and

analysis of weak points along region boundaries. Imagine water raining onto a landscape topology

and flowing with gravity to collect in low basins. The size of those basins will grow with increasing

amounts of precipitation until they spill into one another, causing small basins to merge together into

larger basins. Regions (catchment basins) are formed by using local geometric structure to associate

points in the image domain with local extrema in some feature measurement such as curvature or

gradient magnitude. This technique is less sensitive to user-defined thresholds than classic region-

growing methods, and may be better suited for fusing different types of features from different data

sets. The watersheds technique is also more flexible in that it does not produce a single image

segmentation, but rather a hierarchy of segmentations from which a single region or set of regions

can be extracted a-priori, using a threshold, or interactively, with the help of a graphical user interface

[73, 74].

The strategy of watershed segmentation is to treat an image f as a height function, i.e., the surface

formed by graphing f as a function of its independent parameters,~x ∈ U . The image f is often not

the original input data, but is derived from that data through some filtering, graded (or fuzzy) feature

extraction, or fusion of feature maps from different sources. The assumption is that higher values

of f (or − f) indicate the presence of boundaries in the original data. Watersheds may therefore

be considered as a final or intermediate step in a hybrid segmentation method, where the initial

segmentation is the generation of the edge feature map.

Gradient descent associates regions with local minima of f (clearly interior points) using the water-

sheds of the graph of f , as in Figure 4.9. That is, a segment consists of all points in U whose paths

of steepest descent on the graph of f terminate at the same minimum in f . Thus, there are as many

segments in an image as there are minima in f . The segment boundaries are “ridges” [29, 30, 19]

in the graph of f . In the 1D case (U ⊂ ℜ), the watershed boundaries are the local maxima of f ,

and the results of the watershed segmentation is trivial. For higher-dimensional image domains,

378 Chapter 4. Segmentation

W
at

er
sh

ed
 D

ep
th

Intensity profile of input image Intensity profile of filtered image Watershed Segmentation

Figure 4.9: A fuzzy-valued boundary map, from an image or set of images, is segmented using local minima

and catchment basins.

Node

Threshold of
Watershed depth

Image

Leaf

Boolean Operations
on Sub−Trees
(e.g. User Interaction)

Node Node Node

Node
Node

Node

Node

Node

Leaf Leaf Leaf Leaf Leaf Leaf Leaf Leaf LeafLeaf

Figure 4.10: A watershed segmentation combined with a saliency measure (watershed depth) produces a

hierarchy of regions. Structures can be derived from images by either thresholding the saliency measure or

combining subtrees within the hierarchy.

the watershed boundaries are not simply local phenomena; they depend on the shape of the entire

watershed.

The drawback of watershed segmentation is that it produces a region for each local minimum—in

practice too many regions—and an over segmentation results. To alleviate this, we can establish a

minimum watershed depth. The watershed depth is the difference in height between the watershed

minimum and the lowest boundary point. In other words, it is the maximum depth of water a region

could hold without flowing into any of its neighbors. Thus, a watershed segmentation algorithm can

sequentially combine watersheds whose depths fall below the minimum until all of the watersheds

are of sufficient depth. This depth measurement can be combined with other saliency measurements,

such as size. The result is a segmentation containing regions whose boundaries and size are signif-

icant. Because the merging process is sequential, it produces a hierarchy of regions, as shown in

Figure 4.10. Previous work has shown the benefit of a user-assisted approach that provides a graph-

ical interface to this hierarchy, so that a technician can quickly move from the small regions that lie

4.2. Segmentation Based on Watersheds 379

Segmentation
Segmenter

Threshold

Maximum Flood Level

Output Flood Level

Data Object

Process Object

Parameter

Height

Watershed Image Filter

Image
Labeled
Image

Image
Relabeler

Merge
Tree

Tree
Generator

Basic

Figure 4.11: The construction of the Insight watersheds filter.

within an area of interest to the union of regions that correspond to the anatomical structure [74].

There are two different algorithms commonly used to implement watersheds: top-down and bottom-

up. The top-down, gradient descent strategy was chosen for ITK because we want to consider the

output of multi-scale differential operators, and the f in question will therefore have floating point

values. The bottom-up strategy starts with seeds at the local minima in the image and grows regions

outward and upward at discrete intensity levels (equivalent to a sequence of morphological opera-

tions and sometimes called morphological watersheds [55].) This limits the accuracy by enforcing

a set of discrete gray levels on the image.

Figure 4.11 shows how the ITK image-to-image watersheds filter is constructed. The filter is actually

a collection of smaller filters that modularize the several steps of the algorithm in a mini-pipeline.

The segmenter object creates the initial segmentation via steepest descent from each pixel to local

minima. Shallow background regions are removed (flattened) before segmentation using a simple

minimum value threshold (this helps to minimize oversegmentation of the image). The initial seg-

mentation is passed to a second sub-filter that generates a hierarchy of basins to a user-specified

maximum watershed depth. The relabeler object at the end of the mini-pipeline uses the hierarchy

and the initial segmentation to produce an output image at any scale below the user-specified maxi-

mum. Data objects are cached in the mini-pipeline so that changing watershed depths only requires

a (fast) relabeling of the basic segmentation. The three parameters that control the filter are shown

in Figure 4.11 connected to their relevant processing stages.

4.2.2 Using the ITK Watershed Filter

The source code for this section can be found in the file

WatershedSegmentation1.cxx.

The following example illustrates how to preprocess and segment images using the

itk::WatershedImageFilter . Note that the care with which the data are preprocessed will greatly

affect the quality of your result. Typically, the best results are obtained by preprocessing the orig-

inal image with an edge-preserving diffusion filter, such as one of the anisotropic diffusion filters,

https://www.itk.org/Doxygen/html/classitk_1_1WatershedImageFilter.html

380 Chapter 4. Segmentation

or the bilateral image filter. As noted in Section 4.2.1, the height function used as input should be

created such that higher positive values correspond to object boundaries. A suitable height function

for many applications can be generated as the gradient magnitude of the image to be segmented.

The itk::VectorGradientMagnitudeAnisotropicDiffusionImageFilter class is used to

smooth the image and the itk::VectorGradientMagnitudeImageFilter is used to generate

the height function. We begin by including all preprocessing filter header files and the header file

for the WatershedImageFilter. We use the vector versions of these filters because the input dataset is

a color image.

#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"

#include "itkVectorGradientMagnitudeImageFilter.h"

#include "itkWatershedImageFilter.h"

We now declare the image and pixel types to use for instantiation of the filters. All of these filters ex-

pect real-valued pixel types in order to work properly. The preprocessing stages are applied directly

to the vector-valued data and the segmentation uses floating point scalar data. Images are converted

from RGB pixel type to numerical vector type using itk::CastImageFilter.

using RGBPixelType = itk::RGBPixel<unsigned char>;

using RGBImageType = itk::Image<RGBPixelType, 2>;

using VectorPixelType = itk::Vector<float, 3>;

using VectorImageType = itk::Image<VectorPixelType, 2>;

using LabeledImageType = itk::Image<itk::IdentifierType, 2>;

using ScalarImageType = itk::Image<float, 2>;

The various image processing filters are declared using the types created above and eventually used

in the pipeline.

using FileReaderType = itk::ImageFileReader<RGBImageType>;

using CastFilterType = itk::CastImageFilter<RGBImageType, VectorImageType>;

using DiffusionFilterType =

itk::VectorGradientAnisotropicDiffusionImageFilter<VectorImageType,

VectorImageType>;

using GradientMagnitudeFilterType =

itk::VectorGradientMagnitudeImageFilter<VectorImageType>;

using WatershedFilterType = itk::WatershedImageFilter<ScalarImageType>;

Next we instantiate the filters and set their parameters. The first step in the image processing pipeline

is diffusion of the color input image using an anisotropic diffusion filter. For this class of filters, the

CFL condition requires that the time step be no more than 0.25 for two-dimensional images, and no

more than 0.125 for three-dimensional images. The number of iterations and the conductance term

will be taken from the command line. See Section 2.7.3 for more information on the ITK anisotropic

diffusion filters.

https://www.itk.org/Doxygen/html/classitk_1_1VectorGradientMagnitudeAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1VectorGradientMagnitudeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

4.2. Segmentation Based on Watersheds 381

auto diffusion = DiffusionFilterType::New();

diffusion->SetNumberOfIterations(std::stoi(argv[4]));

diffusion->SetConductanceParameter(std::stod(argv[3]));

diffusion->SetTimeStep(0.125);

The ITK gradient magnitude filter for vector-valued images can optionally take several parameters.

Here we allow only enabling or disabling of principal component analysis.

auto gradient = GradientMagnitudeFilterType::New();

gradient->SetUsePrincipleComponents(std::stoi(argv[7]));

Finally we set up the watershed filter. There are two parameters. Level controls watershed depth,

and Threshold controls the lower thresholding of the input. Both parameters are set as a percentage

(0.0 - 1.0) of the maximum depth in the input image.

auto watershed = WatershedFilterType::New();

watershed->SetLevel(std::stod(argv[6]));

watershed->SetThreshold(std::stod(argv[5]));

The output of WatershedImageFilter is an image of unsigned long integer labels, where a label

denotes membership of a pixel in a particular segmented region. This format is not practical for

visualization, so for the purposes of this example, we will convert it to RGB pixels. RGB images

have the advantage that they can be saved as a simple png file and viewed using any standard image

viewer software. The itk::Functor::ScalarToRGBPixelFunctor class is a special function

object designed to hash a scalar value into an itk::RGBPixel. Plugging this functor into the

itk::UnaryFunctorImageFilter creates an image filter which converts scalar images to RGB

images.

using ColormapFunctorType =

itk::Functor::ScalarToRGBPixelFunctor<unsigned long>;

using ColormapFilterType =

itk::UnaryFunctorImageFilter<LabeledImageType,

RGBImageType,

ColormapFunctorType>;

auto colormapper = ColormapFilterType::New();

The filters are connected into a single pipeline, with readers and writers at each end.

caster->SetInput(reader->GetOutput());

diffusion->SetInput(caster->GetOutput());

gradient->SetInput(diffusion->GetOutput());

watershed->SetInput(gradient->GetOutput());

colormapper->SetInput(watershed->GetOutput());

writer->SetInput(colormapper->GetOutput());

https://www.itk.org/Doxygen/html/classitk_1_1Functor_1_1ScalarToRGBPixelFunctor.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1UnaryFunctorImageFilter.html

382 Chapter 4. Segmentation

Figure 4.12: Segmented section of Visible Human female head and neck cryosection data. At left is the

original image. The image in the middle was generated with parameters: conductance = 2.0, iterations = 10,

threshold = 0.0, level = 0.05, principal components = on. The image on the right was generated with parameters:

conductance = 2.0, iterations = 10, threshold = 0.001, level = 0.15, principal components = off.

Tuning the filter parameters for any particular application is a process of trial and error. The thresh-

old parameter can be used to great effect in controlling oversegmentation of the image. Raising the

threshold will generally reduce computation time and produce output with fewer and larger regions.

The trick in tuning parameters is to consider the scale level of the objects that you are trying to

segment in the image. The best time/quality trade-off will be achieved when the image is smoothed

and thresholded to eliminate features just below the desired scale.

Figure 4.12 shows output from the example code. The input image is taken from the Visible Human

female data around the right eye. The images on the right are colorized watershed segmentations

with parameters set to capture objects such as the optic nerve and lateral rectus muscles, which can

be seen just above and to the left and right of the eyeball. Note that a critical difference between the

two segmentations is the mode of the gradient magnitude calculation.

A note on the computational complexity of the watershed algorithm is warranted. Most of the

complexity of the ITK implementation lies in generating the hierarchy. Processing times for this

stage are non-linear with respect to the number of catchment basins in the initial segmentation. This

means that the amount of information contained in an image is more significant than the number of

pixels in the image. A very large, but very flat input take less time to segment than a very small, but

very detailed input.

4.3. Level Set Segmentation 383

4.3 Level Set Segmentation

The paradigm of the level set is that it is a nu-

f(x,y) > 0

Zero Set f(x,y)=0

Exterior f(x,y) < 0

Interior

Figure 4.13: Concept of zero set in a level set.

merical method for tracking the evolution of

contours and surfaces. Instead of manipulating

the contour directly, the contour is embedded

as the zero level set of a higher dimensional

function called the level-set function, ψ(X, t).
The level-set function is then evolved under the

control of a differential equation. At any time,

the evolving contour can be obtained by ex-

tracting the zero level-set Γ(X, t) = {ψ(X, t) =
0} from the output. The main advantages of us-

ing level sets is that arbitrarily complex shapes

can be modeled and topological changes such

as merging and splitting are handled implicitly.

Level sets can be used for image segmentation by using image-based features such as mean inten-

sity, gradient and edges in the governing differential equation. In a typical approach, a contour is

initialized by a user and is then evolved until it fits the form of an anatomical structure in the im-

age. Many different implementations and variants of this basic concept have been published in the

literature. An overview of the field has been made by Sethian [56].

The following sections introduce practical examples of some of the level set segmentation methods

available in ITK. The remainder of this section describes features common to all of these filters

except the itk::FastMarchingImageFilter, which is derived from a different code framework.

Understanding these features will aid in using the filters more effectively.

Each filter makes use of a generic level-set equation to compute the update to the solution ψ of the

partial differential equation.

d

dt
ψ =−αA(x) ·∇ψ−βP(x) | ∇ψ |+γZ(x)κ | ∇ψ | (4.3)

where A is an advection term, P is a propagation (expansion) term, and Z is a spatial modifier term

for the mean curvature κ. The scalar constants α, β, and γ weight the relative influence of each of

the terms on the movement of the interface. A segmentation filter may use all of these terms in its

calculations, or it may omit one or more terms. If a term is left out of the equation, then setting the

corresponding scalar constant weighting will have no effect.

All of the level-set based segmentation filters must operate with floating point precision to produce

valid results. The third, optional template parameter is the numerical type used for calculations

and as the output image pixel type. The numerical type is float by default, but can be changed

to double for extra precision. A user-defined, signed floating point type that defines all of the

necessary arithmetic operators and has sufficient precision is also a valid choice. You should not use

https://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

384 Chapter 4. Segmentation

(x, t)

−0.4

−0.3

−1.3

−1.4

−1.4

−0.2−1.2

−1.1 −0.1

−0.6

0.6

0.4 0.3

−0.7

1.31.6

0.8

−0.3

0.3

−0.8

−0.7

0.7

−0.4−1.3

0.4

1.3 0.3 0.4 −0.6

−0.6

0.2

1.3

0.2 −0.8

−0.8

1.2

2.3

1.2

1.4

−0.6

0.4−0.5−1.5

0.9

−0.6

0.2

−0.8

0.7

−0.6 −1.7

−1.6

−0.7

−1.8

−1.8

−1.8−2.4

−2.4

−2.4

−2.5

−2.5 −1.5

−1.6

−1.6

2.4

1.7

1.8

Ψ

Figure 4.14: The implicit level set surface Γ is the black line superimposed over the image grid. The location

of the surface is interpolated by the image pixel values. The grid pixels closest to the implicit surface are shown

in gray.

types such as int or unsigned char for the numerical parameter. If the input image pixel types

do not match the numerical type, those inputs will be cast to an image of appropriate type when the

filter is executed.

Most filters require two images as input, an initial model ψ(X, t = 0), and a feature image, which is

either the image you wish to segment or some preprocessed version. You must specify the isovalue

that represents the surface Γ in your initial model. The single image output of each filter is the

function ψ at the final time step. It is important to note that the contour representing the surface Γ
is the zero level-set of the output image, and not the isovalue you specified for the initial model. To

represent Γ using the original isovalue, simply add that value back to the output.

The solution Γ is calculated to subpixel precision. The best discrete approximation of the surface is

therefore the set of grid positions closest to the zero-crossings in the image, as shown in Figure 4.14.

The itk::ZeroCrossingImageFilter operates by finding exactly those grid positions and can be

used to extract the surface.

There are two important considerations when analyzing the processing time for any particular level-

set segmentation task: the surface area of the evolving interface and the total distance that the surface

must travel. Because the level-set equations are usually solved only at pixels near the surface (fast

marching methods are an exception), the time taken at each iteration depends on the number of

points on the surface. This means that as the surface grows, the solver will slow down proportionally.

Because the surface must evolve slowly to prevent numerical instabilities in the solution, the distance

the surface must travel in the image dictates the total number of iterations required.

Some level-set techniques are relatively insensitive to initial conditions and are

therefore suitable for region-growing segmentation. Other techniques, such as the

itk::LaplacianSegmentationLevelSetImageFilter, can easily become “stuck” on image

https://www.itk.org/Doxygen/html/classitk_1_1ZeroCrossingImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html

4.3. Level Set Segmentation 385

Binary
Threshold

Time−Crossing
Map

Fast
Marching

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Binary
Image

Iterations Sigma Alpha,Beta Seeds Threshold

Figure 4.15: Collaboration diagram of the FastMarchingImageFilter applied to a segmentation task.

features close to their initialization and should be used only when a reasonable prior segmentation

is available as the initialization. For best efficiency, your initial model of the surface should be the

best guess possible for the solution. When extending the example applications given here to higher

dimensional images, for example, you can improve results and dramatically decrease processing

time by using a multi-scale approach. Start with a downsampled volume and work back to the full

resolution using the results at each intermediate scale as the initialization for the next scale.

4.3.1 Fast Marching Segmentation

The source code for this section can be found in the file

FastMarchingImageFilter.cxx.

When the differential equation governing the level set evolution has a very simple form, a fast

evolution algorithm called fast marching can be used.

The following example illustrates the use of the itk::FastMarchingImageFilter. This filter

implements a fast marching solution to a simple level set evolution problem. In this example, the

speed term used in the differential equation is expected to be provided by the user in the form of an

image. This image is typically computed as a function of the gradient magnitude. Several mappings

are popular in the literature, for example, the negative exponential exp(−x) and the reciprocal 1/(1+
x). In the current example we decided to use a Sigmoid function since it offers a good number of

control parameters that can be customized to shape a nice speed image.

The mapping should be done in such a way that the propagation speed of the front will be very low

close to high image gradients while it will move rather fast in low gradient areas. This arrangement

will make the contour propagate until it reaches the edges of anatomical structures in the image

and then slow down in front of those edges. The output of the FastMarchingImageFilter is a time-

crossing map that indicates, for each pixel, how much time it would take for the front to arrive at the

pixel location.

The application of a threshold in the output image is then equivalent to taking a snapshot of the

contour at a particular time during its evolution. It is expected that the contour will take a longer

time to cross over the edges of a particular anatomical structure. This should result in large changes

on the time-crossing map values close to the structure edges. Segmentation is performed with this

filter by locating a time range in which the contour was contained for a long time in a region of the

image space.

Figure 4.15 shows the major components involved in the application of the FastMarchingIm-

https://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

386 Chapter 4. Segmentation

ageFilter to a segmentation task. It involves an initial stage of smoothing using the

itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed as

the input to the itk::GradientMagnitudeRecursiveGaussianImageFilter and then to the

itk::SigmoidImageFilter. Finally, the output of the FastMarchingImageFilter is passed to a

itk::BinaryThresholdImageFilter in order to produce a binary mask representing the seg-

mented object.

The code in the following example illustrates the typical setup of a pipeline for performing segmen-

tation with fast marching. First, the input image is smoothed using an edge-preserving filter. Then

the magnitude of its gradient is computed and passed to a sigmoid filter. The result of the sigmoid

filter is the image potential that will be used to affect the speed term of the differential equation.

Let’s start by including the following headers. First we include the header of the Curvature-

AnisotropicDiffusionImageFilter that will be used for removing noise from the input image.

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"

The headers of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter are

included below. Together, these two filters will produce the image potential for regulating the speed

term in the differential equation describing the evolution of the level set.

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"

#include "itkSigmoidImageFilter.h"

Of course, we will need the itk::Image class and the FastMarchingImageFilter class. Hence we

include their headers.

#include "itkFastMarchingImageFilter.h"

The time-crossing map resulting from the FastMarchingImageFilter will be thresholded using the

BinaryThresholdImageFilter. We include its header here.

#include "itkBinaryThresholdImageFilter.h"

Reading and writing images will be done with the itk::ImageFileReader and

itk::ImageFileWriter .

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

We now define the image type using a pixel type and a particular dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

4.3. Level Set Segmentation 387

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The output image, on the other hand, is declared to be binary.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The type of the BinaryThresholdImageFilter filter is instantiated below using the internal image type

and the output image type.

using ThresholdingFilterType =

itk::BinaryThresholdImageFilter<InternalImageType, OutputImageType>;

auto thresholder = ThresholdingFilterType::New();

The upper threshold passed to the BinaryThresholdImageFilter will define the time snapshot that we

are taking from the time-crossing map. In an ideal application the user should be able to select this

threshold interactively using visual feedback. Here, since it is a minimal example, the value is taken

from the command line arguments.

thresholder->SetLowerThreshold(0.0);

thresholder->SetUpperThreshold(timeThreshold);

thresholder->SetOutsideValue(0);

thresholder->SetInsideValue(255);

We instantiate reader and writer types in the following lines.

using ReaderType = itk::ImageFileReader<InternalImageType>;

using WriterType = itk::ImageFileWriter<OutputImageType>;

The CurvatureAnisotropicDiffusionImageFilter type is instantiated using the internal image type.

using SmoothingFilterType =

itk::CurvatureAnisotropicDiffusionImageFilter<InternalImageType,

InternalImageType>;

Then, the filter is created by invoking the New() method and assigning the result to a

itk::SmartPointer.

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

388 Chapter 4. Segmentation

auto smoothing = SmoothingFilterType::New();

The types of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter are in-

stantiated using the internal image type.

using GradientFilterType =

itk::GradientMagnitudeRecursiveGaussianImageFilter<InternalImageType,

InternalImageType>;

using SigmoidFilterType =

itk::SigmoidImageFilter<InternalImageType, InternalImageType>;

The corresponding filter objects are instantiated with the New() method.

auto gradientMagnitude = GradientFilterType::New();

auto sigmoid = SigmoidFilterType::New();

The minimum and maximum values of the SigmoidImageFilter output are defined with the methods

SetOutputMinimum() and SetOutputMaximum(). In our case, we want these two values to be

0.0 and 1.0 respectively in order to get a nice speed image to feed to the FastMarchingImageFilter.

Additional details on the use of the SigmoidImageFilter are presented in Section 2.3.2.

sigmoid->SetOutputMinimum(0.0);

sigmoid->SetOutputMaximum(1.0);

We now declare the type of the FastMarchingImageFilter.

using FastMarchingFilterType =

itk::FastMarchingImageFilter<InternalImageType, InternalImageType>;

Then, we construct one filter of this class using the New() method.

auto fastMarching = FastMarchingFilterType::New();

The filters are now connected in a pipeline shown in Figure 4.15 using the following lines.

smoothing->SetInput(reader->GetOutput());

gradientMagnitude->SetInput(smoothing->GetOutput());

sigmoid->SetInput(gradientMagnitude->GetOutput());

fastMarching->SetInput(sigmoid->GetOutput());

thresholder->SetInput(fastMarching->GetOutput());

writer->SetInput(thresholder->GetOutput());

4.3. Level Set Segmentation 389

The CurvatureAnisotropicDiffusionImageFilter class requires a couple of parameters to be defined.

The following are typical values for 2D images. However they may have to be adjusted depending

on the amount of noise present in the input image. This filter has been discussed in Section 2.7.3.

smoothing->SetTimeStep(0.125);

smoothing->SetNumberOfIterations(5);

smoothing->SetConductanceParameter(9.0);

The GradientMagnitudeRecursiveGaussianImageFilter performs the equivalent of a convolution

with a Gaussian kernel followed by a derivative operator. The sigma of this Gaussian can be used to

control the range of influence of the image edges. This filter has been discussed in Section 2.4.2.

gradientMagnitude->SetSigma(sigma);

The SigmoidImageFilter class requires two parameters to define the linear transformation to be ap-

plied to the sigmoid argument. These parameters are passed using the SetAlpha() and SetBeta()

methods. In the context of this example, the parameters are used to intensify the differences between

regions of low and high values in the speed image. In an ideal case, the speed value should be 1.0 in

the homogeneous regions of anatomical structures and the value should decay rapidly to 0.0 around

the edges of structures. The heuristic for finding the values is the following: From the gradient

magnitude image, let’s call K1 the minimum value along the contour of the anatomical structure to

be segmented. Then, let’s call K2 an average value of the gradient magnitude in the middle of the

structure. These two values indicate the dynamic range that we want to map to the interval [0 : 1] in

the speed image. We want the sigmoid to map K1 to 0.0 and K2 to 1.0. Given that K1 is expected to

be higher than K2 and we want to map those values to 0.0 and 1.0 respectively, we want to select a

negative value for alpha so that the sigmoid function will also do an inverse intensity mapping. This

mapping will produce a speed image such that the level set will march rapidly on the homogeneous

region and will definitely stop on the contour. The suggested value for beta is (K1+K2)/2 while the

suggested value for alpha is (K2−K1)/6, which must be a negative number. In our simple example

the values are provided by the user from the command line arguments. The user can estimate these

values by observing the gradient magnitude image.

sigmoid->SetAlpha(alpha);

sigmoid->SetBeta(beta);

The FastMarchingImageFilter requires the user to provide a seed point from which the contour will

expand. The user can actually pass not only one seed point but a set of them. A good set of seed

points increases the chances of segmenting a complex object without missing parts. The use of

multiple seeds also helps to reduce the amount of time needed by the front to visit a whole object

and hence reduces the risk of leaks on the edges of regions visited earlier. For example, when

segmenting an elongated object, it is undesirable to place a single seed at one extreme of the object

since the front will need a long time to propagate to the other end of the object. Placing several

seeds along the axis of the object will probably be the best strategy to ensure that the entire object

390 Chapter 4. Segmentation

is captured early in the expansion of the front. One of the important properties of level sets is their

natural ability to fuse several fronts implicitly without any extra bookkeeping. The use of multiple

seeds takes good advantage of this property.

The seeds are passed stored in a container. The type of this container is defined as NodeContainer

among the FastMarchingImageFilter traits.

using NodeContainer = FastMarchingFilterType::NodeContainer;

using NodeType = FastMarchingFilterType::NodeType;

auto seeds = NodeContainer::New();

Nodes are created as stack variables and initialized with a value and an itk::Index position.

NodeType node;

constexpr double seedValue = 0.0;

node.SetValue(seedValue);

node.SetIndex(seedPosition);

The list of nodes is initialized and then every node is inserted using the InsertElement().

seeds->Initialize();

seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingImageFilter with the method

SetTrialPoints().

fastMarching->SetTrialPoints(seeds);

The FastMarchingImageFilter requires the user to specify the size of the image to be produced as

output. This is done using the SetOutputSize() method. Note that the size is obtained here from

the output image of the smoothing filter. The size of this image is valid only after the Update()

method of this filter has been called directly or indirectly.

fastMarching->SetOutputSize(

reader->GetOutput()->GetBufferedRegion().GetSize());

Since the front representing the contour will propagate continuously over time, it is desirable to stop

the process once a certain time has been reached. This allows us to save computation time under

the assumption that the region of interest has already been computed. The value for stopping the

process is defined with the method SetStoppingValue(). In principle, the stopping value should

be a little bit higher than the threshold value.

https://www.itk.org/Doxygen/html/classitk_1_1Index.html

4.3. Level Set Segmentation 391

Structure Seed Index σ α β Threshold Output Image from left

Left Ventricle (81,114) 1.0 -0.5 3.0 100 First

Right Ventricle (99,114) 1.0 -0.5 3.0 100 Second

White matter (56,92) 1.0 -0.3 2.0 200 Third

Gray matter (40,90) 0.5 -0.3 2.0 200 Fourth

Table 4.3: Parameters used for segmenting some brain structures shown in Figure 4.17 using the filter Fast-

MarchingImageFilter. All of them used a stopping value of 100.

fastMarching->SetStoppingValue(stoppingTime);

The invocation of the Update() method on the writer triggers the execution of the pipeline. As

usual, the call is placed in a try/catch block should any errors occur or exceptions be thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Now let’s run this example using the input image BrainProtonDensitySlice.png provided in

the directory Examples/Data. We can easily segment the major anatomical structures by provid-

ing seeds in the appropriate locations. The following table presents the parameters used for some

structures.

Figure 4.16 presents the intermediate outputs of the pipeline illustrated in Figure 4.15. They are from

left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the smoothed

image and the sigmoid of the gradient magnitude which is finally used as the speed image for the

FastMarchingImageFilter.

Notice that the gray matter is not being completely segmented. This illustrates the vulnerability

of the level set methods when the anatomical structures to be segmented do not occupy extended

regions of the image. This is especially true when the width of the structure is comparable to the size

of the attenuation bands generated by the gradient filter. A possible workaround for this limitation is

to use multiple seeds distributed along the elongated object. However, note that white matter versus

gray matter segmentation is not a trivial task, and may require a more elaborate approach than the

one used in this basic example.

392 Chapter 4. Segmentation

Figure 4.16: Images generated by the segmentation process based on the FastMarchingImageFilter. From left

to right and top to bottom: input image to be segmented, image smoothed with an edge-preserving smoothing

filter, gradient magnitude of the smoothed image, sigmoid of the gradient magnitude. This last image, the

sigmoid, is used to compute the speed term for the front propagation.

4.3. Level Set Segmentation 393

Figure 4.17: Images generated by the segmentation process based on the FastMarchingImageFilter. From left

to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation of the white matter,

attempt of segmentation of the gray matter.

4.3.2 Shape Detection Segmentation

The source code for this section can be found in the file

ShapeDetectionLevelSetFilter.cxx.

The use of the itk::ShapeDetectionLevelSetImageFilter is illustrated in the following exam-

ple. The implementation of this filter in ITK is based on the paper by Malladi et al [38]. In this im-

plementation, the governing differential equation has an additional curvature-based term. This term

acts as a smoothing term where areas of high curvature, assumed to be due to noise, are smoothed

out. Scaling parameters are used to control the tradeoff between the expansion term and the smooth-

ing term. One consequence of this additional curvature term is that the fast marching algorithm is

no longer applicable, because the contour is no longer guaranteed to always be expanding. Instead,

the level set function is updated iteratively.

The ShapeDetectionLevelSetImageFilter expects two inputs, the first being an initial Level Set in

the form of an itk::Image, and the second being a feature image. For this algorithm, the feature

image is an edge potential image that basically follows the same rules applicable to the speed image

used for the FastMarchingImageFilter discussed in Section 4.3.1.

In this example we use an FastMarchingImageFilter to produce the initial level set as the distance

function to a set of user-provided seeds. The FastMarchingImageFilter is run with a constant speed

value which enables us to employ this filter as a distance map calculator.

Figure 4.18 shows the major components involved in the application of the ShapeDetection-

LevelSetImageFilter to a segmentation task. The first stage involves smoothing using the

itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed as the

input for the itk::GradientMagnitudeRecursiveGaussianImageFilter and then to the

itk::SigmoidImageFilter in order to produce the edge potential image. A set of user-provided

seeds is passed to an FastMarchingImageFilter in order to compute the distance map. A constant

value is subtracted from this map in order to obtain a level set in which the zero set represents the

https://www.itk.org/Doxygen/html/classitk_1_1ShapeDetectionLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html

394 Chapter 4. Segmentation

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Iterations Sigma Alpha,Beta

Edge
Image

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Threshold

Output
LevelSet

Input
LevelSet

Edge
Potential

Shape
Detection

Figure 4.18: Collaboration diagram for the ShapeDetectionLevelSetImageFilter applied to a segmentation task.

4.3. Level Set Segmentation 395

initial contour. This level set is also passed as input to the ShapeDetectionLevelSetImageFilter.

Finally, the level set at the output of the ShapeDetectionLevelSetImageFilter is passed to an Binary-

ThresholdImageFilter in order to produce a binary mask representing the segmented object.

Let’s start by including the headers of the main filters involved in the preprocessing.

#include "itkCurvatureAnisotropicDiffusionImageFilter.h"

#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"

#include "itkSigmoidImageFilter.h"

The edge potential map is generated using these filters as in the previous example.

We will need the Image class, the FastMarchingImageFilter class and the ShapeDetectionLevelSe-

tImageFilter class. Hence we include their headers here.

#include "itkFastMarchingImageFilter.h"

#include "itkShapeDetectionLevelSetImageFilter.h"

The level set resulting from the ShapeDetectionLevelSetImageFilter will be thresholded at the zero

level in order to get a binary image representing the segmented object. The BinaryThresholdImage-

Filter is used for this purpose.

#include "itkBinaryThresholdImageFilter.h"

We now define the image type using a particular pixel type and a dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The output image, on the other hand, is declared to be binary.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

The type of the BinaryThresholdImageFilter filter is instantiated below using the internal image type

and the output image type.

using ThresholdingFilterType =

itk::BinaryThresholdImageFilter<InternalImageType, OutputImageType>;

auto thresholder = ThresholdingFilterType::New();

396 Chapter 4. Segmentation

The upper threshold of the BinaryThresholdImageFilter is set to 0.0 in order to display the zero set

of the resulting level set. The lower threshold is set to a large negative number in order to ensure

that the interior of the segmented object will appear inside the binary region.

thresholder->SetLowerThreshold(-1000.0);

thresholder->SetUpperThreshold(0.0);

thresholder->SetOutsideValue(0);

thresholder->SetInsideValue(255);

The CurvatureAnisotropicDiffusionImageFilter type is instantiated using the internal image type.

using SmoothingFilterType =

itk::CurvatureAnisotropicDiffusionImageFilter<InternalImageType,

InternalImageType>;

The filter is instantiated by invoking the New() method and assigning the result to a

itk::SmartPointer.

auto smoothing = SmoothingFilterType::New();

The types of the GradientMagnitudeRecursiveGaussianImageFilter and SigmoidImageFilter are in-

stantiated using the internal image type.

using GradientFilterType =

itk::GradientMagnitudeRecursiveGaussianImageFilter<InternalImageType,

InternalImageType>;

using SigmoidFilterType =

itk::SigmoidImageFilter<InternalImageType, InternalImageType>;

The corresponding filter objects are created with the method New().

auto gradientMagnitude = GradientFilterType::New();

auto sigmoid = SigmoidFilterType::New();

The minimum and maximum values of the SigmoidImageFilter output are defined with the methods

SetOutputMinimum() and SetOutputMaximum(). In our case, we want these two values to be

0.0 and 1.0 respectively in order to get a nice speed image to feed to the FastMarchingImageFilter.

Additional details on the use of the SigmoidImageFilter are presented in Section 2.3.2.

sigmoid->SetOutputMinimum(0.0);

sigmoid->SetOutputMaximum(1.0);

https://www.itk.org/Doxygen/html/classitk_1_1SmartPointer.html

4.3. Level Set Segmentation 397

We now declare the type of the FastMarchingImageFilter that will be used to generate the initial

level set in the form of a distance map.

using FastMarchingFilterType =

itk::FastMarchingImageFilter<InternalImageType, InternalImageType>;

Next we construct one filter of this class using the New() method.

auto fastMarching = FastMarchingFilterType::New();

In the following lines we instantiate the type of the ShapeDetectionLevelSetImageFilter and create

an object of this type using the New() method.

using ShapeDetectionFilterType =

itk::ShapeDetectionLevelSetImageFilter<InternalImageType,

InternalImageType>;

auto shapeDetection = ShapeDetectionFilterType::New();

The filters are now connected in a pipeline indicated in Figure 4.18 with the following code.

smoothing->SetInput(reader->GetOutput());

gradientMagnitude->SetInput(smoothing->GetOutput());

sigmoid->SetInput(gradientMagnitude->GetOutput());

shapeDetection->SetInput(fastMarching->GetOutput());

shapeDetection->SetFeatureImage(sigmoid->GetOutput());

thresholder->SetInput(shapeDetection->GetOutput());

writer->SetInput(thresholder->GetOutput());

The CurvatureAnisotropicDiffusionImageFilter requires a couple of parameters to be defined. The

following are typical values for 2D images. However they may have to be adjusted depending on

the amount of noise present in the input image. This filter has been discussed in Section 2.7.3.

smoothing->SetTimeStep(0.125);

smoothing->SetNumberOfIterations(5);

smoothing->SetConductanceParameter(9.0);

The GradientMagnitudeRecursiveGaussianImageFilter performs the equivalent of a convolution

with a Gaussian kernel followed by a derivative operator. The sigma of this Gaussian can be used to

control the range of influence of the image edges. This filter has been discussed in Section 2.4.2.

398 Chapter 4. Segmentation

gradientMagnitude->SetSigma(sigma);

The SigmoidImageFilter requires two parameters that define the linear transformation to be applied

to the sigmoid argument. These parameters have been discussed in Sections 2.3.2 and 4.3.1.

sigmoid->SetAlpha(alpha);

sigmoid->SetBeta(beta);

The FastMarchingImageFilter requires the user to provide a seed point from which the level set

will be generated. The user can actually pass not only one seed point but a set of them. Note the

FastMarchingImageFilter is used here only as a helper in the determination of an initial level set.

We could have used the itk::DanielssonDistanceMapImageFilter in the same way.

The seeds are stored in a container. The type of this container is defined as NodeContainer among

the FastMarchingImageFilter traits.

using NodeContainer = FastMarchingFilterType::NodeContainer;

using NodeType = FastMarchingFilterType::NodeType;

auto seeds = NodeContainer::New();

Nodes are created as stack variables and initialized with a value and an itk::Index position. Note

that we assign the negative of the value of the user-provided distance to the unique node of the

seeds passed to the FastMarchingImageFilter. In this way, the value will increment as the front is

propagated, until it reaches the zero value corresponding to the contour. After this, the front will

continue propagating until it fills up the entire image. The initial distance is taken from the command

line arguments. The rule of thumb for the user is to select this value as the distance from the seed

points at which the initial contour should be.

NodeType node;

const double seedValue = -initialDistance;

node.SetValue(seedValue);

node.SetIndex(seedPosition);

The list of nodes is initialized and then every node is inserted using InsertElement().

seeds->Initialize();

seeds->InsertElement(0, node);

The set of seed nodes is now passed to the FastMarchingImageFilter with the method

SetTrialPoints().

https://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Index.html

4.3. Level Set Segmentation 399

fastMarching->SetTrialPoints(seeds);

Since the FastMarchingImageFilter is used here only as a distance map generator, it does not require

a speed image as input. Instead, the constant value 1.0 is passed using the SetSpeedConstant()

method.

fastMarching->SetSpeedConstant(1.0);

The FastMarchingImageFilter requires the user to specify the size of the image to be produced as

output. This is done using the SetOutputSize(). Note that the size is obtained here from the output

image of the smoothing filter. The size of this image is valid only after the Update() methods of

this filter have been called directly or indirectly.

fastMarching->SetOutputSize(

reader->GetOutput()->GetBufferedRegion().GetSize());

ShapeDetectionLevelSetImageFilter provides two parameters to control the competition be-

tween the propagation or expansion term and the curvature smoothing term. The methods

SetPropagationScaling() and SetCurvatureScaling() defines the relative weighting between

the two terms. In this example, we will set the propagation scaling to one and let the curvature scal-

ing be an input argument. The larger the the curvature scaling parameter the smoother the resulting

segmentation. However, the curvature scaling parameter should not be set too large, as it will draw

the contour away from the shape boundaries.

shapeDetection->SetPropagationScaling(propagationScaling);

shapeDetection->SetCurvatureScaling(curvatureScaling);

Once activated, the level set evolution will stop if the convergence criteria or the maximum number

of iterations is reached. The convergence criteria are defined in terms of the root mean squared

(RMS) change in the level set function. The evolution is said to have converged if the RMS change

is below a user-specified threshold. In a real application, it is desirable to couple the evolution of

the zero set to a visualization module, allowing the user to follow the evolution of the zero set. With

this feedback, the user may decide when to stop the algorithm before the zero set leaks through the

regions of low gradient in the contour of the anatomical structure to be segmented.

shapeDetection->SetMaximumRMSError(0.02);

shapeDetection->SetNumberOfIterations(800);

The invocation of the Update() method on the writer triggers the execution of the pipeline. As

usual, the call is placed in a try/catch block should any errors occur or exceptions be thrown.

400 Chapter 4. Segmentation

Structure Seed Index Distance σ α β Output Image

Left Ventricle (81,114) 5.0 1.0 -0.5 3.0 First in Figure 4.20

Right Ventricle (99,114) 5.0 1.0 -0.5 3.0 Second in Figure 4.20

White matter (56,92) 5.0 1.0 -0.3 2.0 Third in Figure 4.20

Gray matter (40,90) 5.0 0.5 -0.3 2.0 Fourth in Figure 4.20

Table 4.4: Parameters used for segmenting some brain structures shown in Figure 4.19 using the filter Sha-

peDetectionLevelSetFilter. All of them used a propagation scaling of 1.0 and curvature scaling of 0.05.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Let’s now run this example using as input the image BrainProtonDensitySlice.png provided in

the directory Examples/Data. We can easily segment the major anatomical structures by providing

seeds in the appropriate locations. Table 4.4 presents the parameters used for some structures. For

all of the examples illustrated in this table, the propagation scaling was set to 1.0, and the curvature

scaling set to 0.05.

Figure 4.19 presents the intermediate outputs of the pipeline illustrated in Figure 4.18. They are from

left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the smoothed

image and the sigmoid of the gradient magnitude which is finally used as the edge potential for the

ShapeDetectionLevelSetImageFilter.

Notice that in Figure 4.20 the segmented shapes are rounder than in Figure 4.17 due to the effects of

the curvature term in the driving equation. As with the previous example, segmentation of the gray

matter is still problematic.

A larger number of iterations is required for segmenting large structures since it takes longer for the

front to propagate and cover the structure. This drawback can be easily mitigated by setting many

seed points in the initialization of the FastMarchingImageFilter. This will generate an initial level

set much closer in shape to the object to be segmented and hence require fewer iterations to fill and

reach the edges of the anatomical structure.

4.3. Level Set Segmentation 401

Figure 4.19: Images generated by the segmentation process based on the ShapeDetectionLevelSetImage-

Filter. From left to right and top to bottom: input image to be segmented, image smoothed with an edge-

preserving smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient magnitude. This

last image, the sigmoid, is used to compute the speed term for the front propagation.

402 Chapter 4. Segmentation

Figure 4.20: Images generated by the segmentation process based on the ShapeDetectionLevelSetImage-

Filter. From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation of

the white matter, attempt of segmentation of the gray matter.

4.3.3 Geodesic Active Contours Segmentation

The source code for this section can be found in the file

GeodesicActiveContourImageFilter.cxx.

The use of the itk::GeodesicActiveContourLevelSetImageFilter is illustrated in the follow-

ing example. The implementation of this filter in ITK is based on the paper by Caselles [11]. This

implementation extends the functionality of the itk::ShapeDetectionLevelSetImageFilter by

the addition of a third advection term which attracts the level set to the object boundaries.

GeodesicActiveContourLevelSetImageFilter expects two inputs. The first is an initial level set in

the form of an itk::Image. The second input is a feature image. For this algorithm, the feature

image is an edge potential image that basically follows the same rules used for the ShapeDetection-

LevelSetImageFilter discussed in Section 4.3.2. The configuration of this example is quite similar to

the example on the use of the ShapeDetectionLevelSetImageFilter. We omit most of the redundant

description. A look at the code will reveal the great degree of similarity between both examples.

Figure 4.21 shows the major components involved in the application of the GeodesicActiveCon-

tourLevelSetImageFilter to a segmentation task. This pipeline is quite similar to the one used by the

ShapeDetectionLevelSetImageFilter in section 4.3.2.

The pipeline involves a first stage of smoothing using the

itk::CurvatureAnisotropicDiffusionImageFilter. The smoothed image is passed as

the input to the itk::GradientMagnitudeRecursiveGaussianImageFilter and then to the

itk::SigmoidImageFilter in order to produce the edge potential image. A set of user-provided

seeds is passed to a itk::FastMarchingImageFilter in order to compute the distance map. A

constant value is subtracted from this map in order to obtain a level set in which the zero set repre-

sents the initial contour. This level set is also passed as input to the GeodesicActiveContourLevelSe-

tImageFilter.

Finally, the level set generated by the GeodesicActiveContourLevelSetImageFilter is passed to a

https://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ShapeDetectionLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1CurvatureAnisotropicDiffusionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeRecursiveGaussianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1SigmoidImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html

4.3. Level Set Segmentation 403

Sigmoid
Filter

Gradient
Magnitude

Anisotropic
Diffusion

Input
itk::Image

Iterations Sigma Alpha,Beta

Edge
Image

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Output
LevelSet

Geodesic
Active

ContoursLength
Penalty

Inflation
Strength

Figure 4.21: Collaboration diagram for the GeodesicActiveContourLevelSetImageFilter applied to a segmen-

tation task.

404 Chapter 4. Segmentation

itk::BinaryThresholdImageFilter in order to produce a binary mask representing the seg-

mented object.

Let’s start by including the headers of the main filters involved in the preprocessing.

#include "itkGeodesicActiveContourLevelSetImageFilter.h"

We now define the image type using a particular pixel type and dimension. In this case the float

type is used for the pixels due to the requirements of the smoothing filter.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

In the following lines we instantiate the type of the GeodesicActiveContourLevelSetImageFilter and

create an object of this type using the New() method.

using GeodesicActiveContourFilterType =

itk::GeodesicActiveContourLevelSetImageFilter<InternalImageType,

InternalImageType>;

auto geodesicActiveContour = GeodesicActiveContourFilterType::New();

For the GeodesicActiveContourLevelSetImageFilter, scaling parameters are used to trade off be-

tween the propagation (inflation), the curvature (smoothing) and the advection terms. These

parameters are set using methods SetPropagationScaling(), SetCurvatureScaling() and

SetAdvectionScaling(). In this example, we will set the curvature and advection scales to one

and let the propagation scale be a command-line argument.

geodesicActiveContour->SetPropagationScaling(propagationScaling);

geodesicActiveContour->SetCurvatureScaling(1.0);

geodesicActiveContour->SetAdvectionScaling(1.0);

The filters are now connected in a pipeline indicated in Figure 4.21 using the following lines:

smoothing->SetInput(reader->GetOutput());

gradientMagnitude->SetInput(smoothing->GetOutput());

sigmoid->SetInput(gradientMagnitude->GetOutput());

geodesicActiveContour->SetInput(fastMarching->GetOutput());

geodesicActiveContour->SetFeatureImage(sigmoid->GetOutput());

thresholder->SetInput(geodesicActiveContour->GetOutput());

writer->SetInput(thresholder->GetOutput());

The invocation of the Update() method on the writer triggers the execution of the pipeline. As

usual, the call is placed in a try/catch block should any errors occur or exceptions be thrown.

https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

4.3. Level Set Segmentation 405

Structure Seed Index Distance σ α β Propag. Output Image

Left Ventricle (81,114) 5.0 1.0 -0.5 3.0 2.0 First

Right Ventricle (99,114) 5.0 1.0 -0.5 3.0 2.0 Second

White matter (56,92) 5.0 1.0 -0.3 2.0 10.0 Third

Gray matter (40,90) 5.0 0.5 -0.3 2.0 10.0 Fourth

Table 4.5: Parameters used for segmenting some brain structures shown in Figure 4.23 using the filter Geodesi-

cActiveContourLevelSetImageFilter.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Let’s now run this example using as input the image BrainProtonDensitySlice.png provided in

the directory Examples/Data. We can easily segment the major anatomical structures by providing

seeds in the appropriate locations. Table 4.5 presents the parameters used for some structures.

Figure 4.22 presents the intermediate outputs of the pipeline illustrated in Figure 4.21. They are from

left to right: the output of the anisotropic diffusion filter, the gradient magnitude of the smoothed

image and the sigmoid of the gradient magnitude which is finally used as the edge potential for the

GeodesicActiveContourLevelSetImageFilter.

Segmentations of the main brain structures are presented in Figure 4.23. The results are quite similar

to those obtained with the ShapeDetectionLevelSetImageFilter in Section 4.3.2.

Note that a relatively larger propagation scaling value was required to segment the white matter. This

is due to two factors: the lower contrast at the border of the white matter and the complex shape of

the structure. Unfortunately the optimal value of these scaling parameters can only be determined

by experimentation. In a real application we could imagine an interactive mechanism by which a

user supervises the contour evolution and adjusts these parameters accordingly.

4.3.4 Threshold Level Set Segmentation

The source code for this section can be found in the file

ThresholdSegmentationLevelSetImageFilter.cxx.

The itk::ThresholdSegmentationLevelSetImageFilter is an extension of the threshold

https://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

406 Chapter 4. Segmentation

Figure 4.22: Images generated by the segmentation process based on the GeodesicActiveContourLevelSe-

tImageFilter. From left to right and top to bottom: input image to be segmented, image smoothed with an

edge-preserving smoothing filter, gradient magnitude of the smoothed image, sigmoid of the gradient magni-

tude. This last image, the sigmoid, is used to compute the speed term for the front propagation.

4.3. Level Set Segmentation 407

Figure 4.23: Images generated by the segmentation process based on the GeodesicActiveContourImageFilter.

From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation of the white

matter, attempt of segmentation of the gray matter.

connected-component segmentation to the level set framework. The goal is to define a range of in-

tensity values that classify the tissue type of interest and then base the propagation term on the level

set equation for that intensity range. Using the level set approach, the smoothness of the evolving

surface can be constrained to prevent some of the “leaking” that is common in connected-component

schemes.

The propagation term P from Equation 4.3 is calculated from the FeatureImage input g with

UpperThreshold U and LowerThreshold L according to the following formula.

P(x) =

{

g(x)−L if g(x)< (U −L)/2+L

U − g(x) otherwise
(4.4)

Figure 4.25 illustrates the propagation term function. Intensity values in g between L and H yield

positive values in P, while outside intensities yield negative values in P.

The threshold segmentation filter expects two inputs. The first is an initial level set in the form of

an itk::Image. The second input is the feature image g. For many applications, this filter requires

little or no preprocessing of its input. Smoothing the input image is not usually required to produce

reasonable solutions, though it may still be warranted in some cases.

Figure 4.24 shows how the image processing pipeline is constructed. The initial surface is

generated using the fast marching filter. The output of the segmentation filter is passed to a

itk::BinaryThresholdImageFilter to create a binary representation of the segmented object.

Let’s start by including the appropriate header file.

#include "itkThresholdSegmentationLevelSetImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use 2D

float images.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html

408 Chapter 4. Segmentation

Feature

Fast
Marching

Input
LevelSet

Distance

Seeds

Binary
Threshold

Binary
Image

Input
itk::Image

LevelSet
OutputThreshold

Level−set
Segmentation

Weight

Curvature

Weight

Figure 4.24: Collaboration diagram for the ThresholdSegmentationLevelSetImageFilter applied to a segmen-

tation task.

Expands
ModelModel

Contracts Contracts
Model

UL

g(x)

P

P=0

Figure 4.25: Propagation term for threshold-based level set segmentation. From Equation 4.4.

4.3. Level Set Segmentation 409

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The following lines instantiate a ThresholdSegmentationLevelSetImageFilter using the New()

method.

using ThresholdSegmentationLevelSetImageFilterType =

itk::ThresholdSegmentationLevelSetImageFilter<InternalImageType,

InternalImageType>;

ThresholdSegmentationLevelSetImageFilterType::Pointer

thresholdSegmentation =

ThresholdSegmentationLevelSetImageFilterType::New();

For the ThresholdSegmentationLevelSetImageFilter, scaling parameters are used to balance the in-

fluence of the propagation (inflation) and the curvature (surface smoothing) terms from Equation 4.3.

The advection term is not used in this filter. Set the terms with methods SetPropagationScaling()

and SetCurvatureScaling(). Both terms are set to 1.0 in this example.

thresholdSegmentation->SetPropagationScaling(1.0);

if (argc > 8)

{

thresholdSegmentation->SetCurvatureScaling(std::stod(argv[8]));

}

else

{

thresholdSegmentation->SetCurvatureScaling(1.0);

}

The convergence criteria MaximumRMSError and MaximumIterations are set as in previous exam-

ples. We now set the upper and lower threshold values U and L, and the isosurface value to use in

the initial model.

thresholdSegmentation->SetUpperThreshold(std::stod(argv[7]));

thresholdSegmentation->SetLowerThreshold(std::stod(argv[6]));

thresholdSegmentation->SetIsoSurfaceValue(0.0);

The filters are now connected in a pipeline indicated in Figure 4.24. Remember that before calling

Update() on the file writer object, the fast marching filter must be initialized with the seed points

and the output from the reader object. See previous examples and the source code for this section

for details.

thresholdSegmentation->SetInput(fastMarching->GetOutput());

thresholdSegmentation->SetFeatureImage(reader->GetOutput());

410 Chapter 4. Segmentation

Figure 4.26: Images generated by the segmentation process based on the ThresholdSegmentationLevelSetIm-

ageFilter. From left to right: segmentation of the left ventricle, segmentation of the right ventricle, segmentation

of the white matter, attempt of segmentation of the gray matter. The parameters used in this segmentations are

presented in Table 4.6.

thresholder->SetInput(thresholdSegmentation->GetOutput());

writer->SetInput(thresholder->GetOutput());

Invoking the Update() method on the writer triggers the execution of the pipeline. As usual, the

call is placed in a try/catch block should any errors occur or exceptions be thrown.

try

{

reader->Update();

const InternalImageType * inputImage = reader->GetOutput();

fastMarching->SetOutputRegion(inputImage->GetBufferedRegion());

fastMarching->SetOutputSpacing(inputImage->GetSpacing());

fastMarching->SetOutputOrigin(inputImage->GetOrigin());

fastMarching->SetOutputDirection(inputImage->GetDirection());

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Let’s run this application with the same data and parameters as the example given for

itk::ConnectedThresholdImageFilter in Section 4.1.1. We will use a value of 5 as the initial

distance of the surface from the seed points. The algorithm is relatively insensitive to this initial-

ization. Compare the results in Figure 4.26 with those in Figure 4.1. Notice how the smoothness

constraint on the surface prevents leakage of the segmentation into both ventricles, but also localizes

the segmentation to a smaller portion of the gray matter.

https://www.itk.org/Doxygen/html/classitk_1_1ConnectedThresholdImageFilter.html

4.3. Level Set Segmentation 411

Structure Seed Index Lower Upper Output Image

White matter (60,116) 150 180 Second from left

Ventricle (81,112) 210 250 Third from left

Gray matter (107,69) 180 210 Fourth from left

Table 4.6: Segmentation results using the ThresholdSegmentationLevelSetImageFilter for various seed points.

The resulting images are shown in Figure 4.26 .

4.3.5 Canny-Edge Level Set Segmentation

The source code for this section can be found in the file

CannySegmentationLevelSetImageFilter.cxx.

The itk::CannySegmentationLevelSetImageFilter defines a speed term that minimizes dis-

tance to the Canny edges in an image. The initial level set model moves through a gradient advection

field until it locks onto those edges. This filter is more suitable for refining existing segmentations

than as a region-growing algorithm.

The two terms defined for the CannySegmentationLevelSetImageFilter are the advection term and

the propagation term from Equation 4.3. The advection term is constructed by minimizing the

squared distance transform from the Canny edges.

min

∫
D2 ⇒ D∇D (4.5)

where the distance transform D is calculated using a itk::DanielssonDistanceMapImageFilter

applied to the output of the itk::CannyEdgeDetectionImageFilter.

For cases in which some surface expansion is to be allowed, a non-zero value may be set for the

propagation term. The propagation term is simply D. As with all ITK level set segmentation filters,

the curvature term controls the smoothness of the surface.

CannySegmentationLevelSetImageFilter expects two inputs. The first is an initial level set in the

form of an itk::Image. The second input is the feature image g from which propagation and

advection terms are calculated. It is generally a good idea to do some preprocessing of the feature

image to remove noise.

Figure 4.27 shows how the image processing pipeline is constructed. We read two images: the image

to segment and the image that contains the initial implicit surface. The goal is to refine the initial

model from the second input and not to grow a new segmentation from seed points. The feature

image is preprocessed with a few iterations of an anisotropic diffusion filter.

Let’s start by including the appropriate header file.

https://www.itk.org/Doxygen/html/classitk_1_1CannySegmentationLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1DanielssonDistanceMapImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CannyEdgeDetectionImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

412 Chapter 4. Segmentation

Threshold

Binary
Threshold

Binary
Image

Advection
Weight

 Maximum
Iterations

Input
itk::Image

Initial
Model

itk::Image
Anisotropic
Diffusion

 Gradient

LevelSet
OutputThreshold

Level−set
Segmentation

Canny
Variance

Canny

Figure 4.27: Collaboration diagram for the CannySegmentationLevelSetImageFilter applied to a segmentation

task.

#include "itkCannySegmentationLevelSetImageFilter.h"

#include "itkGradientAnisotropicDiffusionImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use 2D

float images.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The input image will be processed with a few iterations of feature-preserving diffusion. We create a

filter and set the appropriate parameters.

using DiffusionFilterType =

itk::GradientAnisotropicDiffusionImageFilter<InternalImageType,

InternalImageType>;

auto diffusion = DiffusionFilterType::New();

diffusion->SetNumberOfIterations(5);

diffusion->SetTimeStep(0.125);

diffusion->SetConductanceParameter(1.0);

The following lines define and instantiate a CannySegmentationLevelSetImageFilter.

4.3. Level Set Segmentation 413

using CannySegmentationLevelSetImageFilterType =

itk::CannySegmentationLevelSetImageFilter<InternalImageType,

InternalImageType>;

auto cannySegmentation = CannySegmentationLevelSetImageFilterType::New();

As with the other ITK level set segmentation filters, the terms of the CannySegmentationLevelSe-

tImageFilter level set equation can be weighted by scalars. For this application we will modify the

relative weight of the advection term. The propagation and curvature term weights are set to their

defaults of 0 and 1, respectively.

cannySegmentation->SetAdvectionScaling(std::stod(argv[6]));

cannySegmentation->SetCurvatureScaling(1.0);

cannySegmentation->SetPropagationScaling(0.0);

The maximum number of iterations is specified from the command line. It may not be desirable in

some applications to run the filter to convergence. Only a few iterations may be required.

cannySegmentation->SetMaximumRMSError(0.01);

cannySegmentation->SetNumberOfIterations(std::stoi(argv[8]));

There are two important parameters in the CannySegmentationLevelSetImageFilter to control the

behavior of the Canny edge detection. The variance parameter controls the amount of Gaussian

smoothing on the input image. The threshold parameter indicates the lowest allowed value in the

output image. Thresholding is used to suppress Canny edges whose gradient magnitudes fall below

a certain value.

cannySegmentation->SetThreshold(std::stod(argv[4]));

cannySegmentation->SetVariance(std::stod(argv[5]));

Finally, it is very important to specify the isovalue of the surface in the initial model input image. In a

binary image, for example, the isosurface is found midway between the foreground and background

values.

cannySegmentation->SetIsoSurfaceValue(std::stod(argv[7]));

The filters are now connected in a pipeline indicated in Figure 4.27.

diffusion->SetInput(reader1->GetOutput());

cannySegmentation->SetInput(reader2->GetOutput());

cannySegmentation->SetFeatureImage(diffusion->GetOutput());

thresholder->SetInput(cannySegmentation->GetOutput());

writer->SetInput(thresholder->GetOutput());

414 Chapter 4. Segmentation

Figure 4.28: Results of applying the CannySegmentationLevelSetImageFilter to a prior ventricle segmentation.

Shown from left to right are the original image, the prior segmentation of the ventricle from Figure 4.26, 15

iterations of the CannySegmentationLevelSetImageFilter, and the CannySegmentationLevelSetImageFilter run

to convergence.

Invoking the Update() method on the writer triggers the execution of the pipeline. As usual, the

call is placed in a try/catch block to handle any exceptions that may be thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

We can use this filter to make some subtle refinements to the ventricle segmentation from

the previous example that used the itk::ThresholdSegmentationLevelSetImageFilter.

The application was run using Examples/Data/BrainProtonDensitySlice.png and

Examples/Data/VentricleModel.png as inputs, a threshold of 7.0, variance of 0.1,

advection weight of 10.0, and an initial isosurface value of 127.5. One case was run for 15

iterations and the second was run to convergence. Compare the results in the two rightmost images

of Figure 4.28 with the ventricle segmentation from Figure 4.26 shown in the middle. Jagged edges

are straightened and the small spur at the upper right-hand side of the mask has been removed.

The free parameters of this filter can be adjusted to achieve a wide range of shape variations from the

original model. Finding the right parameters for your particular application is usually a process of

trial and error. As with most ITK level set segmentation filters, examining the propagation (speed)

and advection images can help the process of tuning parameters. These images are available using

Set/Get methods from the filter after it has been updated.

In some cases it is interesting to take a direct look at the speed image used internally by this filter.

https://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

4.3. Level Set Segmentation 415

This may help for setting the correct parameters for driving the segmentation. In order to obtain such

speed image, the method GenerateSpeedImage() should be invoked first. Then we can recover the

speed image with the GetSpeedImage() method as illustrated in the following lines.

cannySegmentation->GenerateSpeedImage();

using SpeedImageType =

CannySegmentationLevelSetImageFilterType::SpeedImageType;

using SpeedWriterType = itk::ImageFileWriter<SpeedImageType>;

auto speedWriter = SpeedWriterType::New();

speedWriter->SetInput(cannySegmentation->GetSpeedImage());

4.3.6 Laplacian Level Set Segmentation

The source code for this section can be found in the file

LaplacianSegmentationLevelSetImageFilter.cxx.

The itk::LaplacianSegmentationLevelSetImageFilter defines a speed term based on second

derivative features in the image. The speed term is calculated as the Laplacian of the image values.

The goal is to attract the evolving level set surface to local zero-crossings in the Laplacian image.

Like itk::CannySegmentationLevelSetImageFilter, this filter is more suitable for refining

existing segmentations than as a stand-alone, region growing algorithm. It is possible to perform

region growing segmentation, but be aware that the growing surface may tend to become “stuck” at

local edges.

The propagation (speed) term for the LaplacianSegmentationLevelSetImageFilter is constructed by

applying the itk::LaplacianImageFilter to the input feature image. One nice property of using

the Laplacian is that there are no free parameters in the calculation.

LaplacianSegmentationLevelSetImageFilter expects two inputs. The first is an initial level set in the

form of an itk::Image. The second input is the feature image g from which the propagation term

is calculated (see Equation 4.3). Because the filter performs a second derivative calculation, it is

generally a good idea to do some preprocessing of the feature image to remove noise.

Figure 4.29 shows how the image processing pipeline is constructed. We read two images: the image

to segment and the image that contains the initial implicit surface. The goal is to refine the initial

model from the second input to better match the structure represented by the initial implicit surface

(a prior segmentation). The feature image is preprocessed using an anisotropic diffusion filter.

Let’s start by including the appropriate header files.

#include "itkLaplacianSegmentationLevelSetImageFilter.h"

#include "itkGradientAnisotropicDiffusionImageFilter.h"

We define the image type using a particular pixel type and dimension. In this case we will use 2D

https://www.itk.org/Doxygen/html/classitk_1_1LaplacianSegmentationLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CannySegmentationLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1LaplacianImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

416 Chapter 4. Segmentation

Laplacian Binary
Threshold

Binary
Image

Input
itk::Image

Initial
Model

itk::Image
Anisotropic
Diffusion

 Gradient

Propagation
Weight

 Maximum
Iterations

LevelSet
Output

Level−set
Segmentation

Figure 4.29: An image processing pipeline using LaplacianSegmentationLevelSetImageFilter for segmenta-

tion.

float images.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The input image will be processed with a few iterations of feature-preserving diffusion. We create

a filter and set the parameters. The number of iterations and the conductance parameter are taken

from the command line.

using DiffusionFilterType =

itk::GradientAnisotropicDiffusionImageFilter<InternalImageType,

InternalImageType>;

auto diffusion = DiffusionFilterType::New();

diffusion->SetNumberOfIterations(std::stoi(argv[4]));

diffusion->SetTimeStep(0.125);

diffusion->SetConductanceParameter(std::stod(argv[5]));

The following lines define and instantiate a LaplacianSegmentationLevelSetImageFilter.

using LaplacianSegmentationLevelSetImageFilterType =

itk::LaplacianSegmentationLevelSetImageFilter<InternalImageType,

InternalImageType>;

LaplacianSegmentationLevelSetImageFilterType::Pointer

laplacianSegmentation =

LaplacianSegmentationLevelSetImageFilterType::New();

As with the other ITK level set segmentation filters, the terms of the LaplacianSegmentationLevelSe-

tImageFilter level set equation can be weighted by scalars. For this application we will modify the

4.3. Level Set Segmentation 417

relative weight of the propagation term. The curvature term weight is set to its default of 1. The

advection term is not used in this filter.

laplacianSegmentation->SetCurvatureScaling(1.0);

laplacianSegmentation->SetPropagationScaling(std::stod(argv[6]));

The maximum number of iterations is set from the command line. It may not be desirable in some

applications to run the filter to convergence. Only a few iterations may be required.

laplacianSegmentation->SetMaximumRMSError(0.002);

laplacianSegmentation->SetNumberOfIterations(std::stoi(argv[8]));

Finally, it is very important to specify the isovalue of the surface in the initial model input image. In a

binary image, for example, the isosurface is found midway between the foreground and background

values.

laplacianSegmentation->SetIsoSurfaceValue(std::stod(argv[7]));

The filters are now connected in a pipeline indicated in Figure 4.29.

diffusion->SetInput(reader1->GetOutput());

laplacianSegmentation->SetInput(reader2->GetOutput());

laplacianSegmentation->SetFeatureImage(diffusion->GetOutput());

thresholder->SetInput(laplacianSegmentation->GetOutput());

writer->SetInput(thresholder->GetOutput());

Invoking the Update() method on the writer triggers the execution of the pipeline. As usual, the

call is placed in a try/catch block to handle any exceptions that may be thrown.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

We can use this filter to make some subtle refinements to the ventricle segmentation

from the example using the filter itk::ThresholdSegmentationLevelSetImageFilter.

This application was run using Examples/Data/BrainProtonDensitySlice.png and

Examples/Data/VentricleModel.png as inputs. We used 10 iterations of the diffusion fil-

ter with a conductance of 2.0. The propagation scaling was set to 1.0 and the filter was run

https://www.itk.org/Doxygen/html/classitk_1_1ThresholdSegmentationLevelSetImageFilter.html

418 Chapter 4. Segmentation

Figure 4.30: Results of applying LaplacianSegmentationLevelSetImageFilter to a prior ventricle segmentation.

Shown from left to right are the original image, the prior segmentation of the ventricle from Figure 4.26, and the

refinement of the prior using LaplacianSegmentationLevelSetImageFilter.

until convergence. Compare the results in the rightmost images of Figure 4.30 with the ventricle

segmentation from Figure 4.26 shown in the middle. Jagged edges are straightened and the small

spur at the upper right-hand side of the mask has been removed.

4.3.7 Geodesic Active Contours Segmentation With Shape Guidance

The source code for this section can be found in the file

GeodesicActiveContourShapePriorLevelSetImageFilter.cxx.

In medical imaging applications, the general shape, location and orientation of an anatomical struc-

ture of interest is typically known a priori. This information can be used to aid the segmentation

process especially when image contrast is low or when the object boundary is not distinct.

In [33], Leventon et al. extended the geodesic active contours method

with an additional shape-influenced term in the driving PDE. The

itk::GeodesicActiveContourShapePriorLevelSetImageFilter is a generalization of

Leventon’s approach and its use is illustrated in the following example.

To support shape-guidance, the generic level set equation (Eqn(4.3)) is extended to incorporate a

shape guidance term:

ξ(ψ∗(x)−ψ(x)) (4.6)

where ψ∗ is the signed distance function of the “best-fit” shape with respect to a shape model. The

new term has the effect of driving the contour towards the best-fit shape. The scalar ξ weights the

https://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourShapePriorLevelSetImageFilter.html

4.3. Level Set Segmentation 419

influence of the shape term in the overall evolution. In general, the best-fit shape is not known ahead

of time and has to be iteratively estimated in conjunction with the contour evolution.

As with the itk::GeodesicActiveContourLevelSetImageFilter, the GeodesicActiveContour-

ShapePriorLevelSetImageFilter expects two input images: the first is an initial level set and the sec-

ond a feature image that represents the image edge potential. The configuration of this example is

quite similar to the example in Section 4.3.3 and hence the description will focus on the new objects

involved in the segmentation process as shown in Figure 4.31.

The process pipeline begins with centering the input image using the the

itk::ChangeInformationImageFilter to simplify the estimation of the pose of the shape,

to be explained later. The centered image is then smoothed using non-linear diffusion to remove

noise and the gradient magnitude is computed from the smoothed image. For simplicity, this

example uses the itk::BoundedReciprocalImageFilter to produce the edge potential image.

The itk::FastMarchingImageFilter creates an initial level set using three user specified

seed positions and an initial contour radius. Three seeds are used in this example to facilitate

the segmentation of long narrow objects in a smaller number of iterations. The output of the

FastMarchingImageFilter is passed as the input to the GeodesicActiveContourShapePriorLevelSe-

tImageFilter. At then end of the segmentation process, the output level set is passed to the

itk::BinaryThresholdImageFilter to produce a binary mask representing the segmented ob-

ject.

The remaining objects in Figure 4.31 are used for shape modeling and estimation. The

itk::PCAShapeSignedDistanceFunction represents a statistical shape model defined by a mean

signed distance and the first K principal components modes; while the itk::Euler2DTransform is

used to represent the pose of the shape. In this implementation, the best-fit shape estimation problem

is reformulated as a minimization problem where the itk::ShapePriorMAPCostFunction is the

cost function to be optimized using the itk::OnePlusOneEvolutionaryOptimizer.

It should be noted that, although particular shape model, transform cost function, and optimizer

are used in this example, the implementation is generic, allowing different instances of these com-

ponents to be plugged in. This flexibility allows a user to tailor the behavior of the segmentation

process to suit the circumstances of the targeted application.

Let’s start the example by including the headers of the new filters involved in the segmentation.

#include "itkGeodesicActiveContourShapePriorLevelSetImageFilter.h"

#include "itkChangeInformationImageFilter.h"

#include "itkBoundedReciprocalImageFilter.h"

Next, we include the headers of the objects involved in shape modeling and estimation.

#include "itkPCAShapeSignedDistanceFunction.h"

#include "itkEuler2DTransform.h"

#include "itkOnePlusOneEvolutionaryOptimizer.h"

#include "itkNormalVariateGenerator.h"

#include "itkNumericSeriesFileNames.h"

https://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourLevelSetImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ChangeInformationImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BoundedReciprocalImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1FastMarchingImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1BinaryThresholdImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1PCAShapeSignedDistanceFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ShapePriorMAPCostFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html

420 Chapter 4. Segmentation

Anisotropic
Diffusion

Change
Information

(Center Image)

Gradient
Magnitude

Fast
Marching

Bounded
Reciprocal

Geodesic
ActiveContour

ShapePrior

Input
Image

Edge
Image

Output
Binary
Image

Seeds/
Distance

Sigma

Binary
Threshold

Prop./
Shape
Scaling

PCAShape
SignedDistance

Euler2DTransform

ShapePriorMAP
CostFunction

OnePlusOne
Evolutionary

Optimizer

NormalVariate
Generator

Initial
LevelSet

Mean
Shape
Image

Shape
Mode

Images

Figure 4.31: Collaboration diagram for the GeodesicActiveContourShapePriorLevelSetImageFilter applied to

a segmentation task.

4.3. Level Set Segmentation 421

Given the numerous parameters involved in tuning this segmentation method it is not uncommon

for a segmentation process to run for several minutes and still produce an unsatisfactory result. For

debugging purposes it is quite helpful to track the evolution of the segmentation as it progresses.

The following defines a custom itk::Command class for monitoring the RMS change and shape

parameters at each iteration.

#include "itkCommand.h"

template <class TFilter>

class CommandIterationUpdate : public itk::Command

{

public:

using Self = CommandIterationUpdate;

using Superclass = itk::Command;

using Pointer = itk::SmartPointer<Self>;

itkNewMacro(Self);

protected:

CommandIterationUpdate() = default;

public:

void

Execute(itk::Object * caller, const itk::EventObject & event) override

{

Execute((const itk::Object *)caller, event);

}

void

Execute(const itk::Object * object, const itk::EventObject & event) override

{

const auto * filter = static_cast<const TFilter *>(object);

if (typeid(event) != typeid(itk::IterationEvent))

{

return;

}

std::cout << filter->GetElapsedIterations() << ": ";

std::cout << filter->GetRMSChange() << " ";

std::cout << filter->GetCurrentParameters() << std::endl;

}

};

We define the image type using a particular pixel type and dimension. In this case we will use 2D

float images.

using InternalPixelType = float;

constexpr unsigned int Dimension = 2;

using InternalImageType = itk::Image<InternalPixelType, Dimension>;

The following line instantiate a itk::GeodesicActiveContourShapePriorLevelSetImageFilter

using the New() method.

https://www.itk.org/Doxygen/html/classitk_1_1Command.html
https://www.itk.org/Doxygen/html/classitk_1_1GeodesicActiveContourShapePriorLevelSetImageFilter.html

422 Chapter 4. Segmentation

using GeodesicActiveContourFilterType =

itk::GeodesicActiveContourShapePriorLevelSetImageFilter<

InternalImageType,

InternalImageType>;

auto geodesicActiveContour = GeodesicActiveContourFilterType::New();

The itk::ChangeInformationImageFilter is the first filter in the preprocessing stage and is

used to force the image origin to the center of the image.

using CenterFilterType =

itk::ChangeInformationImageFilter<InternalImageType>;

auto center = CenterFilterType::New();

center->CenterImageOn();

In this example, we will use the bounded reciprocal 1/(1+ x) of the image gradient magnitude as

the edge potential feature image.

using ReciprocalFilterType =

itk::BoundedReciprocalImageFilter<InternalImageType, InternalImageType>;

auto reciprocal = ReciprocalFilterType::New();

In the GeodesicActiveContourShapePriorLevelSetImageFilter, scaling parameters are used to

trade off between the propagation (inflation), the curvature (smoothing), the advection, and the

shape influence terms. These parameters are set using methods SetPropagationScaling(),

SetCurvatureScaling(), SetAdvectionScaling() and SetShapePriorScaling(). In this ex-

ample, we will set the curvature and advection scales to one and let the propagation and shape prior

scale be command-line arguments.

geodesicActiveContour->SetPropagationScaling(propagationScaling);

geodesicActiveContour->SetShapePriorScaling(shapePriorScaling);

geodesicActiveContour->SetCurvatureScaling(1.0);

geodesicActiveContour->SetAdvectionScaling(1.0);

Each iteration, the current “best-fit” shape is estimated from the edge potential image and the current

contour. To increase speed, only information within the sparse field layers of the current contour is

used in the estimation. The default number of sparse field layers is the same as the ImageDimen-

sion which does not contain enough information to get a reliable best-fit shape estimate. Thus, we

override the default and set the number of layers to 4.

geodesicActiveContour->SetNumberOfLayers(4);

The filters are then connected in a pipeline as illustrated in Figure 4.31.

https://www.itk.org/Doxygen/html/classitk_1_1ChangeInformationImageFilter.html

4.3. Level Set Segmentation 423

center->SetInput(reader->GetOutput());

smoothing->SetInput(center->GetOutput());

gradientMagnitude->SetInput(smoothing->GetOutput());

reciprocal->SetInput(gradientMagnitude->GetOutput());

geodesicActiveContour->SetInput(fastMarching->GetOutput());

geodesicActiveContour->SetFeatureImage(reciprocal->GetOutput());

thresholder->SetInput(geodesicActiveContour->GetOutput());

writer->SetInput(thresholder->GetOutput());

Next, we define the shape model. In this example, we use an implicit shape model based on the

principal components such that:

ψ∗(x) = µ(x)+∑
k

αkuk(x) (4.7)

where µ(x) is the mean signed distance computed from training set of segmented objects and uk(x)
are the first K principal components of the offset (signed distance - mean). The coefficients {αk}
form the set of shape parameters.

Given a set of training data, the itk::ImagePCAShapeModelEstimator can be used to obtain the

mean and principal mode shape images required by PCAShapeSignedDistanceFunction.

using ShapeFunctionType =

itk::PCAShapeSignedDistanceFunction<double, Dimension, InternalImageType>;

auto shape = ShapeFunctionType::New();

shape->SetNumberOfPrincipalComponents(numberOfPCAModes);

In this example, we will read the mean shape and principal mode images from file. We will assume

that the filenames of the mode images form a numeric series starting from index 0.

auto meanShapeReader = ReaderType::New();

meanShapeReader->SetFileName(argv[13]);

meanShapeReader->Update();

std::vector<InternalImageType::Pointer> shapeModeImages(numberOfPCAModes);

auto fileNamesCreator = itk::NumericSeriesFileNames::New();

fileNamesCreator->SetStartIndex(0);

fileNamesCreator->SetEndIndex(numberOfPCAModes - 1);

fileNamesCreator->SetSeriesFormat(argv[15]);

const std::vector<std::string> & shapeModeFileNames =

fileNamesCreator->GetFileNames();

for (unsigned int k = 0; k < numberOfPCAModes; ++k)

https://www.itk.org/Doxygen/html/classitk_1_1ImagePCAShapeModelEstimator.html

424 Chapter 4. Segmentation

{

auto shapeModeReader = ReaderType::New();

shapeModeReader->SetFileName(shapeModeFileNames[k].c_str());

shapeModeReader->Update();

shapeModeImages[k] = shapeModeReader->GetOutput();

}

shape->SetMeanImage(meanShapeReader->GetOutput());

shape->SetPrincipalComponentImages(shapeModeImages);

Further we assume that the shape modes have been normalized by multiplying with the correspond-

ing singular value. Hence, we can set the principal component standard deviations to all ones.

ShapeFunctionType::ParametersType pcaStandardDeviations(numberOfPCAModes);

pcaStandardDeviations.Fill(1.0);

shape->SetPrincipalComponentStandardDeviations(pcaStandardDeviations);

Next, we instantiate a itk::Euler2DTransform and connect it to the PCASignedDistanceFunc-

tion. The transform represent the pose of the shape. The parameters of the transform forms the set

of pose parameters.

using TransformType = itk::Euler2DTransform<double>;

auto transform = TransformType::New();

shape->SetTransform(transform);

Before updating the level set at each iteration, the parameters of the current best-fit shape is estimated

by minimizing the itk::ShapePriorMAPCostFunction. The cost function is composed of four

terms: contour fit, image fit, shape prior and pose prior. The user can specify the weights applied to

each term.

using CostFunctionType =

itk::ShapePriorMAPCostFunction<InternalImageType, InternalPixelType>;

auto costFunction = CostFunctionType::New();

CostFunctionType::WeightsType weights;

weights[0] = 1.0; // weight for contour fit term

weights[1] = 20.0; // weight for image fit term

weights[2] = 1.0; // weight for shape prior term

weights[3] = 1.0; // weight for pose prior term

costFunction->SetWeights(weights);

Contour fit measures the likelihood of seeing the current evolving contour for a given set of shape/-

pose parameters. This is computed by counting the number of pixels inside the current contour but

https://www.itk.org/Doxygen/html/classitk_1_1Euler2DTransform.html
https://www.itk.org/Doxygen/html/classitk_1_1ShapePriorMAPCostFunction.html

4.3. Level Set Segmentation 425

outside the current shape.

Image fit measures the likelihood of seeing certain image features for a given set of shape/pose

parameters. This is computed by assuming that (1 - edge potential) approximates a zero-mean,

unit variance Gaussian along the normal of the evolving contour. Image fit is then computed by

computing the Laplacian goodness of fit of the Gaussian:

∑ (G(ψ(x))−|1− g(x)|)2 (4.8)

where G is a zero-mean, unit variance Gaussian and g is the edge potential feature image.

The pose parameters are assumed to have a uniform distribution and hence do not contribute to the

cost function. The shape parameters are assumed to have a Gaussian distribution. The parameters

of the distribution are user-specified. Since we assumed the principal modes have already been

normalized, we set the distribution to zero mean and unit variance.

CostFunctionType::ArrayType mean(shape->GetNumberOfShapeParameters());

CostFunctionType::ArrayType stddev(shape->GetNumberOfShapeParameters());

mean.Fill(0.0);

stddev.Fill(1.0);

costFunction->SetShapeParameterMeans(mean);

costFunction->SetShapeParameterStandardDeviations(stddev);

In this example, we will use the itk::OnePlusOneEvolutionaryOptimizer to optimize the cost

function.

using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer;

auto optimizer = OptimizerType::New();

The evolutionary optimization algorithm is based on testing random permutations of the parameters.

As such, we need to provide the optimizer with a random number generator. In the following lines,

we create a itk::NormalVariateGenerator, seed it, and connect it to the optimizer.

using GeneratorType = itk::Statistics::NormalVariateGenerator;

auto generator = GeneratorType::New();

generator->Initialize(20020702);

optimizer->SetNormalVariateGenerator(generator);

The cost function has K + 3 parameters. The first K parameters are the principal component multi-

pliers, followed by the 2D rotation parameter (in radians) and the x- and y- translation parameters (in

mm). We need to carefully scale the different types of parameters to compensate for the differences

in the dynamic ranges of the parameters.

https://www.itk.org/Doxygen/html/classitk_1_1OnePlusOneEvolutionaryOptimizer.html
https://www.itk.org/Doxygen/html/classitk_1_1NormalVariateGenerator.html

426 Chapter 4. Segmentation

OptimizerType::ScalesType scales(shape->GetNumberOfParameters());

scales.Fill(1.0);

for (unsigned int k = 0; k < numberOfPCAModes; ++k)

{

scales[k] = 20.0; // scales for the pca mode multiplier

}

scales[numberOfPCAModes] = 350.0; // scale for 2D rotation

optimizer->SetScales(scales);

Next, we specify the initial radius, the shrink and grow mutation factors and termination criteria of

the optimizer. Since the best-fit shape is re-estimated each iteration of the curve evolution, we do

not need to spend too much time finding the true minimizing solution each time; we only need to

head towards it. As such, we only require a small number of optimizer iterations.

double initRadius = 1.05;

double grow = 1.1;

double shrink = pow(grow, -0.25);

optimizer->Initialize(initRadius, grow, shrink);

optimizer->SetEpsilon(1.0e-6); // minimal search radius

optimizer->SetMaximumIteration(15);

Before starting the segmentation process we need to also supply the initial best-fit shape estimate. In

this example, we start with the unrotated mean shape with the initial x- and y- translation specified

through command-line arguments.

ShapeFunctionType::ParametersType parameters(

shape->GetNumberOfParameters());

parameters.Fill(0.0);

parameters[numberOfPCAModes + 1] = std::stod(argv[16]); // startX

parameters[numberOfPCAModes + 2] = std::stod(argv[17]); // startY

Finally, we connect all the components to the filter and add our observer.

geodesicActiveContour->SetShapeFunction(shape);

geodesicActiveContour->SetCostFunction(costFunction);

geodesicActiveContour->SetOptimizer(optimizer);

geodesicActiveContour->SetInitialParameters(parameters);

using CommandType = CommandIterationUpdate<GeodesicActiveContourFilterType>;

auto observer = CommandType::New();

geodesicActiveContour->AddObserver(itk::IterationEvent(), observer);

The invocation of the Update() method on the writer triggers the execution of the pipeline. As

usual, the call is placed in a try/catch block to handle exceptions should errors occur.

4.3. Level Set Segmentation 427

Figure 4.32: The input image to the GeodesicActiveContourShapePriorLevelSetImageFilter is a synthesized

MR-T1 mid-sagittal slice (217× 180 pixels, 1× 1 mm spacing) of the brain (left) and the initial best-fit shape

(right) chosen to roughly overlap the corpus callosum in the image to be segmented.

−3σ mean +3σ

mode 0:

mode 1:

mode 2:

Figure 4.33: First three PCA modes of a low-resolution (58× 31 pixels, 2× 2 mm spacing) corpus callosum

model used in the shape guided geodesic active contours example.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Deviating from previous examples, we will demonstrate this example using

BrainMidSagittalSlice.png (Figure 4.32, left) from the Examples/Data directory.

The aim here is to segment the corpus callosum from the image using a shape model

defined by CorpusCallosumMeanShape.mha and the first three principal components

CorpusCallosumMode0.mha, CorpusCallosumMode1.mha and CorpusCallosumMode12.mha.

As shown in Figure 4.33, the first mode captures scaling, the second mode captures the shifting of

mass between the rostrum and the splenium and the third mode captures the degree of curvature.

Segmentation results with and without shape guidance are shown in Figure 4.34.

428 Chapter 4. Segmentation

Figure 4.34: Corpus callosum segmentation using geodesic active contours without (left) and with (center)

shape guidance. The image on the right represents the best-fit shape at the end of the segmentation process.

A sigma value of 1.0 was used to compute the image gradient and the propagation and shape prior

scaling are respectively set to 0.5 and 0.02. An initial level set was created by placing one seed

point in the rostrum (60,102), one in the splenium (120,85) and one centrally in the body (88,83)
of the corpus callosum with an initial radius of 6 pixels at each seed position. The best-fit shape was

initially placed with a translation of (10,0)mm so that it roughly overlapped the corpus callosum in

the image as shown in Figure 4.32 (right).

From Figure 4.34 it can be observed that without shape guidance (left), segmentation using geodesic

active contour leaks in the regions where the corpus callosum blends into the surrounding brain

tissues. With shape guidance (center), the segmentation is constrained by the global shape model to

prevent leaking.

The final best-fit shape parameters after the segmentation process is:

Parameters: [-0.384988, -0.578738, 0.557793, 0.275202, 16.9992, 4.73473]

and is shown in Figure 4.34 (right). Note that a 0.28 radian (15.8 degree) rotation has been intro-

duced to match the model to the corpus callosum in the image. Additionally, a negative weight for

the first mode shrinks the size relative to the mean shape. A negative weight for the second mode

shifts the mass to splenium, and a positive weight for the third mode increases the curvature. It can

also be observed that the final segmentation is a combination of the best-fit shape with additional lo-

cal deformation. The combination of both global and local shape allows the segmentation to capture

fine details not represented in the shape model.

4.4 Feature Extraction

Extracting salient features from images is an important task on image processing. It is typically used

for guiding segmentation methods, preparing data for registration methods, or as a mechanism for

recognizing anatomical structures in images. The following section introduce some of the feature

extraction methods available in ITK.

4.4. Feature Extraction 429

4.4.1 Hough Transform

The Hough transform is a widely used technique for detection of geometrical features in images.

It is based on mapping the image into a parametric space in which it may be easier to identify if

particular geometrical features are present in the image. The transformation is specific for each

desired geometrical shape.

Line Extraction

The source code for this section can be found in the file

HoughTransform2DLinesImageFilter.cxx.

This example illustrates the use of the itk::HoughTransform2DLinesImageFilter to find

straight lines in a 2-dimensional image.

First, we include the header files of the filter.

#include "itkHoughTransform2DLinesImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as input.

We also specify the image type of the accumulator used in the Hough transform filter.

using PixelType = unsigned char;

using AccumulatorPixelType = float;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

using AccumulatorImageType = itk::Image<AccumulatorPixelType, Dimension>;

We setup a reader to load the input image.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

try

{

reader->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

ImageType::Pointer localImage = reader->GetOutput();

https://www.itk.org/Doxygen/html/classitk_1_1HoughTransform2DLinesImageFilter.html

430 Chapter 4. Segmentation

Once the image is loaded, we apply a itk::GradientMagnitudeImageFilter to segment edges.

This casts the input image using a itk::CastImageFilter .

using CastingFilterType =

itk::CastImageFilter<ImageType, AccumulatorImageType>;

auto caster = CastingFilterType::New();

std::cout << "Applying gradient magnitude filter" << std::endl;

using GradientFilterType =

itk::GradientMagnitudeImageFilter<AccumulatorImageType,

AccumulatorImageType>;

auto gradFilter = GradientFilterType::New();

caster->SetInput(localImage);

gradFilter->SetInput(caster->GetOutput());

gradFilter->Update();

The next step is to apply a threshold filter on the gradient magnitude image to keep only bright

values. Only pixels with a high value will be used by the Hough transform filter.

std::cout << "Thresholding" << std::endl;

using ThresholdFilterType = itk::ThresholdImageFilter<AccumulatorImageType>;

auto threshFilter = ThresholdFilterType::New();

threshFilter->SetInput(gradFilter->GetOutput());

threshFilter->SetOutsideValue(0);

unsigned char threshBelow = 0;

unsigned char threshAbove = 255;

threshFilter->ThresholdOutside(threshBelow, threshAbove);

threshFilter->Update();

We create the HoughTransform2DLinesImageFilter based on the pixel type of the input image (the

resulting image from the ThresholdImageFilter).

std::cout << "Computing Hough Map" << std::endl;

using HoughTransformFilterType =

itk::HoughTransform2DLinesImageFilter<AccumulatorPixelType,

AccumulatorPixelType>;

auto houghFilter = HoughTransformFilterType::New();

We set the input to the filter to be the output of the ThresholdImageFilter. We set also the number

of lines we are looking for. Basically, the filter computes the Hough map, blurs it using a certain

variance and finds maxima in the Hough map. After a maximum is found, the local neighborhood,

a circle, is removed from the Hough map. SetDiscRadius() defines the radius of this disc.

The output of the filter is the accumulator.

https://www.itk.org/Doxygen/html/classitk_1_1GradientMagnitudeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1CastImageFilter.html

4.4. Feature Extraction 431

houghFilter->SetInput(threshFilter->GetOutput());

houghFilter->SetNumberOfLines(std::stoi(argv[3]));

if (argc > 4)

{

houghFilter->SetVariance(std::stod(argv[4]));

}

if (argc > 5)

{

houghFilter->SetDiscRadius(std::stod(argv[5]));

}

houghFilter->Update();

AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();

We can also get the lines as itk::LineSpatialObject . The GetLines() function return a list of

those.

HoughTransformFilterType::LinesListType lines;

lines = houghFilter->GetLines();

std::cout << "Found " << lines.size() << " line(s)." << std::endl;

We can then allocate an image to draw the resulting lines as binary objects.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

auto localOutputImage = OutputImageType::New();

OutputImageType::RegionType region(localImage->GetLargestPossibleRegion());

localOutputImage->SetRegions(region);

localOutputImage->CopyInformation(localImage);

localOutputImage->Allocate(true); // initialize buffer to zero

We iterate through the list of lines and we draw them.

using LineIterator =

HoughTransformFilterType::LinesListType::const_iterator;

LineIterator itLines = lines.begin();

while (itLines != lines.end())

{

We get the list of points which consists of two points to represent a straight line. Then, from these

two points, we compute a fixed point u and a unit vector~v to parameterize the line.

using LinePointListType =

HoughTransformFilterType::LineType::LinePointListType;

https://www.itk.org/Doxygen/html/classitk_1_1LineSpatialObject.html

432 Chapter 4. Segmentation

LinePointListType pointsList = (*itLines)->GetPoints();

LinePointListType::const_iterator itPoints = pointsList.begin();

double u[2];

u[0] = (*itPoints).GetPositionInObjectSpace()[0];

u[1] = (*itPoints).GetPositionInObjectSpace()[1];

itPoints++;

double v[2];

v[0] = u[0] - (*itPoints).GetPositionInObjectSpace()[0];

v[1] = u[1] - (*itPoints).GetPositionInObjectSpace()[1];

double norm = std::sqrt(v[0] * v[0] + v[1] * v[1]);

v[0] /= norm;

v[1] /= norm;

We draw a white pixels in the output image to represent the line.

ImageType::IndexType localIndex;

itk::Size<2> size =

localOutputImage->GetLargestPossibleRegion().GetSize();

float diag =

std::sqrt(static_cast<float>(size[0] * size[0] + size[1] * size[1]));

for (auto i = static_cast<int>(-diag); i < static_cast<int>(diag); ++i)

{

localIndex[0] = static_cast<long>(u[0] + i * v[0]);

localIndex[1] = static_cast<long>(u[1] + i * v[1]);

OutputImageType::RegionType outputRegion =

localOutputImage->GetLargestPossibleRegion();

if (outputRegion.IsInside(localIndex))

{

localOutputImage->SetPixel(localIndex, 255);

}

}

itLines++;

}

We setup a writer to write out the binary image created.

using WriterType = itk::ImageFileWriter<OutputImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(localOutputImage);

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

4.4. Feature Extraction 433

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

Circle Extraction

The source code for this section can be found in the file

HoughTransform2DCirclesImageFilter.cxx.

This example illustrates the use of the itk::HoughTransform2DCirclesImageFilter to find

circles in a 2-dimensional image.

First, we include the header files of the filter.

#include "itkHoughTransform2DCirclesImageFilter.h"

Next, we declare the pixel type and image dimension and specify the image type to be used as input.

We also specify the image type of the accumulator used in the Hough transform filter.

using PixelType = unsigned char;

using AccumulatorPixelType = unsigned int;

using RadiusPixelType = float;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

ImageType::IndexType localIndex;

using AccumulatorImageType = itk::Image<AccumulatorPixelType, Dimension>;

We setup a reader to load the input image.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

try

{

reader->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

ImageType::Pointer localImage = reader->GetOutput();

https://www.itk.org/Doxygen/html/classitk_1_1HoughTransform2DCirclesImageFilter.html

434 Chapter 4. Segmentation

We create the HoughTransform2DCirclesImageFilter based on the pixel type of the input image (the

resulting image from the ThresholdImageFilter).

std::cout << "Computing Hough Map" << std::endl;

using HoughTransformFilterType =

itk::HoughTransform2DCirclesImageFilter<PixelType,

AccumulatorPixelType,

RadiusPixelType>;

auto houghFilter = HoughTransformFilterType::New();

We set the input of the filter to be the output of the ImageFileReader. We set also the number of

circles we are looking for. Basically, the filter computes the Hough map, blurs it using a certain

variance and finds maxima in the Hough map. After a maximum is found, the local neighborhood,

a circle, is removed from the Hough map. SetDiscRadiusRatio() defines the radius of this disc pro-

portional to the radius of the disc found. The Hough map is computed by looking at the points

above a certain threshold in the input image. Then, for each point, a Gaussian derivative function

is computed to find the direction of the normal at that point. The standard deviation of the deriva-

tive function can be adjusted by SetSigmaGradient(). The accumulator is filled by drawing a line

along the normal and the length of this line is defined by the minimum radius (SetMinimumRa-

dius()) and the maximum radius (SetMaximumRadius()). Moreover, a sweep angle can be defined

by SetSweepAngle() (default 0.0) to increase the accuracy of detection.

The output of the filter is the accumulator.

houghFilter->SetInput(reader->GetOutput());

houghFilter->SetNumberOfCircles(std::stoi(argv[3]));

houghFilter->SetMinimumRadius(std::stod(argv[4]));

houghFilter->SetMaximumRadius(std::stod(argv[5]));

if (argc > 6)

{

houghFilter->SetSweepAngle(std::stod(argv[6]));

}

if (argc > 7)

{

houghFilter->SetSigmaGradient(std::stoi(argv[7]));

}

if (argc > 8)

{

houghFilter->SetVariance(std::stod(argv[8]));

}

if (argc > 9)

{

houghFilter->SetDiscRadiusRatio(std::stod(argv[9]));

}

houghFilter->Update();

AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();

4.4. Feature Extraction 435

We can also get the circles as itk::EllipseSpatialObject . The GetCircles() function return

a list of those.

HoughTransformFilterType::CirclesListType circles;

circles = houghFilter->GetCircles();

std::cout << "Found " << circles.size() << " circle(s)." << std::endl;

We can then allocate an image to draw the resulting circles as binary objects.

using OutputPixelType = unsigned char;

using OutputImageType = itk::Image<OutputPixelType, Dimension>;

auto localOutputImage = OutputImageType::New();

OutputImageType::RegionType region;

region.SetSize(localImage->GetLargestPossibleRegion().GetSize());

region.SetIndex(localImage->GetLargestPossibleRegion().GetIndex());

localOutputImage->SetRegions(region);

localOutputImage->SetOrigin(localImage->GetOrigin());

localOutputImage->SetSpacing(localImage->GetSpacing());

localOutputImage->Allocate(true); // initializes buffer to zero

We iterate through the list of circles and we draw them.

using CirclesListType = HoughTransformFilterType::CirclesListType;

CirclesListType::const_iterator itCircles = circles.begin();

while (itCircles != circles.end())

{

std::cout << "Center: ";

std::cout << (*itCircles)->GetCenterInObjectSpace() << std::endl;

std::cout << "Radius: " << (*itCircles)->GetRadiusInObjectSpace()[0]

<< std::endl;

We draw white pixels in the output image to represent each circle.

for (double angle = 0; angle <= itk::Math::twopi;

angle += itk::Math::pi / 60.0)

{

const HoughTransformFilterType::CircleType::PointType centerPoint =

(*itCircles)->GetCenterInObjectSpace();

using IndexValueType = ImageType::IndexType::IndexValueType;

localIndex[0] = itk::Math::Round<IndexValueType>(

centerPoint[0] +

(*itCircles)->GetRadiusInObjectSpace()[0] * std::cos(angle));

localIndex[1] = itk::Math::Round<IndexValueType>(

centerPoint[1] +

(*itCircles)->GetRadiusInObjectSpace()[0] * std::sin(angle));

OutputImageType::RegionType outputRegion =

https://www.itk.org/Doxygen/html/classitk_1_1EllipseSpatialObject.html

436 Chapter 4. Segmentation

localOutputImage->GetLargestPossibleRegion();

if (outputRegion.IsInside(localIndex))

{

localOutputImage->SetPixel(localIndex, 255);

}

}

itCircles++;

}

We setup a writer to write out the binary image created.

using WriterType = itk::ImageFileWriter<ImageType>;

auto writer = WriterType::New();

writer->SetFileName(argv[2]);

writer->SetInput(localOutputImage);

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excep)

{

std::cerr << "Exception caught !" << std::endl;

std::cerr << excep << std::endl;

return EXIT_FAILURE;

}

CHAPTER

FIVE

STATISTICS

This chapter introduces the statistics functionalities in Insight. The statistics subsystem’s primary

purpose is to provide general capabilities for statistical pattern classification. However, its use is not

limited for classification. Users might want to use data containers and algorithms in the statistics

subsystem to perform other statistical analysis or to preprocess image data for other tasks.

The statistics subsystem mainly consists of three parts: data container classes, statistical algorithms,

and the classification framework. In this chapter, we will discuss each major part in that order.

5.1 Data Containers

An itk::Statistics::Sample object is a data container of elements that we call measurement

vectors. A measurement vector is an array of values (of the same type) measured on an object (In

images, it can be a vector of the gray intensity value and/or the gradient value of a pixel). Strictly

speaking from the design of the Sample class, a measurement vector can be any class derived from

itk::FixedArray, including FixedArray itself.

ListSample

Sample

ImageToListSampleAdaptor

ScalarImageToListSampleAdaptor JointDomainImageToListSampleAdaptor

ListSampleBase Histogram Subsample MembershipSample

PointSetToListSampleAdaptor

Figure 5.1: Sample class inheritance diagram.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

438 Chapter 5. Statistics

5.1.1 Sample Interface

The source code for this section can be found in the file

ListSample.cxx.

This example illustrates the common interface of the Sample class in Insight.

Different subclasses of itk::Statistics::Sample expect different sets of template arguments. In

this example, we use the itk::Statistics::ListSample class that requires the type of measure-

ment vectors. The ListSample uses STL vector to store measurement vectors. This class conforms

to the common interface of Sample. Most methods of the Sample class interface are for retrieving

measurement vectors, the size of a container, and the total frequency. In this example, we will see

those information retrieving methods in addition to methods specific to the ListSample class for data

input.

To use the ListSample class, we include the header file for the class.

We need another header for measurement vectors. We are going to use the itk::Vector class

which is a subclass of the itk::FixedArray class.

#include "itkListSample.h"

#include "itkVector.h"

The following code snippet defines the measurement vector type as a three component float

itk::Vector. The MeasurementVectorType is the measurement vector type in the SampleType.

An object is instantiated at the third line.

using MeasurementVectorType = itk::Vector<float, 3>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

In the above code snippet, the namespace specifier for ListSample is itk::Statistics:: instead

of the usual namespace specifier for other ITK classes, itk::.

The newly instantiated object does not have any data in it. We have two different ways of storing

data elements. The first method is using the PushBack method.

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

The previous code increases the size of the container by one and stores mv as the first data element

in it.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.sgi.com/tech/stl/
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.1. Data Containers 439

The other way to store data elements is calling the Resize method and then calling the

SetMeasurementVector() method with a measurement vector. The following code snippet in-

creases the size of the container to three and stores two measurement vectors at the second and the

third slot. The measurement vector stored using the PushBack method above is still at the first slot.

sample->Resize(3);

mv[0] = 2.0;

mv[1] = 4.0;

mv[2] = 5.0;

sample->SetMeasurementVector(1, mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->SetMeasurementVector(2, mv);

We have seen how to create an ListSample object and store measurement vectors using the

ListSample-specific interface. The following code shows the common interface of the Sample class.

The Size method returns the number of measurement vectors in the sample. The primary data

stored in Sample subclasses are measurement vectors. However, each measurement vector has its

associated frequency of occurrence within the sample. For the ListSample and the adaptor classes

(see Section 5.1.2), the frequency value is always one. itk::Statistics::Histogram can have a

varying frequency (float type) for each measurement vector. We retrieve measurement vectors us-

ing the GetMeasurementVector(unsigned long instance identifier), and frequency using

the GetFrequency(unsigned long instance identifier).

for (unsigned long i = 0; i < sample->Size(); ++i)

{

std::cout << "id = " << i

<< "\t measurement vector = " << sample->GetMeasurementVector(i)

<< "\t frequency = " << sample->GetFrequency(i) << std::endl;

}

The output should look like the following:

id = 0 measurement vector = 1 2 4 frequency = 1

id = 1 measurement vector = 2 4 5 frequency = 1

id = 2 measurement vector = 3 8 6 frequency = 1

We can get the same result with its iterator.

SampleType::Iterator iter = sample->Begin();

while (iter != sample->End())

{

std::cout << "id = " << iter.GetInstanceIdentifier()

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html

440 Chapter 5. Statistics

<< "\t measurement vector = " << iter.GetMeasurementVector()

<< "\t frequency = " << iter.GetFrequency() << std::endl;

++iter;

}

The last method defined in the Sample class is the GetTotalFrequency() method that returns

the sum of frequency values associated with every measurement vector in a container. In the case of

ListSample and the adaptor classes, the return value should be exactly the same as that of the Size()

method, because the frequency values are always one for each measurement vector. However, for the

itk::Statistics::Histogram, the frequency values can vary. Therefore, if we want to develop

a general algorithm to calculate the sample mean, we must use the GetTotalFrequency() method

instead of the Size() method.

std::cout << "Size = " << sample->Size() << std::endl;

std::cout << "Total frequency = " << sample->GetTotalFrequency()

<< std::endl;

5.1.2 Sample Adaptors

There are two adaptor classes that provide the common itk::Statistics::Sample in-

terfaces for itk::Image and itk::PointSet, two fundamental data container classes

found in ITK. The adaptor classes do not store any real data elements themselves. These

data come from the source data container plugged into them. First, we will de-

scribe how to create an itk::Statistics::ImageToListSampleAdaptor and then an

itk::Statistics::PointSetToListSampleAdaptor object.

ImageToListSampleAdaptor

The source code for this section can be found in the file

ImageToListSampleAdaptor.cxx.

This example shows how to instantiate an itk::Statistics::ImageToListSampleAdaptor ob-

ject and plug-in an itk::Image object as the data source for the adaptor.

In this example, we use the ImageToListSampleAdaptor class that requires the input type of Im-

age as the template argument. To users of the ImageToListSampleAdaptor, the pixels of the input

image are treated as measurement vectors. The ImageToListSampleAdaptor is one of two adaptor

classes among the subclasses of the itk::Statistics::Sample. That means an ImageToList-

SampleAdaptor object does not store any real data. The data comes from other ITK data container

classes. In this case, an instance of the Image class is the source of the data.

To use an ImageToListSampleAdaptor object, include the header file for the class. Since we are

using an adaptor, we also should include the header file for the Image class. For illustration, we use

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html

5.1. Data Containers 441

the itk::RandomImageSource that generates an image with random pixel values. So, we need to

include the header file for this class. Another convenient filter is the itk::ComposeImageFilter

which creates an image with pixels of array type from one or more input images composed of pixels

of scalar type. Since an element of a Sample object is a measurement vector, you cannot plug in an

image of scalar pixels. However, if we want to use an image of scalar pixels without the help from the

ComposeImageFilter, we can use the itk::Statistics::ScalarImageToListSampleAdaptor

class that is derived from the itk::Statistics::ImageToListSampleAdaptor . The usage of

the ScalarImageToListSampleAdaptor is identical to that of the ImageToListSampleAdaptor.

#include "itkImageToListSampleAdaptor.h"

#include "itkImage.h"

#include "itkRandomImageSource.h"

#include "itkComposeImageFilter.h"

We assume you already know how to create an image. The following code snippet will create a 2D

image of float pixels filled with random values.

using FloatImage2DType = itk::Image<float, 2>;

itk::RandomImageSource<FloatImage2DType>::Pointer random;

random = itk::RandomImageSource<FloatImage2DType>::New();

random->SetMin(0.0);

random->SetMax(1000.0);

using SpacingValueType = FloatImage2DType::SpacingValueType;

using SizeValueType = FloatImage2DType::SizeValueType;

using PointValueType = FloatImage2DType::PointValueType;

SizeValueType size[2] = { 20, 20 };

random->SetSize(size);

SpacingValueType spacing[2] = { 0.7, 2.1 };

random->SetSpacing(spacing);

PointValueType origin[2] = { 15, 400 };

random->SetOrigin(origin);

We now have an instance of Image and need to cast it to an Image object with an array pixel

type (anything derived from the itk::FixedArray class such as itk::Vector, itk::Point,

itk::RGBPixel, or itk::CovariantVector).

Since the image pixel type is float in this example, we will use a single element float FixedArray

as our measurement vector type. And that will also be our pixel type for the cast filter.

using MeasurementVectorType = itk::FixedArray<float, 1>;

using ArrayImageType = itk::Image<MeasurementVectorType, 2>;

using CasterType =

https://www.itk.org/Doxygen/html/classitk_1_1RandomImageSource.html
https://www.itk.org/Doxygen/html/classitk_1_1ComposeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Point.html
https://www.itk.org/Doxygen/html/classitk_1_1RGBPixel.html
https://www.itk.org/Doxygen/html/classitk_1_1CovariantVector.html

442 Chapter 5. Statistics

itk::ComposeImageFilter<FloatImage2DType, ArrayImageType>;

auto caster = CasterType::New();

caster->SetInput(random->GetOutput());

caster->Update();

Up to now, we have spent most of our time creating an image suitable for the adaptor. Actually, the

hard part of this example is done. Now, we just define an adaptor with the image type and instantiate

an object.

using SampleType =

itk::Statistics::ImageToListSampleAdaptor<ArrayImageType>;

auto sample = SampleType::New();

The final task is to plug in the image object to the adaptor. After that, we can use the common

methods and iterator interfaces shown in Section 5.1.1.

sample->SetImage(caster->GetOutput());

If we are interested only in pixel values, the ScalarImageToListSampleAdaptor (scalar pix-

els) or the ImageToListSampleAdaptor (vector pixels) would be sufficient. However, if

we want to perform some statistical analysis on spatial information (image index or pixel’s

physical location) and pixel values altogether, we want to have a measurement vector

that consists of a pixel’s value and physical position. In that case, we can use the

itk::Statistics::JointDomainImageToListSampleAdaptor class. With this class, when

we call the GetMeasurementVector() method, the returned measurement vector is composed

of the physical coordinates and pixel values. The usage is almost the same as with Image-

ToListSampleAdaptor. One important difference between JointDomainImageToListSampleAdap-

tor and the other two image adaptors is that the JointDomainImageToListSampleAdaptor has the

SetNormalizationFactors() method. Each component of a measurement vector from the Joint-

DomainImageToListSampleAdaptor is divided by the corresponding component value from the sup-

plied normalization factors.

PointSetToListSampleAdaptor

The source code for this section can be found in the file

PointSetToListSampleAdaptor.cxx.

We will describe how to use itk::PointSet as a itk::Statistics::Sample using an adaptor

in this example.

The itk::Statistics::PointSetToListSampleAdaptor class requires a PointSet as input. The

PointSet class is an associative data container. Each point in a PointSet object can have an associated

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1JointDomainImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSampleAdaptor.html

5.1. Data Containers 443

optional data value. For the statistics subsystem, the current implementation of PointSetToListSam-

pleAdaptor takes only the point part into consideration. In other words, the measurement vectors

from a PointSetToListSampleAdaptor object are points from the PointSet object that is plugged into

the adaptor object.

To use an PointSetToListSampleAdaptor class, we include the header file for the class.

#include "itkPointSetToListSampleAdaptor.h"

Since we are using an adaptor, we also include the header file for the PointSet class.

#include "itkPointSet.h"

#include "itkVector.h"

Next we create a PointSet object. The following code snippet will create a PointSet object that stores

points (its coordinate value type is float) in 3D space.

using PointSetType = itk::PointSet<short>;

auto pointSet = PointSetType::New();

Note that the short type used in the declaration of PointSetType pertains to the pixel

type associated with every point, not to the type used to represent point coordinates. If we

want to change the type of the point in terms of the coordinate value and/or dimension, we

have to modify the TMeshTraits (one of the optional template arguments for the PointSet

class). The easiest way of creating a custom mesh traits instance is to specialize the ex-

isting itk::DefaultStaticMeshTraits. By specifying the TCoordRep template argument,

we can change the coordinate value type of a point. By specifying the VPointDimension

template argument, we can change the dimension of the point. As mentioned earlier, a

PointSetToListSampleAdaptor object cares only about the points, and the type of measurement

vectors is the type of points.

To make the example a little bit realistic, we add two points into the pointSet.

PointSetType::PointType point;

point[0] = 1.0;

point[1] = 2.0;

point[2] = 3.0;

pointSet->SetPoint(0UL, point);

point[0] = 2.0;

point[1] = 4.0;

point[2] = 6.0;

pointSet->SetPoint(1UL, point);

https://www.itk.org/Doxygen/html/classitk_1_1DefaultStaticMeshTraits.html

444 Chapter 5. Statistics

Now we have a PointSet object with two points in it. The PointSet is ready to be plugged into the

adaptor. First, we create an instance of the PointSetToListSampleAdaptor class with the type of the

input PointSet object.

using SampleType =

itk::Statistics::PointSetToListSampleAdaptor<PointSetType>;

auto sample = SampleType::New();

Second, all we have to do is plug in the PointSet object to the adaptor. After that, we can use the

common methods and iterator interfaces shown in Section 5.1.1.

sample->SetPointSet(pointSet);

SampleType::Iterator iter = sample->Begin();

while (iter != sample->End())

{

std::cout << "id = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = " << iter.GetMeasurementVector()

<< "\t frequency = " << iter.GetFrequency() << std::endl;

++iter;

}

The source code for this section can be found in the file

PointSetToAdaptor.cxx.

We will describe how to use itk::PointSet as a Sample using an adaptor in this example.

itk::Statistics::PointSetToListSampleAdaptor class requires the type of input

itk::PointSet object. The itk::PointSet class is an associative data container. Each

point in a PointSet object can have its associated data value (optional). For the statistics subsys-

tem, current implementation of PointSetToListSampleAdaptor takes only the point part into

consideration. In other words, the measurement vectors from a PointSetToListSampleAdaptor

object are points from the PointSet object that is plugged-into the adaptor object.

To use, an itk::PointSetToListSampleAdaptor object, we include the header file for the class.

#include "itkPointSetToListSampleAdaptor.h"

Since, we are using an adaptor, we also include the header file for the itk::PointSet class.

#include "itkPointSet.h"

We assume you already know how to create an itk::PointSet object. The following code snippet

will create a 2D image of float pixels filled with random values.

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSetToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

5.1. Data Containers 445

using FloatPointSet2DType = itk::PointSet<float, 2>;

itk::RandomPointSetSource<FloatPointSet2DType>::Pointer random;

random = itk::RandomPointSetSource<FloatPointSet2DType>::New();

random->SetMin(0.0);

random->SetMax(1000.0);

unsigned long size[2] = { 20, 20 };

random->SetSize(size);

float spacing[2] = { 0.7, 2.1 };

random->SetSpacing(spacing);

float origin[2] = { 15, 400 };

random->SetOrigin(origin);

We now have an itk::PointSet object and need to cast it to an itk::PointSet object with array

type (anything derived from the itk::FixedArray class) pixels.

Since, the itk::PointSet object’s pixel type is float, We will use single element float

itk::FixedArray as our measurement vector type. And that will also be our pixel type for the

cast filter.

using MeasurementVectorType = itk::FixedArray<float, 1>;

using ArrayPointSetType = itk::PointSet<MeasurementVectorType, 2>;

using CasterType = itk::ScalarToArrayCastPointSetFilter<FloatPointSet2DType,

ArrayPointSetType>;

auto caster = CasterType::New();

caster->SetInput(random->GetOutput());

caster->Update();

Up to now, we spend most of time to prepare an itk::PointSet object suitable for the adaptor.

Actually, the hard part of this example is done. Now, we must define an adaptor with the image type

and instantiate an object.

using SampleType =

itk::Statistics::PointSetToListSampleAdaptor<ArrayPointSetType>;

auto sample = SampleType::New();

The final thing we have to is to plug-in the image object to the adaptor. After that, we can use the

common methods and iterator interfaces shown in 5.1.1.

sample->SetPointSet(caster->GetOutput());

https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1PointSet.html

446 Chapter 5. Statistics

(1, 2)

2.6

4.6

0.5

2.5

0.0

2.0

5.0

2.0 3.0

1.0

0.0

3.1 5.1 7.11.1

6.6

8.6

(0, 0)

(2, 2)

(0, 1)

(0, 2)

(1, 0) (2, 0)

(1, 1) (2, 1)

Figure 5.2: Conceptual histogram data structure.

5.1.3 Histogram

The source code for this section can be found in the file

Histogram.cxx.

This example shows how to create an itk::Statistics::Histogram object and use it.

We call an instance in a Histogram object a bin. The Histogram differs from

the itk::Statistics::ListSample , itk::Statistics::ImageToListSampleAdaptor , or

itk::Statistics::PointSetToListSampleAdaptor in significant ways. Histograms can have

a variable number of values (float type) for each measurement vector, while the three other classes

have a fixed value (one) for all measurement vectors. Also those array-type containers can have mul-

tiple instances (data elements) with identical measurement vector values. However, in a Histogram

object, there is one unique instance for any given measurement vector.

#include "itkHistogram.h"

#include "itkDenseFrequencyContainer2.h"

Here we create a histogram with dense frequency containers. In this example we will not have any

zero-frequency measurements, so the dense frequency container is the appropriate choice. If the

histogram is expected to have many empty (zero) bins, a sparse frequency container would be the

better option. Here we also set the size of the measurement vectors to be 2 components.

using MeasurementType = float;

using FrequencyContainerType = itk::Statistics::DenseFrequencyContainer2;

using FrequencyType = FrequencyContainerType::AbsoluteFrequencyType;

constexpr unsigned int numberOfComponents = 2;

using HistogramType =

itk::Statistics::Histogram<MeasurementType, FrequencyContainerType>;

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSampleAdaptor.html

5.1. Data Containers 447

auto histogram = HistogramType::New();

histogram->SetMeasurementVectorSize(numberOfComponents);

We initialize it as a 3× 3 histogram with equal size intervals.

HistogramType::SizeType size(numberOfComponents);

size.Fill(3);

HistogramType::MeasurementVectorType lowerBound(numberOfComponents);

HistogramType::MeasurementVectorType upperBound(numberOfComponents);

lowerBound[0] = 1.1;

lowerBound[1] = 2.6;

upperBound[0] = 7.1;

upperBound[1] = 8.6;

histogram->Initialize(size, lowerBound, upperBound);

Now the histogram is ready for storing frequency values. We will fill each bin’s frequency according

to the Figure 5.2. There are three ways of accessing data elements in the histogram:

• using instance identifiers—just like any other Sample object;

• using n-dimensional indices—just like an Image object;

• using an iterator—just like any other Sample object.

In this example, the index (0,0) refers the same bin as the instance identifier (0) refers to. The

instance identifier of the index (0, 1) is (3), (0, 2) is (6), (2, 2) is (8), and so on.

histogram->SetFrequency(0UL, static_cast<FrequencyType>(0.0));

histogram->SetFrequency(1UL, static_cast<FrequencyType>(2.0));

histogram->SetFrequency(2UL, static_cast<FrequencyType>(3.0));

histogram->SetFrequency(3UL, static_cast<FrequencyType>(2.0f));

histogram->SetFrequency(4UL, static_cast<FrequencyType>(0.5f));

histogram->SetFrequency(5UL, static_cast<FrequencyType>(1.0f));

histogram->SetFrequency(6UL, static_cast<FrequencyType>(5.0f));

histogram->SetFrequency(7UL, static_cast<FrequencyType>(2.5f));

histogram->SetFrequency(8UL, static_cast<FrequencyType>(0.0f));

Let us examine if the frequency is set correctly by calling the GetFrequency(index) method. We

can use the GetFrequency(instance identifier) method for the same purpose.

HistogramType::IndexType index(numberOfComponents);

index[0] = 0;

index[1] = 2;

std::cout << "Frequency of the bin at index " << index << " is "

<< histogram->GetFrequency(index)

<< ", and the bin's instance identifier is "

<< histogram->GetInstanceIdentifier(index) << std::endl;

448 Chapter 5. Statistics

For test purposes, we create a measurement vector and an index that belongs to the center bin.

HistogramType::MeasurementVectorType mv(numberOfComponents);

mv[0] = 4.1;

mv[1] = 5.6;

index.Fill(1);

We retrieve the measurement vector at the index value (1, 1), the center bin’s measurement vector.

The output is [4.1, 5.6].

std::cout << "Measurement vector at the center bin is "

<< histogram->GetMeasurementVector(index) << std::endl;

Since all the measurement vectors are unique in the Histogram class, we can determine the index

from a measurement vector.

HistogramType::IndexType resultingIndex;

histogram->GetIndex(mv, resultingIndex);

std::cout << "Index of the measurement vector " << mv << " is "

<< resultingIndex << std::endl;

In a similar way, we can get the instance identifier from the index.

std::cout << "Instance identifier of index " << index << " is "

<< histogram->GetInstanceIdentifier(index) << std::endl;

If we want to check if an index is valid, we use the method IsIndexOutOfBounds(index). The

following code snippet fills the index variable with (100, 100). It is obviously not a valid index.

index.Fill(100);

if (histogram->IsIndexOutOfBounds(index))

{

std::cout << "Index " << index << " is out of bounds." << std::endl;

}

The following code snippets show how to get the histogram size and frequency dimension.

std::cout << "Number of bins = " << histogram->Size()

<< " Total frequency = " << histogram->GetTotalFrequency()

<< " Dimension sizes = " << histogram->GetSize() << std::endl;

The Histogram class has a quantile calculation method, Quantile(dimension, percent). The

following code returns the 50th percentile along the first dimension. Note that the quantile calcula-

tion considers only one dimension.

5.1. Data Containers 449

std::cout << "50th percentile along the first dimension = "

<< histogram->Quantile(0, 0.5) << std::endl;

5.1.4 Subsample

The source code for this section can be found in the file

Subsample.cxx.

The itk::Statistics::Subsample is a derived sample. In other words, it requires another

itk::Statistics::Sample object for storing measurement vectors. The Subsample class stores a

subset of instance identifiers from another Sample object. Any Sample’s subclass can be the source

Sample object. You can create a Subsample object out of another Subsample object. The Subsample

class is useful for storing classification results from a test Sample object or for just extracting some

part of interest in a Sample object. Another good use of Subsample is sorting a Sample object. When

we use an itk::Image object as the data source, we do not want to change the order of data ele-

ments in the image. However, we sometimes want to sort or select data elements according to their

order. Statistics algorithms for this purpose accepts only Subsample objects as inputs. Changing the

order in a Subsample object does not change the order of the source sample.

To use a Subsample object, we include the header files for the class itself and a Sample class. We

will use the itk::Statistics::ListSample as the input sample.

#include "itkListSample.h"

#include "itkSubsample.h"

We need another header for measurement vectors. We are going to use the itk::Vector class in

this example.

#include "itkVector.h"

The following code snippet will create a ListSample object with three-component float measurement

vectors and put three measurement vectors into the list.

using MeasurementVectorType = itk::Vector<float, 3>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

450 Chapter 5. Statistics

mv[1] = 4.0;

mv[2] = 5.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->PushBack(mv);

To create a Subsample instance, we define the type of the Subsample with the source sample type,

in this case, the previously defined SampleType. As usual, after that, we call the New() method to

create an instance. We must plug in the source sample, sample, using the SetSample() method.

However, with regard to data elements, the Subsample is empty. We specify which data elements,

among the data elements in the Sample object, are part of the Subsample. There are two ways of

doing that. First, if we want to include every data element (instance) from the sample, we simply

call the InitializeWithAllInstances() method like the following:

subsample->InitializeWithAllInstances();

This method is useful when we want to create a Subsample object for sorting all the data elements

in a Sample object. However, in most cases, we want to include only a subset of a Sample object.

For this purpose, we use the AddInstance(instance identifier) method in this example. In

the following code snippet, we include only the first and last instance in our subsample object from

the three instances of the Sample class.

using SubsampleType = itk::Statistics::Subsample<SampleType>;

auto subsample = SubsampleType::New();

subsample->SetSample(sample);

subsample->AddInstance(0UL);

subsample->AddInstance(2UL);

The Subsample is ready for use. The following code snippet shows how to use Iterator interfaces.

SubsampleType::Iterator iter = subsample->Begin();

while (iter != subsample->End())

{

std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = " << iter.GetMeasurementVector()

<< "\t frequency = " << iter.GetFrequency() << std::endl;

++iter;

}

As mentioned earlier, the instances in a Subsample can be sorted without changing the order in the

source Sample. For this purpose, the Subsample provides an additional instance indexing scheme.

5.1. Data Containers 451

The indexing scheme is just like the instance identifiers for the Sample. The index is an integer

value starting at 0, and the last value is one less than the number of all instances in a Subsample.

The Swap(0, 1) method, for example, swaps two instance identifiers of the first data element and

the second element in the Subsample. Internally, the Swap() method changes the instance identifiers

in the first and second position. Using indices, we can print out the effects of the Swap() method.

We use the GetMeasurementVectorByIndex(index) to get the measurement vector at the index

position. However, if we want to use the common methods of Sample that accepts instance iden-

tifiers, we call them after we get the instance identifiers using GetInstanceIdentifier(index)

method.

subsample->Swap(0, 1);

for (int index = 0; index < subsample->Size(); ++index)

{

std::cout << "instance identifier = "

<< subsample->GetInstanceIdentifier(index)

<< "\t measurement vector = "

<< subsample->GetMeasurementVectorByIndex(index) << std::endl;

}

Since we are using a ListSample object as the source sample, the following code snippet will return

the same value (2) for the Size() and the GetTotalFrequency() methods. However, if we used a

Histogram object as the source sample, the two return values might be different because a Histogram

allows varying frequency values for each instance.

std::cout << "Size = " << subsample->Size() << std::endl;

std::cout << "Total frequency = " << subsample->GetTotalFrequency()

<< std::endl;

If we want to remove all instances that are associated with the Subsample, we call the Clear()

method. After this invocation, the Size() and the GetTotalFrequency() methods return 0.

subsample->Clear();

std::cout << "Size = " << subsample->Size() << std::endl;

std::cout << "Total frequency = " << subsample->GetTotalFrequency()

<< std::endl;

5.1.5 MembershipSample

The source code for this section can be found in the file

MembershipSample.cxx.

The itk::Statistics::MembershipSample is derived from the class

itk::Statistics::Sample that associates a class label with each measurement vector. It

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MembershipSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html

452 Chapter 5. Statistics

needs another Sample object for storing measurement vectors. A MembershipSample object stores

a subset of instance identifiers from another Sample object. Any subclass of Sample can be the

source Sample object. The MembershipSample class is useful for storing classification results from

a test Sample object. The MembershipSample class can be considered as an associative container

that stores measurement vectors, frequency values, and class labels.

To use a MembershipSample object, we include the header files for the class itself and the Sample

class. We will use the itk::Statistics::ListSample as the input sample. We need another

header for measurement vectors. We are going to use the itk::Vector class which is a subclass of

the itk::FixedArray.

#include "itkListSample.h"

#include "itkMembershipSample.h"

#include "itkVector.h"

The following code snippet will create a ListSample object with three-component float measure-

ment vectors and put three measurement vectors in the ListSample object.

using MeasurementVectorType = itk::Vector<float, 3>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;

mv[1] = 4.0;

mv[2] = 5.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->PushBack(mv);

To create a MembershipSample instance, we define the type of the MembershipSample using the

source sample type using the previously defined SampleType. As usual, after that, we call the

New() method to create an instance. We must plug in the source sample, Sample, using the

SetSample() method. We provide class labels for data instances in the Sample object using the

AddInstance() method. As the required initialization step for the membershipSample, we must

call the SetNumberOfClasses() method with the number of classes. We must add all instances in

the source sample with their class labels. In the following code snippet, we set the first instance’

class label to 0, the second to 0, the third (last) to 1. After this, the membershipSample has two

Subsample objects. And the class labels for these two Subsample objects are 0 and 1. The 0 class

Subsample object includes the first and second instances, and the 1 class includes the third instance.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

5.1. Data Containers 453

using MembershipSampleType = itk::Statistics::MembershipSample<SampleType>;

auto membershipSample = MembershipSampleType::New();

membershipSample->SetSample(sample);

membershipSample->SetNumberOfClasses(2);

membershipSample->AddInstance(0U, 0UL);

membershipSample->AddInstance(0U, 1UL);

membershipSample->AddInstance(1U, 2UL);

The Size() and GetTotalFrequency() returns the same information that Sample does.

std::cout << "Total frequency = " << membershipSample->GetTotalFrequency()

<< std::endl;

The membershipSample is ready for use. The following code snippet shows how to use the

Iterator interface. The MembershipSample’s Iterator has an additional method that returns

the class label (GetClassLabel()).

MembershipSampleType::ConstIterator iter = membershipSample->Begin();

while (iter != membershipSample->End())

{

std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = " << iter.GetMeasurementVector()

<< "\t frequency = " << iter.GetFrequency()

<< "\t class label = " << iter.GetClassLabel() << std::endl;

++iter;

}

To see the numbers of instances in each class subsample, we use the Size() method of the

ClassSampleType instance returned by the GetClassSample(index) method.

std::cout << "class label = 0 sample size = "

<< membershipSample->GetClassSample(0)->Size() << std::endl;

std::cout << "class label = 1 sample size = "

<< membershipSample->GetClassSample(1)->Size() << std::endl;

We call the GetClassSample() method to get the class subsample in the membershipSample.

The MembershipSampleType::ClassSampleType is actually a specialization of the

itk::Statistics::Subsample. We print out the instance identifiers, measurement vectors,

and frequency values that are part of the class. The output will be two lines for the two instances

that belong to the class 0.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

454 Chapter 5. Statistics

MembershipSampleType::ClassSampleType::ConstPointer classSample =

membershipSample->GetClassSample(0);

MembershipSampleType::ClassSampleType::ConstIterator c_iter =

classSample->Begin();

while (c_iter != classSample->End())

{

std::cout << "instance identifier = " << c_iter.GetInstanceIdentifier()

<< "\t measurement vector = " << c_iter.GetMeasurementVector()

<< "\t frequency = " << c_iter.GetFrequency() << std::endl;

++c_iter;

}

5.1.6 MembershipSampleGenerator

The source code for this section can be found in the file

MembershipSampleGenerator.cxx.

To use, an MembershipSample object, we include the header files for the class itself and a Sample

class. We will use the ListSample as the input sample.

#include "itkListSample.h"

#include "itkMembershipSample.h"

We need another header for measurement vectors. We are going to use the itk::Vector class

which is a subclass of the itk::FixedArray in this example.

#include "itkVector.h"

The following code snippet will create a ListSample object with three-component float measure-

ment vectors and put three measurement vectors in the ListSample object.

using MeasurementVectorType = itk::Vector<float, 3>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;

mv[1] = 4.0;

mv[2] = 5.0;

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

5.1. Data Containers 455

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->PushBack(mv);

To create a MembershipSample instance, we define the type of the MembershipSample with

the source sample type, in this case, previously defined SampleType. As usual, after that, we

call New() method to instantiate an instance. We must plug in the source sample, sample ob-

ject using the SetSample(source sample) method. However, in regard to class labels, the

membershipSample is empty. We provide class labels for data instances in the sample object using

the AddInstance(class label, instance identifier) method. As the required initialization

step for the membershipSample, we must call the SetNumberOfClasses(number of classes)

method with the number of classes. We must add all instances in the source sample with their class

labels. In the following code snippet, we set the first instance class label to 0, the second to 0, the

third (last) to 1. After this, the membershipSample has two Subclass objects. And the class labels

for these two Subclass are 0 and 1. The 0 class Subsample object includes the first and second

instances, and the 1 class includes the third instance.

using MembershipSampleType = itk::Statistics::MembershipSample<SampleType>;

auto membershipSample = MembershipSampleType::New();

membershipSample->SetSample(sample);

membershipSample->SetNumberOfClasses(2);

membershipSample->AddInstance(0U, 0UL);

membershipSample->AddInstance(0U, 1UL);

membershipSample->AddInstance(1U, 2UL);

The Size() and GetTotalFrequency() methods return the same values as the sample.

std::cout << "Size = " << membershipSample->Size() << std::endl;

std::cout << "Total frequency = " << membershipSample->GetTotalFrequency()

<< std::endl;

The membershipSample is ready for use. The following code snippet shows how to use Iterator

interfaces. The MembershipSample Iterator has an additional method that returns the class label

(GetClassLabel()).

MembershipSampleType::Iterator iter = membershipSample->Begin();

while (iter != membershipSample->End())

{

std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = " << iter.GetMeasurementVector()

456 Chapter 5. Statistics

<< "\t frequency = " << iter.GetFrequency()

<< "\t class label = " << iter.GetClassLabel() << std::endl;

++iter;

}

To see the numbers of instances in each class subsample, we use the GetClassSampleSize(class

label) method.

std::cout << "class label = 0 sample size = "

<< membershipSample->GetClassSampleSize(0) << std::endl;

std::cout << "class label = 1 sample size = "

<< membershipSample->GetClassSampleSize(0) << std::endl;

We call the GetClassSample(class label) method to get the class subsample in the

membershipSample. The MembershipSampleType::ClassSampleType is actually an specializa-

tion of the itk::Statistics::Subsample. We print out the instance identifiers, measurement

vectors, and frequency values that are part of the class. The output will be two lines for the two

instances that belong to the class 0.

MembershipSampleType::ClassSampleType::Pointer classSample =

membershipSample->GetClassSample(0);

MembershipSampleType::ClassSampleType::Iterator c_iter =

classSample->Begin();

while (c_iter != classSample->End())

{

std::cout << "instance identifier = " << c_iter.GetInstanceIdentifier()

<< "\t measurement vector = " << c_iter.GetMeasurementVector()

<< "\t frequency = " << c_iter.GetFrequency() << std::endl;

++c_iter;

}

5.1.7 K-d Tree

The source code for this section can be found in the file

KdTree.cxx.

The itk::Statistics::KdTree implements a data structure that separates samples in a k-

dimension space. The std::vector class is used here as the container for the measurement vectors

from a sample.

#include "itkVector.h"

#include "itkMath.h"

#include "itkListSample.h"

#include "itkWeightedCentroidKdTreeGenerator.h"

#include "itkEuclideanDistanceMetric.h"

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html

5.1. Data Containers 457

We define the measurement vector type and instantiate a itk::Statistics::ListSample object,

and then put 1000 measurement vectors in the object.

using MeasurementVectorType = itk::Vector<float, 2>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(2);

MeasurementVectorType mv;

for (unsigned int i = 0; i < 1000; ++i)

{

mv[0] = static_cast<float>(i);

mv[1] = static_cast<float>((1000 - i) / 2);

sample->PushBack(mv);

}

The following code snippet shows how to create two KdTree objects. The first object

itk::Statistics::KdTreeGenerator has a minimal set of information (partition dimension,

partition value, and pointers to the left and right child nodes). The second tree from the

itk::Statistics::WeightedCentroidKdTreeGenerator has additional information such as the

number of children under each node, and the vector sum of the measurement vectors belonging to

children of a particular node. WeightedCentroidKdTreeGenerator and the resulting k-d tree structure

were implemented based on the description given in the paper by Kanungo et al [28].

The instantiation and input variables are exactly the same for both tree generators. Using the

SetSample() method we plug-in the source sample. The bucket size input specifies the limit on

the maximum number of measurement vectors that can be stored in a terminal (leaf) node. A bigger

bucket size results in a smaller number of nodes in a tree. It also affects the efficiency of search.

With many small leaf nodes, we might experience slower search performance because of excessive

boundary comparisons.

using TreeGeneratorType = itk::Statistics::KdTreeGenerator<SampleType>;

auto treeGenerator = TreeGeneratorType::New();

treeGenerator->SetSample(sample);

treeGenerator->SetBucketSize(16);

treeGenerator->Update();

using CentroidTreeGeneratorType =

itk::Statistics::WeightedCentroidKdTreeGenerator<SampleType>;

auto centroidTreeGenerator = CentroidTreeGeneratorType::New();

centroidTreeGenerator->SetSample(sample);

centroidTreeGenerator->SetBucketSize(16);

centroidTreeGenerator->Update();

After the generation step, we can get the pointer to the kd-tree from the generator by calling the

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeGenerator.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html

458 Chapter 5. Statistics

GetOutput() method. To traverse a kd-tree, we have to use the GetRoot() method. The method

will return the root node of the tree. Every node in a tree can have its left and/or right child node.

To get the child node, we call the Left() or the Right() method of a node (these methods do not

belong to the kd-tree but to the nodes).

We can get other information about a node by calling the methods described below in addition to the

child node pointers.

using TreeType = TreeGeneratorType::KdTreeType;

using NodeType = TreeType::KdTreeNodeType;

TreeType::Pointer tree = treeGenerator->GetOutput();

TreeType::Pointer centroidTree = centroidTreeGenerator->GetOutput();

NodeType * root = tree->GetRoot();

if (root->IsTerminal())

{

std::cout << "Root node is a terminal node." << std::endl;

}

else

{

std::cout << "Root node is not a terminal node." << std::endl;

}

unsigned int partitionDimension;

float partitionValue;

root->GetParameters(partitionDimension, partitionValue);

std::cout << "Dimension chosen to split the space = " << partitionDimension

<< std::endl;

std::cout << "Split point on the partition dimension = " << partitionValue

<< std::endl;

std::cout << "Address of the left chile of the root node = " << root->Left()

<< std::endl;

std::cout << "Address of the right chile of the root node = "

<< root->Right() << std::endl;

root = centroidTree->GetRoot();

std::cout << "Number of the measurement vectors under the root node"

<< " in the tree hierarchy = " << root->Size() << std::endl;

NodeType::CentroidType centroid;

root->GetWeightedCentroid(centroid);

std::cout << "Sum of the measurement vectors under the root node = "

<< centroid << std::endl;

std::cout << "Number of the measurement vectors under the left child"

<< " of the root node = " << root->Left()->Size() << std::endl;

In the following code snippet, we query the three nearest neighbors of the queryPoint on the two

5.1. Data Containers 459

tree. The results and procedures are exactly the same for both. First we define the point from which

distances will be measured.

MeasurementVectorType queryPoint;

queryPoint[0] = 10.0;

queryPoint[1] = 7.0;

Then we instantiate the type of a distance metric, create an object of this type and set the origin

of coordinates for measuring distances. The GetMeasurementVectorSize() method returns the

length of each measurement vector stored in the sample.

using DistanceMetricType =

itk::Statistics::EuclideanDistanceMetric<MeasurementVectorType>;

auto distanceMetric = DistanceMetricType::New();

DistanceMetricType::OriginType origin(2);

for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)

{

origin[i] = queryPoint[i];

}

distanceMetric->SetOrigin(origin);

We can now set the number of neighbors to be located and the point coordinates to be used as a

reference system.

unsigned int numberOfNeighbors = 3;

TreeType::InstanceIdentifierVectorType neighbors;

tree->Search(queryPoint, numberOfNeighbors, neighbors);

std::cout

<< "\n*** kd-tree knn search result using an Euclidean distance metric:"

<< std::endl

<< "query point = [" << queryPoint << "]" << std::endl

<< "k = " << numberOfNeighbors << std::endl;

std::cout << "measurement vector : distance from query point " << std::endl;

std::vector<double> distances1(numberOfNeighbors);

for (unsigned int i = 0; i < numberOfNeighbors; ++i)

{

distances1[i] =

distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors[i]));

std::cout << "[" << tree->GetMeasurementVector(neighbors[i])

<< "] : " << distances1[i] << std::endl;

}

Instead of using an Euclidean distance metric, Tree itself can also return the distance vector. Here

we get the distance values from tree and compare them with previous values.

460 Chapter 5. Statistics

std::vector<double> distances2;

tree->Search(queryPoint, numberOfNeighbors, neighbors, distances2);

std::cout << "\n*** kd-tree knn search result directly from tree:"

<< std::endl

<< "query point = [" << queryPoint << "]" << std::endl

<< "k = " << numberOfNeighbors << std::endl;

std::cout << "measurement vector : distance from query point " << std::endl;

for (unsigned int i = 0; i < numberOfNeighbors; ++i)

{

std::cout << "[" << tree->GetMeasurementVector(neighbors[i])

<< "] : " << distances2[i] << std::endl;

if (itk::Math::NotAlmostEquals(distances2[i], distances1[i]))

{

std::cerr << "Mismatched distance values by tree." << std::endl;

return EXIT_FAILURE;

}

}

As previously indicated, the interface for finding nearest neighbors in the centroid tree is very simi-

lar.

std::vector<double> distances3;

centroidTree->Search(queryPoint, numberOfNeighbors, neighbors, distances3);

centroidTree->Search(queryPoint, numberOfNeighbors, neighbors);

std::cout << "\n*** Weighted centroid kd-tree knn search result:"

<< std::endl

<< "query point = [" << queryPoint << "]" << std::endl

<< "k = " << numberOfNeighbors << std::endl;

std::cout

<< "measurement vector : distance_by_distMetric : distance_by_tree"

<< std::endl;

std::vector<double> distances4(numberOfNeighbors);

for (unsigned int i = 0; i < numberOfNeighbors; ++i)

{

distances4[i] = distanceMetric->Evaluate(

centroidTree->GetMeasurementVector(neighbors[i]));

std::cout << "[" << centroidTree->GetMeasurementVector(neighbors[i])

<< "] : " << distances4[i] << " : "

<< distances3[i] << std::endl;

if (itk::Math::NotAlmostEquals(distances2[i], distances1[i]))

{

std::cerr << "Mismatched distance values by centroid tree."

<< std::endl;

return EXIT_FAILURE;

}

}

KdTree also supports searching points within a hyper-spherical kernel. We specify the radius and

call the Search() method. In the case of the KdTree, this is done with the following lines of code.

5.2. Algorithms and Functions 461

double radius = 437.0;

tree->Search(queryPoint, radius, neighbors);

std::cout << "\nSearching points within a hyper-spherical kernel:"

<< std::endl;

std::cout << "*** kd-tree radius search result:" << std::endl

<< "query point = [" << queryPoint << "]" << std::endl

<< "search radius = " << radius << std::endl;

std::cout << "measurement vector : distance" << std::endl;

for (auto neighbor : neighbors)

{

std::cout << "[" << tree->GetMeasurementVector(neighbor) << "] : "

<< distanceMetric->Evaluate(

tree->GetMeasurementVector(neighbor))

<< std::endl;

}

In the case of the centroid KdTree, the Search() method is used as illustrated by the following

code.

centroidTree->Search(queryPoint, radius, neighbors);

std::cout << "\n*** Weighted centroid kd-tree radius search result:"

<< std::endl

<< "query point = [" << queryPoint << "]" << std::endl

<< "search radius = " << radius << std::endl;

std::cout << "measurement vector : distance" << std::endl;

for (auto neighbor : neighbors)

{

std::cout << "[" << centroidTree->GetMeasurementVector(neighbor) << "] : "

<< distanceMetric->Evaluate(

centroidTree->GetMeasurementVector(neighbor))

<< std::endl;

}

5.2 Algorithms and Functions

In the previous section, we described the data containers in the ITK statistics subsystem. We also

need data processing algorithms and statistical functions to conduct statistical analysis or statistical

classification using these containers. Here we define an algorithm to be an operation over a set of

measurement vectors in a sample. A function is an operation over individual measurement vectors.

For example, if we implement a class (itk::Statistics::EuclideanDistance) to calculate the

Euclidean distance between two measurement vectors, we call it a function, while if we implemented

a class (itk::Statistics::MeanCalculator) to calculate the mean of a sample, we call it an

algorithm.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistance.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MeanCalculator.html

462 Chapter 5. Statistics

5.2.1 Sample Statistics

We will show how to get sample statistics such as means and covariance from the (

itk::Statistics::Sample) classes. Statistics can tells us characteristics of a sample. Such

sample statistics are very important for statistical classification. When we know the form of the

sample distributions and their parameters (statistics), we can conduct Bayesian classification. In

ITK, sample mean and covariance calculation algorithms are implemented. Each algorithm also

has its weighted version (see Section 5.2.1). The weighted versions are used in the expectation-

maximization parameter estimation process.

Mean and Covariance

The source code for this section can be found in the file

SampleStatistics.cxx.

We include the header file for the itk::Vector class that will be our measurement vector template

in this example.

#include "itkVector.h"

We will use the itk::Statistics::ListSample as our sample template. We include the header

for the class too.

#include "itkListSample.h"

The following headers are for sample statistics algorithms.

#include "itkMeanSampleFilter.h"

#include "itkCovarianceSampleFilter.h"

The following code snippet will create a ListSample object with three-component float measurement

vectors and put five measurement vectors in the ListSample object.

constexpr unsigned int MeasurementVectorLength = 3;

using MeasurementVectorType = itk::Vector<float, MeasurementVectorLength>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html

5.2. Algorithms and Functions 463

mv[0] = 2.0;

mv[1] = 4.0;

mv[2] = 5.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->PushBack(mv);

mv[0] = 2.0;

mv[1] = 7.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 2.0;

mv[2] = 7.0;

sample->PushBack(mv);

To calculate the mean (vector) of a sample, we instantiate the

itk::Statistics::MeanSampleFilter class that implements the mean algorithm and plug

in the sample using the SetInputSample(sample*) method. By calling the Update() method,

we run the algorithm. We get the mean vector using the GetMean() method. The output from the

GetOutput() method is the pointer to the mean vector.

using MeanAlgorithmType = itk::Statistics::MeanSampleFilter<SampleType>;

auto meanAlgorithm = MeanAlgorithmType::New();

meanAlgorithm->SetInput(sample);

meanAlgorithm->Update();

std::cout << "Sample mean = " << meanAlgorithm->GetMean() << std::endl;

The covariance calculation algorithm will also calculate the mean while performing the covariance

matrix calculation. The mean can be accessed using the GetMean() method while the covariance

can be accessed using the GetCovarianceMatrix() method.

using CovarianceAlgorithmType =

itk::Statistics::CovarianceSampleFilter<SampleType>;

auto covarianceAlgorithm = CovarianceAlgorithmType::New();

covarianceAlgorithm->SetInput(sample);

covarianceAlgorithm->Update();

std::cout << "Mean = " << std::endl;

std::cout << covarianceAlgorithm->GetMean() << std::endl;

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MeanSampleFilter.html

464 Chapter 5. Statistics

std::cout << "Covariance = " << std::endl;

std::cout << covarianceAlgorithm->GetCovarianceMatrix() << std::endl;

Weighted Mean and Covariance

The source code for this section can be found in the file

WeightedSampleStatistics.cxx.

We include the header file for the itk::Vector class that will be our measurement vector template

in this example.

#include "itkVector.h"

We will use the itk::Statistics::ListSample as our sample template. We include the header

for the class too.

#include "itkListSample.h"

The following headers are for the weighted covariance algorithms.

#include "itkWeightedMeanSampleFilter.h"

#include "itkWeightedCovarianceSampleFilter.h"

The following code snippet will create a ListSample instance with three-component float measure-

ment vectors and put five measurement vectors in the ListSample object.

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(3);

MeasurementVectorType mv;

mv[0] = 1.0;

mv[1] = 2.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 2.0;

mv[1] = 4.0;

mv[2] = 5.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 8.0;

mv[2] = 6.0;

sample->PushBack(mv);

https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html

5.2. Algorithms and Functions 465

mv[0] = 2.0;

mv[1] = 7.0;

mv[2] = 4.0;

sample->PushBack(mv);

mv[0] = 3.0;

mv[1] = 2.0;

mv[2] = 7.0;

sample->PushBack(mv);

Robust versions of covariance algorithms require weight values for measurement vectors. We have

two ways of providing weight values for the weighted mean and weighted covariance algorithms.

The first method is to plug in an array of weight values. The size of the weight value array should be

equal to that of the measurement vectors. In both algorithms, we use the SetWeights(weights).

using WeightedMeanAlgorithmType =

itk::Statistics::WeightedMeanSampleFilter<SampleType>;

WeightedMeanAlgorithmType::WeightArrayType weightArray(sample->Size());

weightArray.Fill(0.5);

weightArray[2] = 0.01;

weightArray[4] = 0.01;

auto weightedMeanAlgorithm = WeightedMeanAlgorithmType::New();

weightedMeanAlgorithm->SetInput(sample);

weightedMeanAlgorithm->SetWeights(weightArray);

weightedMeanAlgorithm->Update();

std::cout << "Sample weighted mean = " << weightedMeanAlgorithm->GetMean()

<< std::endl;

using WeightedCovarianceAlgorithmType =

itk::Statistics::WeightedCovarianceSampleFilter<SampleType>;

auto weightedCovarianceAlgorithm = WeightedCovarianceAlgorithmType::New();

weightedCovarianceAlgorithm->SetInput(sample);

weightedCovarianceAlgorithm->SetWeights(weightArray);

weightedCovarianceAlgorithm->Update();

std::cout << "Sample weighted covariance = " << std::endl;

std::cout << weightedCovarianceAlgorithm->GetCovarianceMatrix()

<< std::endl;

The second method for computing weighted statistics is to plug-in a function that returns a weight

value that is usually a function of each measurement vector. Since the weightedMeanAlgorithm

and weightedCovarianceAlgorithm already have the input sample plugged in, we only need to

call the SetWeightingFunction(weights) method.

466 Chapter 5. Statistics

auto weightFunction = ExampleWeightFunction::New();

weightedMeanAlgorithm->SetWeightingFunction(weightFunction);

weightedMeanAlgorithm->Update();

std::cout << "Sample weighted mean = " << weightedMeanAlgorithm->GetMean()

<< std::endl;

weightedCovarianceAlgorithm->SetWeightingFunction(weightFunction);

weightedCovarianceAlgorithm->Update();

std::cout << "Sample weighted covariance = " << std::endl;

std::cout << weightedCovarianceAlgorithm->GetCovarianceMatrix();

std::cout << "Sample weighted mean (from WeightedCovarainceSampleFilter) = "

<< std::endl

<< weightedCovarianceAlgorithm->GetMean() << std::endl;

5.2.2 Sample Generation

SampleToHistogramFilter

The source code for this section can be found in the file

SampleToHistogramFilter.cxx.

Sometimes we want to work with a histogram instead of a list of measurement vectors (e.g.

itk::Statistics::ListSample, itk::Statistics::ImageToListSampleAdaptor,

or itk::Statistics::PointSetToListSample) to use less memory or to

perform a particular type of analysis. In such cases, we can import data

from a sample type to a itk::Statistics::Histogram object using the

itk::Statistics::SampleToHistogramFiler.

We use a ListSample object as the input for the filter. We include the header files for the ListSample

and Histogram classes, as well as the filter.

#include "itkListSample.h"

#include "itkHistogram.h"

#include "itkSampleToHistogramFilter.h"

We need another header for the type of the measurement vectors. We are going to use the

itk::Vector class which is a subclass of the itk::FixedArray in this example.

#include "itkVector.h"

The following code snippet creates a ListSample object with two-component int measurement vec-

tors and put the measurement vectors: [1,1] - 1 time, [2,2] - 2 times, [3,3] - 3 times, [4,4] - 4 times,

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1PointSetToListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1SampleToHistogramFiler.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

5.2. Algorithms and Functions 467

[5,5] - 5 times into the listSample.

using MeasurementType = int;

constexpr unsigned int MeasurementVectorLength = 2;

using MeasurementVectorType =

itk::Vector<MeasurementType, MeasurementVectorLength>;

using ListSampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto listSample = ListSampleType::New();

listSample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;

for (unsigned int i = 1; i < 6; ++i)

{

for (unsigned int j = 0; j < 2; ++j)

{

mv[j] = (MeasurementType)i;

}

for (unsigned int j = 0; j < i; ++j)

{

listSample->PushBack(mv);

}

}

Here, we set up the size and bound of the output histogram.

using HistogramMeasurementType = float;

constexpr unsigned int numberOfComponents = 2;

using HistogramType = itk::Statistics::Histogram<HistogramMeasurementType>;

HistogramType::SizeType size(numberOfComponents);

size.Fill(5);

HistogramType::MeasurementVectorType lowerBound(numberOfComponents);

HistogramType::MeasurementVectorType upperBound(numberOfComponents);

lowerBound[0] = 0.5;

lowerBound[1] = 0.5;

upperBound[0] = 5.5;

upperBound[1] = 5.5;

Now, we set up the SampleToHistogramFilter object by passing listSample as the

input and initializing the histogram size and bounds with the SetHistogramSize(),

SetHistogramBinMinimum(), and SetHistogramBinMaximum() methods. We execute the filter

by calling the Update() method.

using FilterType =

itk::Statistics::SampleToHistogramFilter<ListSampleType, HistogramType>;

auto filter = FilterType::New();

468 Chapter 5. Statistics

filter->SetInput(listSample);

filter->SetHistogramSize(size);

filter->SetHistogramBinMinimum(lowerBound);

filter->SetHistogramBinMaximum(upperBound);

filter->Update();

The Size() and GetTotalFrequency() methods return the same values as the sample does.

const HistogramType * histogram = filter->GetOutput();

HistogramType::ConstIterator iter = histogram->Begin();

while (iter != histogram->End())

{

std::cout << "Measurement vectors = " << iter.GetMeasurementVector()

<< " frequency = " << iter.GetFrequency() << std::endl;

++iter;

}

std::cout << "Size = " << histogram->Size() << std::endl;

std::cout << "Total frequency = " << histogram->GetTotalFrequency()

<< std::endl;

NeighborhoodSampler

The source code for this section can be found in the file

NeighborhoodSampler.cxx.

When we want to create an itk::Statistics::Subsample object that includes only

the measurement vectors within a radius from a center in a sample, we can use

the itk::Statistics::NeighborhoodSampler. In this example, we will use the

itk::Statistics::ListSample as the input sample.

We include the header files for the ListSample and the NeighborhoodSampler classes.

#include "itkListSample.h"

#include "itkNeighborhoodSampler.h"

We need another header for measurement vectors. We are going to use the itk::Vector class

which is a subclass of the itk::FixedArray.

#include "itkVector.h"

The following code snippet will create a ListSample object with two-component int measurement

vectors and put the measurement vectors: [1,1] - 1 time, [2,2] - 2 times, [3,3] - 3 times, [4,4] - 4

times, [5,5] - 5 times into the listSample.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NeighborhoodSampler.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

5.2. Algorithms and Functions 469

using MeasurementType = int;

constexpr unsigned int MeasurementVectorLength = 2;

using MeasurementVectorType =

itk::Vector<MeasurementType, MeasurementVectorLength>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(MeasurementVectorLength);

MeasurementVectorType mv;

for (unsigned int i = 1; i < 6; ++i)

{

for (unsigned int j = 0; j < 2; ++j)

{

mv[j] = (MeasurementType)i;

}

for (unsigned int j = 0; j < i; ++j)

{

sample->PushBack(mv);

}

}

We plug-in the sample to the NeighborhoodSampler using the SetInputSample(sample*). The

two required inputs for the NeighborhoodSampler are a center and a radius. We set these two in-

puts using the SetCenter(center vector*) and the SetRadius(double*) methods respectively.

And then we call the Update() method to generate the Subsample object. This sampling procedure

subsamples measurement vectors within a hyper-spherical kernel that has the center and radius spec-

ified.

using SamplerType = itk::Statistics::NeighborhoodSampler<SampleType>;

auto sampler = SamplerType::New();

sampler->SetInputSample(sample);

SamplerType::CenterType center(MeasurementVectorLength);

center[0] = 3;

center[1] = 3;

double radius = 1.5;

sampler->SetCenter(¢er);

sampler->SetRadius(&radius);

sampler->Update();

SamplerType::OutputType::Pointer output = sampler->GetOutput();

The SamplerType::OutputType is in fact itk::Statistics::Subsample. The following code

prints out the resampled measurement vectors.

SamplerType::OutputType::Iterator iter = output->Begin();

while (iter != output->End())

{

std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< "\t measurement vector = " << iter.GetMeasurementVector()

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html

470 Chapter 5. Statistics

<< "\t frequency = " << iter.GetFrequency() << std::endl;

++iter;

}

5.2.3 Sample Sorting

The source code for this section can be found in the file

SampleSorting.cxx.

Sometimes we want to sort the measurement vectors in a sample. The sorted vectors may reveal

some characteristics of the sample. The insert sort, the heap sort, and the introspective sort algo-

rithms [42] for samples are implemented in ITK. To learn pros and cons of each algorithm, please

refer to [18]. ITK also offers the quick select algorithm.

Among the subclasses of the itk::Statistics::Sample, only the class

itk::Statistics::Subsample allows users to change the order of the measurement vector.

Therefore, we must create a Subsample to do any sorting or selecting.

We include the header files for the itk::Statistics::ListSample and the Subsample classes.

#include "itkListSample.h"

The sorting and selecting related functions are in the include file itkStatisticsAlgorithm.h.

Note that all functions in this file are in the itk::Statistics::Algorithm namespace.

#include "itkStatisticsAlgorithm.h"

We need another header for measurement vectors. We are going to use the itk::Vector class

which is a subclass of the itk::FixedArray in this example.

We define the types of the measurement vectors, the sample, and the subsample.

#include "itkVector.h"

We define two functions for convenience. The first one clears the content of the subsample and fill

it with the measurement vectors from the sample.

void

initializeSubsample(SubsampleType * subsample, SampleType * sample)

{

subsample->Clear();

subsample->SetSample(sample);

subsample->InitializeWithAllInstances();

}

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Sample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html

5.2. Algorithms and Functions 471

The second one prints out the content of the subsample using the Subsample’s iterator interface.

void

printSubsample(SubsampleType * subsample, const char * header)

{

std::cout << std::endl;

std::cout << header << std::endl;

SubsampleType::Iterator iter = subsample->Begin();

while (iter != subsample->End())

{

std::cout << "instance identifier = " << iter.GetInstanceIdentifier()

<< " \t measurement vector = " << iter.GetMeasurementVector()

<< std::endl;

++iter;

}

}

The following code snippet will create a ListSample object with two-component int measurement

vectors and put the measurement vectors: [5,5] - 5 times, [4,4] - 4 times, [3,3] - 3 times, [2,2] - 2

times,[1,1] - 1 time into the sample.

auto sample = SampleType::New();

MeasurementVectorType mv;

for (unsigned int i = 5; i > 0; --i)

{

for (unsigned int j = 0; j < 2; ++j)

{

mv[j] = (MeasurementType)i;

}

for (unsigned int j = 0; j < i; ++j)

{

sample->PushBack(mv);

}

}

We create a Subsample object and plug-in the sample.

auto subsample = SubsampleType::New();

subsample->SetSample(sample);

initializeSubsample(subsample, sample);

printSubsample(subsample, "Unsorted");

The common parameters to all the algorithms are the Subsample object (subsample), the dimension

(activeDimension) that will be considered for the sorting or selecting (only the component belong-

ing to the dimension of the measurement vectors will be considered), the beginning index, and the

ending index of the measurement vectors in the subsample. The sorting or selecting algorithms are

applied only to the range specified by the beginning index and the ending index. The ending index

should be the actual last index plus one.

472 Chapter 5. Statistics

The itk::InsertSort function does not require any other optional arguments. The following

function call will sort the all measurement vectors in the subsample. The beginning index is 0, and

the ending index is the number of the measurement vectors in the subsample.

int activeDimension = 0;

itk::Statistics::Algorithm::InsertSort<SubsampleType>(

subsample, activeDimension, 0, subsample->Size());

printSubsample(subsample, "InsertSort");

We sort the subsample using the heap sort algorithm. The arguments are identical to those of the

insert sort.

initializeSubsample(subsample, sample);

itk::Statistics::Algorithm::HeapSort<SubsampleType>(

subsample, activeDimension, 0, subsample->Size());

printSubsample(subsample, "HeapSort");

The introspective sort algorithm needs an additional argument that specifies when to stop the intro-

spective sort loop and sort the fragment of the sample using the heap sort algorithm. Since we set the

threshold value as 16, when the sort loop reach the point where the number of measurement vectors

in a sort loop is not greater than 16, it will sort that fragment using the insert sort algorithm.

initializeSubsample(subsample, sample);

itk::Statistics::Algorithm::IntrospectiveSort<SubsampleType>(

subsample, activeDimension, 0, subsample->Size(), 16);

printSubsample(subsample, "IntrospectiveSort");

We query the median of the measurements along the activeDimension. The last argument tells the

algorithm that we want to get the subsample->Size()/2-th element along the activeDimension.

The quick select algorithm changes the order of the measurement vectors.

initializeSubsample(subsample, sample);

SubsampleType::MeasurementType median =

itk::Statistics::Algorithm::QuickSelect<SubsampleType>(subsample,

activeDimension,

0,

subsample->Size(),

subsample->Size() /

2);

std::cout << std::endl;

std::cout << "Quick Select: median = " << median << std::endl;

https://www.itk.org/Doxygen/html/classitk_1_1InsertSort.html

5.2. Algorithms and Functions 473

5.2.4 Probability Density Functions

The probability density function (PDF) for a specific distribution returns the probability density for

a measurement vector. To get the probability density from a PDF, we use the Evaluate(input)

method. PDFs for different distributions require different sets of distribution parameters. Before

calling the Evaluate() method, make sure to set the proper values for the distribution parameters.

Gaussian Distribution

The source code for this section can be found in the file

GaussianMembershipFunction.cxx.

The Gaussian probability density function itk::Statistics::GaussianMembershipFunction

requires two distribution parameters—the mean vector and the covariance matrix.

We include the header files for the class and the itk::Vector.

#include "itkVector.h"

#include "itkGaussianMembershipFunction.h"

We define the type of the measurement vector that will be input to the Gaussian membership func-

tion.

using MeasurementVectorType = itk::Vector<float, 2>;

The instantiation of the function is done through the usual New() method and a smart pointer.

using DensityFunctionType =

itk::Statistics::GaussianMembershipFunction<MeasurementVectorType>;

auto densityFunction = DensityFunctionType::New();

The length of the measurement vectors in the membership function, in this case a vector of length

2, is specified using the SetMeasurementVectorSize() method.

densityFunction->SetMeasurementVectorSize(2);

We create the two distribution parameters and set them. The mean is [0, 0], and the covariance

matrix is a 2 x 2 matrix:
(

4 0

0 4

)

We obtain the probability density for the measurement vector: [0, 0] using the

Evaluate(measurement vector) method and print it out.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1GaussianMembershipFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

474 Chapter 5. Statistics

DensityFunctionType::MeanVectorType mean(2);

mean.Fill(0.0);

DensityFunctionType::CovarianceMatrixType cov;

cov.SetSize(2, 2);

cov.SetIdentity();

cov *= 4;

densityFunction->SetMean(mean);

densityFunction->SetCovariance(cov);

MeasurementVectorType mv;

mv.Fill(0);

std::cout << densityFunction->Evaluate(mv) << std::endl;

5.2.5 Distance Metric

Euclidean Distance

The source code for this section can be found in the file

EuclideanDistanceMetric.cxx.

The Euclidean distance function (itk::Statistics::EuclideanDistanceMetric requires as

template parameter the type of the measurement vector. We can use this function for any subclass of

the itk::FixedArray. As a subclass of the itk::Statistics::DistanceMetric , it has two ba-

sic methods, the SetOrigin(measurement vector) and the Evaluate(measurement vector).

The Evaluate() method returns the distance between its argument (a measurement vector) and the

measurement vector set by the SetOrigin() method.

In addition to the two methods, EuclideanDistanceMetric has two more methods that return the

distance of two measurements — Evaluate(measurement vector, measurement vector) and

the coordinate distance between two measurements (not vectors) — Evaluate(measurement,

measurement). The argument type of the latter method is the type of the component of the mea-

surement vector.

We include the header files for the class and the itk::Vector.

#include "itkVector.h"

#include "itkArray.h"

#include "itkEuclideanDistanceMetric.h"

We define the type of the measurement vector that will be input of the Euclidean distance function.

As a result, the measurement type is float.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1EuclideanDistanceMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1FixedArray.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.2. Algorithms and Functions 475

using MeasurementVectorType = itk::Array<float>;

The instantiation of the function is done through the usual New() method and a smart pointer.

using DistanceMetricType =

itk::Statistics::EuclideanDistanceMetric<MeasurementVectorType>;

auto distanceMetric = DistanceMetricType::New();

We create three measurement vectors, the originPoint, the queryPointA, and the queryPointB.

The type of the originPoint is fixed in the itk::Statistics::DistanceMetric

base class as itk::Vector< double, length of the measurement vector of the each

distance metric instance>.

The Distance metric does not know about the length of the measurement vectors. We must set it

explicitly using the SetMeasurementVectorSize() method.

DistanceMetricType::OriginType originPoint(2);

MeasurementVectorType queryPointA(2);

MeasurementVectorType queryPointB(2);

originPoint[0] = 0;

originPoint[1] = 0;

queryPointA[0] = 2;

queryPointA[1] = 2;

queryPointB[0] = 3;

queryPointB[1] = 3;

In the following code snippet, we show the uses of the three different Evaluate() methods.

distanceMetric->SetOrigin(originPoint);

std::cout

<< "Euclidean distance between the origin and the query point A = "

<< distanceMetric->Evaluate(queryPointA) << std::endl;

std::cout << "Euclidean distance between the two query points (A and B) = "

<< distanceMetric->Evaluate(queryPointA, queryPointB)

<< std::endl;

std::cout << "Coordinate distance between "

<< "the first components of the two query points = "

<< distanceMetric->Evaluate(queryPointA[0], queryPointB[0])

<< std::endl;

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceMetric.html

476 Chapter 5. Statistics

5.2.6 Decision Rules

A decision rule is a function that returns the index of one data element in a vector of data elements.

The index returned depends on the internal logic of each decision rule. The decision rule is an

essential part of the ITK statistical classification framework. The scores from a set of membership

functions (e.g. probability density functions, distance metrics) are compared by a decision rule and a

class label is assigned based on the output of the decision rule. The common interface is very simple.

Any decision rule class must implement the Evaluate() method. In addition to this method, certain

decision rule class can have additional method that accepts prior knowledge about the decision task.

The itk::MaximumRatioDecisionRule is an example of such a class.

The argument type for the Evaluate() method is std::vector< double >. The decision rule

classes are part of the itk namespace instead of itk::Statistics namespace.

For a project that uses a decision rule, it must link the itkCommon library. Decision rules are not

templated classes.

Maximum Decision Rule

The source code for this section can be found in the file

MaximumDecisionRule.cxx.

The itk::MaximumDecisionRule returns the index of the largest discriminant score among the

discriminant scores in the vector of discriminant scores that is the input argument of the Evaluate()

method.

To begin the example, we include the header files for the class and the MaximumDecisionRule. We

also include the header file for the std::vector class that will be the container for the discriminant

scores.

#include "itkMaximumDecisionRule.h"

#include <vector>

The instantiation of the function is done through the usual New() method and a smart pointer.

using DecisionRuleType = itk::Statistics::MaximumDecisionRule;

auto decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with three values. The Evaluate(

discriminantScores) will return 2 because the third value is the largest value.

DecisionRuleType::MembershipVectorType discriminantScores;

discriminantScores.push_back(0.1);

discriminantScores.push_back(0.3);

discriminantScores.push_back(0.6);

https://www.itk.org/Doxygen/html/classitk_1_1MaximumRatioDecisionRule.html
https://www.itk.org/Doxygen/html/classitk_1_1MaximumDecisionRule.html

5.2. Algorithms and Functions 477

std::cout << "MaximumDecisionRule: The index of the chosen = "

<< decisionRule->Evaluate(discriminantScores) << std::endl;

Minimum Decision Rule

The source code for this section can be found in the file

MinimumDecisionRule.cxx.

The Evaluate() method of the itk::MinimumDecisionRule returns the index of the smallest

discriminant score among the vector of discriminant scores that it receives as input.

To begin this example, we include the class header file. We also include the header file for the

std::vector class that will be the container for the discriminant scores.

#include "itkMinimumDecisionRule.h"

#include <vector>

The instantiation of the function is done through the usual New() method and a smart pointer.

using DecisionRuleType = itk::Statistics::MinimumDecisionRule;

auto decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with three values. The call Evaluate(

discriminantScores) will return 0 because the first value is the smallest value.

DecisionRuleType::MembershipVectorType discriminantScores;

discriminantScores.push_back(0.1);

discriminantScores.push_back(0.3);

discriminantScores.push_back(0.6);

std::cout << "MinimumDecisionRule: The index of the chosen = "

<< decisionRule->Evaluate(discriminantScores) << std::endl;

Maximum Ratio Decision Rule

The source code for this section can be found in the file

MaximumRatioDecisionRule.cxx.

MaximumRatioDecisionRule returns the class label using a Bayesian style decision rule. The dis-

criminant scores are evaluated in the context of class priors. If the discriminant scores are actual

conditional probabilities (likelihoods) and the class priors are actual a priori class probabilities, then

https://www.itk.org/Doxygen/html/classitk_1_1MinimumDecisionRule.html

478 Chapter 5. Statistics

this decision rule operates as Bayes rule, returning the class i if

p(x|i)p(i)> p(x| j)p(j) (5.1)

for all class j. The discriminant scores and priors are not required to be true probabilities.

This class is named the MaximumRatioDecisionRule as it can be implemented as returning the class

i if
p(x|i)
p(x| j) >

p(j)

p(i)
(5.2)

for all class j.

We include the header files for the class as well as the header file for the std::vector class that

will be the container for the discriminant scores.

#include "itkMaximumRatioDecisionRule.h"

#include <vector>

The instantiation of the function is done through the usual New() method and a smart pointer.

using DecisionRuleType = itk::Statistics::MaximumRatioDecisionRule;

auto decisionRule = DecisionRuleType::New();

We create the discriminant score vector and fill it with three values. We also create a vector

(aPrioris) for the a priori values. The Evaluate(discriminantScores) will return 1.

DecisionRuleType::MembershipVectorType discriminantScores;

discriminantScores.push_back(0.1);

discriminantScores.push_back(0.3);

discriminantScores.push_back(0.6);

DecisionRuleType::PriorProbabilityVectorType aPrioris;

aPrioris.push_back(0.1);

aPrioris.push_back(0.8);

aPrioris.push_back(0.1);

decisionRule->SetPriorProbabilities(aPrioris);

std::cout << "MaximumRatioDecisionRule: The index of the chosen = "

<< decisionRule->Evaluate(discriminantScores) << std::endl;

5.2.7 Random Variable Generation

A random variable generation class returns a variate when the GetVariate() method is called.

When we repeatedly call the method for “enough” times, the set of variates we will get follows the

distribution form of the random variable generation class.

5.3. Statistics applied to Images 479

Normal (Gaussian) Distribution

The source code for this section can be found in the file

NormalVariateGenerator.cxx.

The itk::Statistics::NormalVariateGenerator generates random variables according to the

standard normal distribution (mean = 0, standard deviation = 1).

To use the class in a project, we must link the itkStatistics library to the project.

To begin the example we include the header file for the class.

#include "itkNormalVariateGenerator.h"

The NormalVariateGenerator is a non-templated class. We simply call the New() method to create

an instance. Then, we provide the seed value using the Initialize(seed value).

using GeneratorType = itk::Statistics::NormalVariateGenerator;

auto generator = GeneratorType::New();

generator->Initialize(2003);

for (unsigned int i = 0; i < 50; ++i)

{

std::cout << i << " : \t" << generator->GetVariate() << std::endl;

}

5.3 Statistics applied to Images

5.3.1 Image Histograms

Scalar Image Histogram with Adaptor

The source code for this section can be found in the file

ImageHistogram1.cxx.

This example shows how to compute the histogram of a scalar image. Since the

statistics framework classes operate on Samples and ListOfSamples, we need to intro-

duce a class that will make the image look like a list of samples. This class is the

itk::Statistics::ImageToListSampleAdaptor. Once we have connected this adaptor to an

image, we can proceed to use the itk::Statistics::SampleToHistogramFilter in order to

compute the histogram of the image.

First, we need to include the headers for the itk::Statistics::ImageToListSampleAdaptor

and the itk::Image classes.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1SampleToHistogramFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToListSampleAdaptor.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

480 Chapter 5. Statistics

#include "itkImageToListSampleAdaptor.h"

#include "itkImage.h"

Now we include the headers for the Histogram, the SampleToHistogramFilter, and the reader

that we will use for reading the image from a file.

#include "itkImageFileReader.h"

#include "itkHistogram.h"

#include "itkSampleToHistogramFilter.h"

The image type must be defined using the typical pair of pixel type and dimension specification.

using PixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

Using the same image type we instantiate the type of the image reader that will provide the image

source for our example.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(argv[1]);

Now we introduce the central piece of this example, which is the use of the adaptor that will present

the itk::Image as if it was a list of samples. We instantiate the type of the adaptor by using the

actual image type. Then construct the adaptor by invoking its New() method and assigning the result

to the corresponding smart pointer. Finally we connect the output of the image reader to the input

of the adaptor.

using AdaptorType = itk::Statistics::ImageToListSampleAdaptor<ImageType>;

auto adaptor = AdaptorType::New();

adaptor->SetImage(reader->GetOutput());

You must keep in mind that adaptors are not pipeline objects. This means that they do not propagate

update calls. It is therefore your responsibility to make sure that you invoke the Update() method

of the reader before you attempt to use the output of the adaptor. As usual, this must be done inside

a try/catch block because the read operation can potentially throw exceptions.

https://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.3. Statistics applied to Images 481

try

{

reader->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Problem reading image file : " << argv[1] << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

At this point, we are ready for instantiating the type of the histogram filter. We must first declare the

type of histogram we wish to use. The adaptor type is also used as template parameter of the filter.

Having instantiated this type, we proceed to create one filter by invoking its New() method.

using HistogramMeasurementType = PixelType;

using HistogramType = itk::Statistics::Histogram<HistogramMeasurementType>;

using FilterType =

itk::Statistics::SampleToHistogramFilter<AdaptorType, HistogramType>;

auto filter = FilterType::New();

We define now the characteristics of the Histogram that we want to compute. This typically includes

the size of each one of the component, but given that in this simple example we are dealing with a

scalar image, then our histogram will have a single component. For the sake of generality, however,

we use the HistogramType as defined inside of the Generator type. We define also the marginal

scale factor that will control the precision used when assigning values to histogram bins. Finally we

invoke the Update() method in the filter.

constexpr unsigned int numberOfComponents = 1;

HistogramType::SizeType size(numberOfComponents);

size.Fill(255);

filter->SetInput(adaptor);

filter->SetHistogramSize(size);

filter->SetMarginalScale(10);

HistogramType::MeasurementVectorType min(numberOfComponents);

HistogramType::MeasurementVectorType max(numberOfComponents);

min.Fill(0);

max.Fill(255);

filter->SetHistogramBinMinimum(min);

filter->SetHistogramBinMaximum(max);

filter->Update();

Now we are ready for using the image histogram for any further processing. The histogram is

482 Chapter 5. Statistics

obtained from the filter by invoking the GetOutput() method.

HistogramType::ConstPointer histogram = filter->GetOutput();

In this current example we simply print out the frequency values of all the bins in the image his-

togram.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

for (unsigned int bin = 0; bin < histogramSize; ++bin)

{

std::cout << "bin = " << bin << " frequency = ";

std::cout << histogram->GetFrequency(bin, 0) << std::endl;

}

Scalar Image Histogram with Generator

The source code for this section can be found in the file

ImageHistogram2.cxx.

From the previous example you will have noticed that there is a significant number of operations to

perform to compute the simple histogram of a scalar image. Given that this is a relatively common

operation, it is convenient to encapsulate many of these operations in a single helper class.

The itk::Statistics::ScalarImageToHistogramGenerator is the result of such encapsula-

tion. This example illustrates how to compute the histogram of a scalar image using this helper

class.

We should first include the header of the histogram generator and the image class.

#include "itkScalarImageToHistogramGenerator.h"

#include "itkImage.h"

The image type must be defined using the typical pair of pixel type and dimension specification.

using PixelType = unsigned char;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

We use now the image type in order to instantiate the type of the corresponding histogram generator

class, and invoke its New() method in order to construct one.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToHistogramGenerator.html

5.3. Statistics applied to Images 483

using HistogramGeneratorType =

itk::Statistics::ScalarImageToHistogramGenerator<ImageType>;

auto histogramGenerator = HistogramGeneratorType::New();

The image to be passed as input to the histogram generator is taken in this case from the output of

an image reader.

histogramGenerator->SetInput(reader->GetOutput());

We define also the typical parameters that specify the characteristics of the histogram to be com-

puted.

histogramGenerator->SetNumberOfBins(256);

histogramGenerator->SetMarginalScale(10.0);

histogramGenerator->SetHistogramMin(-0.5);

histogramGenerator->SetHistogramMax(255.5);

Finally we trigger the computation of the histogram by invoking the Compute() method of the

generator. Note again, that a generator is not a pipeline object and therefore it is up to you to make

sure that the filters providing the input image have been updated.

histogramGenerator->Compute();

The resulting histogram can be obtained from the generator by invoking its GetOutput() method.

It is also convenient to get the Histogram type from the traits of the generator type itself as shown in

the code below.

using HistogramType = HistogramGeneratorType::HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

In this case we simply print out the frequency values of the histogram. These values can be accessed

by using iterators.

HistogramType::ConstIterator itr = histogram->Begin();

HistogramType::ConstIterator end = histogram->End();

unsigned int binNumber = 0;

while (itr != end)

{

std::cout << "bin = " << binNumber << " frequency = ";

std::cout << itr.GetFrequency() << std::endl;

484 Chapter 5. Statistics

++itr;

++binNumber;

}

Color Image Histogram with Generator

The source code for this section can be found in the file

ImageHistogram3.cxx.

By now, you are probably thinking that the statistics framework in ITK is too complex for simply

computing histograms from images. Here we illustrate that the benefit for this complexity is the

power that these methods provide for dealing with more complex and realistic uses of image statistics

than the trivial 256-bin histogram of 8-bit images that most software packages provide. One of such

cases is the computation of histograms from multi-component images such as Vector images and

color images.

This example shows how to compute the histogram of an RGB image by using the helper class

ImageToHistogramFilter. In this first example we compute the histogram of each channel inde-

pendently.

We start by including the header of the itk::Statistics::ImageToHistogramFilter, as well

as the headers for the image class and the RGBPixel class.

#include "itkImageToHistogramFilter.h"

#include "itkImage.h"

#include "itkRGBPixel.h"

The type of the RGB image is defined by first instantiating a RGBPixel and then using the image

dimension specification.

using PixelComponentType = unsigned char;

using RGBPixelType = itk::RGBPixel<PixelComponentType>;

constexpr unsigned int Dimension = 2;

using RGBImageType = itk::Image<RGBPixelType, Dimension>;

Using the RGB image type we can instantiate the type of the corresponding histogram filter and

construct one filter by invoking its New() method.

using HistogramFilterType =

itk::Statistics::ImageToHistogramFilter<RGBImageType>;

auto histogramFilter = HistogramFilterType::New();

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToHistogramFilter.html

5.3. Statistics applied to Images 485

The parameters of the histogram must be defined now. Probably the most important one is the

arrangement of histogram bins. This is provided to the histogram through a size array. The type of

the array can be taken from the traits of the HistogramFilterType type. We create one instance

of the size object and fill in its content. In this particular case, the three components of the size

array will correspond to the number of bins used for each one of the RGB components in the color

image. The following lines show how to define a histogram on the red component of the image

while disregarding the green and blue components.

using SizeType = HistogramFilterType::HistogramSizeType;

SizeType size(3);

size[0] = 255; // number of bins for the Red channel

size[1] = 1; // number of bins for the Green channel

size[2] = 1; // number of bins for the Blue channel

histogramFilter->SetHistogramSize(size);

The marginal scale must be defined in the filter. This will determine the precision in the assignment

of values to the histogram bins.

histogramFilter->SetMarginalScale(10.0);

Finally, we must specify the upper and lower bounds for the histogram. This can either be done

manually using the SetHistogramBinMinimum() and SetHistogramBinMaximum() methods or it

can be done automatically by calling SetHistogramAutoMinimumMaximum(true). Here we use

the manual method.

HistogramFilterType::HistogramMeasurementVectorType lowerBound(3);

HistogramFilterType::HistogramMeasurementVectorType upperBound(3);

lowerBound[0] = 0;

lowerBound[1] = 0;

lowerBound[2] = 0;

upperBound[0] = 256;

upperBound[1] = 256;

upperBound[2] = 256;

histogramFilter->SetHistogramBinMinimum(lowerBound);

histogramFilter->SetHistogramBinMaximum(upperBound);

The input of the filter is taken from an image reader, and the computation of the histogram is trig-

gered by invoking the Update() method of the filter.

histogramFilter->SetInput(reader->GetOutput());

histogramFilter->Update();

486 Chapter 5. Statistics

We can now access the results of the histogram computation by declaring a pointer to histogram

and getting its value from the filter using the GetOutput() method. Note that here we use a const

HistogramType pointer instead of a const smart pointer because we are sure that the filter is not

going to be destroyed while we access the values of the histogram. Depending on what you are

doing, it may be safer to assign the histogram to a const smart pointer as shown in previous examples.

using HistogramType = HistogramFilterType::HistogramType;

const HistogramType * histogram = histogramFilter->GetOutput();

Just for the sake of exercising the experimental method [48], we verify that the resulting histogram

actually have the size that we requested when we configured the filter. This can be done by invoking

the Size() method of the histogram and printing out the result.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

Strictly speaking, the histogram computed here is the joint histogram of the three RGB components.

However, given that we set the resolution of the green and blue channels to be just one bin, the

histogram is in practice representing just the red channel. In the general case, we can always access

the frequency of a particular channel in a joint histogram, thanks to the fact that the histogram class

offers a GetFrequency() method that accepts a channel as argument. This is illustrated in the

following lines of code.

unsigned int channel = 0; // red channel

std::cout << "Histogram of the red component" << std::endl;

for (unsigned int bin = 0; bin < histogramSize; ++bin)

{

std::cout << "bin = " << bin << " frequency = ";

std::cout << histogram->GetFrequency(bin, channel) << std::endl;

}

In order to reinforce the concepts presented above, we modify now the setup of the histogram filter

in order to compute the histogram of the green channel instead of the red one. This is done by

simply changing the number of bins desired on each channel and invoking the computation of the

filter again by calling the Update() method.

size[0] = 1; // number of bins for the Red channel

size[1] = 255; // number of bins for the Green channel

size[2] = 1; // number of bins for the Blue channel

histogramFilter->SetHistogramSize(size);

histogramFilter->Update();

5.3. Statistics applied to Images 487

The result can be verified now by setting the desired channel to green and invoking the

GetFrequency() method.

channel = 1; // green channel

std::cout << "Histogram of the green component" << std::endl;

for (unsigned int bin = 0; bin < histogramSize; ++bin)

{

std::cout << "bin = " << bin << " frequency = ";

std::cout << histogram->GetFrequency(bin, channel) << std::endl;

}

To finalize the example, we do the same computation for the case of the blue channel.

size[0] = 1; // number of bins for the Red channel

size[1] = 1; // number of bins for the Green channel

size[2] = 255; // number of bins for the Blue channel

histogramFilter->SetHistogramSize(size);

histogramFilter->Update();

and verify the output.

channel = 2; // blue channel

std::cout << "Histogram of the blue component" << std::endl;

for (unsigned int bin = 0; bin < histogramSize; ++bin)

{

std::cout << "bin = " << bin << " frequency = ";

std::cout << histogram->GetFrequency(bin, channel) << std::endl;

}

Color Image Histogram Writing

The source code for this section can be found in the file

ImageHistogram4.cxx.

The statistics framework in ITK has been designed for managing multi-variate statistics in a natural

way. The itk::Statistics::Histogram class reflects this concept clearly since it is a N-variable

joint histogram. This nature of the Histogram class is exploited in the following example in order to

build the joint histogram of a color image encoded in RGB values.

Note that the same treatment could be applied further to any vector image thanks to the generic

programming approach used in the implementation of the statistical framework.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Histogram.html

488 Chapter 5. Statistics

The most relevant class in this example is the itk::Statistics::ImageToHistogramFilter.

This class will take care of adapting the itk::Image to a list of samples and then to a histogram

filter. The user is only bound to provide the desired resolution on the histogram bins for each one of

the image components.

In this example we compute the joint histogram of the three channels of an RGB image. Our output

histogram will be equivalent to a 3D array of bins. This histogram could be used further for feeding a

segmentation method based on statistical pattern recognition. Such method was actually used during

the generation of the image in the cover of the Software Guide.

The first step is to include the header files for the histogram filter, the RGB pixel type and the Image.

#include "itkImageToHistogramFilter.h"

#include "itkImage.h"

#include "itkRGBPixel.h"

We declare now the type used for the components of the RGB pixel, instantiate the type of the

RGBPixel and instantiate the image type.

using PixelComponentType = unsigned char;

using RGBPixelType = itk::RGBPixel<PixelComponentType>;

constexpr unsigned int Dimension = 2;

using RGBImageType = itk::Image<RGBPixelType, Dimension>;

Using the type of the color image, and in general of any vector image, we can now instantiate the

type of the histogram filter class. We then use that type for constructing an instance of the filter by

invoking its New() method and assigning the result to a smart pointer.

using HistogramFilterType =

itk::Statistics::ImageToHistogramFilter<RGBImageType>;

auto histogramFilter = HistogramFilterType::New();

The resolution at which the statistics of each one of the color component will be evaluated is defined

by setting the number of bins along every component in the joint histogram. For this purpose we

take the HistogramSizeType trait from the filter and use it to instantiate a size variable. We set in

this variable the number of bins to use for each component of the color image.

using SizeType = HistogramFilterType::HistogramSizeType;

SizeType size(3);

size[0] = 256; // number of bins for the Red channel

size[1] = 256; // number of bins for the Green channel

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ImageToHistogramFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Image.html

5.3. Statistics applied to Images 489

size[2] = 256; // number of bins for the Blue channel

histogramFilter->SetHistogramSize(size);

Finally, we must specify the upper and lower bounds for the histogram using the

SetHistogramBinMinimum() and SetHistogramBinMaximum() methods.

using HistogramMeasurementVectorType =

HistogramFilterType::HistogramMeasurementVectorType;

HistogramMeasurementVectorType binMinimum(3);

HistogramMeasurementVectorType binMaximum(3);

binMinimum[0] = -0.5;

binMinimum[1] = -0.5;

binMinimum[2] = -0.5;

binMaximum[0] = 255.5;

binMaximum[1] = 255.5;

binMaximum[2] = 255.5;

histogramFilter->SetHistogramBinMinimum(binMinimum);

histogramFilter->SetHistogramBinMaximum(binMaximum);

The input to the histogram filter is taken from the output of an image reader. Of course, the output

of any filter producing an RGB image could have been used instead of a reader.

histogramFilter->SetInput(reader->GetOutput());

The marginal scale is defined in the histogram filter. This value will define the precision in the

assignment of values to the histogram bins.

histogramFilter->SetMarginalScale(10.0);

Finally, the computation of the histogram is triggered by invoking the Update() method of the filter.

histogramFilter->Update();

At this point, we can recover the histogram by calling the GetOutput() method of the filter. The

result is assigned to a variable that is instantiated using the HistogramType trait of the filter type.

using HistogramType = HistogramFilterType::HistogramType;

const HistogramType * histogram = histogramFilter->GetOutput();

490 Chapter 5. Statistics

We can verify that the computed histogram has the requested size by invoking its Size() method.

const unsigned int histogramSize = histogram->Size();

std::cout << "Histogram size " << histogramSize << std::endl;

The values of the histogram can now be saved into a file by walking through all of the histogram

bins and pushing them into a std::ofstream.

std::ofstream histogramFile;

histogramFile.open(argv[2]);

HistogramType::ConstIterator itr = histogram->Begin();

HistogramType::ConstIterator end = histogram->End();

using AbsoluteFrequencyType = HistogramType::AbsoluteFrequencyType;

while (itr != end)

{

const AbsoluteFrequencyType frequency = itr.GetFrequency();

histogramFile.write((const char *)(&frequency), sizeof(frequency));

if (frequency != 0)

{

HistogramType::IndexType index;

index = histogram->GetIndex(itr.GetInstanceIdentifier());

std::cout << "Index = " << index << ", Frequency = " << frequency

<< std::endl;

}

++itr;

}

histogramFile.close();

Note that here the histogram is saved as a block of memory in a raw file. At this point you can use

visualization software in order to explore the histogram in a display that would be equivalent to a

scatter plot of the RGB components of the input color image.

5.3.2 Image Information Theory

Many concepts from Information Theory have been used successfully in the domain of image pro-

cessing. This section introduces some of such concepts and illustrates how the statistical framework

in ITK can be used for computing measures that have some relevance in terms of Information Theory

[57, 58, 32].

5.3. Statistics applied to Images 491

Computing Image Entropy

The concept of Entropy has been introduced into image processing as a crude mapping from its

application in Communications. The notions of Information Theory can be deceiving and misleading

when applied to images because their language from Communication Theory does not necessarily

map to what people in the Imaging Community use.

For example, it is commonly said that

“The Entropy of an image is a measure of the amount of information contained in an image”.

This statement is fundamentally incorrect.

The way the notion of Entropy is commonly measured in images is by first assuming that the spatial

location of a pixel in an image is irrelevant! That is, we simply take the statistical distribution

of the pixel values as it can be evaluated in a histogram and from that histogram we estimate the

frequency of the value associated to each bin. In other words, we simply assume that the image

is a set of pixels that are passing through a channel, just as things are commonly considered for

communication purposes.

Once the frequency of every pixel value has been estimated, Information Theory defines that the

amount of uncertainty that an observer will lose by taking one pixel and finding its real value to

be the one associated with the i-th bin of the histogram, is given by − log2 (pi), where pi is the

frequency in that histogram bin. Since a reduction in uncertainty is equivalent to an increase in the

amount of information in the observer, we conclude that measuring one pixel and finding its level to

be in the i-th bin results in an acquisition of − log2 (pi) bits of information1.

Since we could have picked any pixel at random, our chances of picking the ones that are associated

to the i-th histogram bin are given by pi. Therefore, the expected reduction in uncertainty that we

can get from measuring the value of one pixel is given by

H =−∑
i

pi · log2 (pi) (5.3)

This quantity H is what is usually defined as the Entropy of the Image. It would be more accurate to

call it the Entropy of the random variable associated to the intensity value of one pixel. The fact that

H is unrelated to the spatial arrangement of the pixels in an image shows how little of the real Image

Information H actually represents. The Entropy of an image, as measured above, is only a crude

indication of how the intensity values are spread in the dynamic range of intensities. For example,

an image with maximum entropy will be the one that has a large dynamic range and every value in

that range is equally probable.

1Note that bit is the unit of amount of information. Our modern culture has vulgarized the bit and its multiples, the Byte,

KiloByte, MegaByte, GigaByte and so on as simple measures of the amount of RAM memory and capacity of a hard drive in

a computer. In that sense, a confusion is created between the encoding of a piece of data and its actual amount of information.

For example a file composed of one million letters will take one million bytes in a hard disk, but it does not necessarily have

one million bytes of information, since in many cases parts of the file can be predicted from others. This is the reason why

data compression can manage to compact files.

492 Chapter 5. Statistics

The common convention of H as a representation of image information has terribly undermined the

enormous potential on the application of Information Theory to image processing and analysis.

The real concepts of Information Theory would require that we define the amount of information in

an image based on our expectations and prior knowledge from that image. In particular, the Amount

of Information provided by an image should measure the number of features that we are not able to

predict based on our prior knowledge about that image. For example, if we know that we are going

to analyze a CT scan of the abdomen of an adult human male in the age range of 40 to 45, there

is already a good deal that we could predict about the content of that image. The real amount of

information in the image is the representation of the features in the image that we could not predict

from knowing that it is a CT scan from a human adult male.

The application of Information Theory to image analysis is still in its early infancy and it is an

exciting and promising field to be explored further. All that being said, let’s now look closer at how

the concept of Entropy (which is not the amount of information in an image) can be measured with

the ITK statistics framework.

The source code for this section can be found in the file

ImageEntropy1.cxx.

This example shows how to compute the entropy of an image. More formally this should be said :

The reduction in uncertainty gained when we measure the intensity of one randomly selected pixel

in this image, given that we already know the statistical distribution of the image intensity values.

In practice it is almost never possible to know the real statistical distribution of intensities and we

are forced to estimate it from the evaluation of the histogram from one or several images of similar

nature. We can use the counts in histogram bins in order to compute frequencies and then consider

those frequencies to be estimations of the probability of a new value to belong to the intensity range

of that bin.

Since the first stage in estimating the entropy of an image is to compute its histogram,

we must start by including the headers of the classes that will perform such a computa-

tion. In this case, we are going to use a scalar image as input, therefore we need the

itk::Statistics::ScalarImageToHistogramGenerator class, as well as the image class.

#include "itkScalarImageToHistogramGenerator.h"

#include "itkImage.h"

The pixel type and dimension of the image are explicitly declared and then used for instantiating the

image type.

using PixelType = unsigned char;

constexpr unsigned int Dimension = 3;

using ImageType = itk::Image<PixelType, Dimension>;

The image type is used as template parameter for instantiating the histogram generator.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageToHistogramGenerator.html

5.3. Statistics applied to Images 493

using HistogramGeneratorType =

itk::Statistics::ScalarImageToHistogramGenerator<ImageType>;

auto histogramGenerator = HistogramGeneratorType::New();

The parameters of the desired histogram are defined, including the number of bins and the marginal

scale. For convenience in this example, we read the number of bins from the command line argu-

ments. In this way we can easily experiment with different values for the number of bins and see

how that choice affects the computation of the entropy.

const unsigned int numberOfHistogramBins = std::stoi(argv[2]);

histogramGenerator->SetNumberOfBins(numberOfHistogramBins);

histogramGenerator->SetMarginalScale(10.0);

We can then connect as input the output image from a reader and trigger the histogram computation

by invoking the Compute() method in the generator.

histogramGenerator->SetInput(reader->GetOutput());

histogramGenerator->Compute();

The resulting histogram can be recovered from the generator by using the GetOutput() method. A

histogram class can be declared using the HistogramType trait from the generator.

using HistogramType = HistogramGeneratorType::HistogramType;

const HistogramType * histogram = histogramGenerator->GetOutput();

We proceed now to compute the estimation of entropy given the histogram. The first conceptual

jump to be done here is to assume that the histogram, which is the simple count of frequency of

occurrence for the gray scale values of the image pixels, can be normalized in order to estimate the

probability density function PDF of the actual statistical distribution of pixel values.

First we declare an iterator that will visit all the bins in the histogram. Then we obtain the total

number of counts using the GetTotalFrequency() method, and we initialize the entropy variable

to zero.

HistogramType::ConstIterator itr = histogram->Begin();

HistogramType::ConstIterator end = histogram->End();

double Sum = histogram->GetTotalFrequency();

double Entropy = 0.0;

494 Chapter 5. Statistics

We start now visiting every bin and estimating the probability of a pixel to have a value in the

range of that bin. The base 2 logarithm of that probability is computed, and then weighted by the

probability in order to compute the expected amount of information for any given pixel. Note that a

minimum value is imposed for the probability in order to avoid computing logarithms of zeros.

Note that the log(2) factor is used to convert the natural logarithm in to a logarithm of base 2, and

makes it possible to report the entropy in its natural unit: the bit.

while (itr != end)

{

const double probability = itr.GetFrequency() / Sum;

if (probability > 0.99 / Sum)

{

Entropy += -probability * std::log(probability) / std::log(2.0);

}

++itr;

}

The result of this sum is considered to be our estimation of the image entropy. Note that the Entropy

value will change depending on the number of histogram bins that we use for computing the his-

togram. This is particularly important when dealing with images whose pixel values have dynamic

ranges so large that our number of bins will always underestimate the variability of the data.

std::cout << "Image entropy = " << Entropy << " bits " << std::endl;

As an illustration, the application of this program to the image

• Examples/Data/BrainProtonDensitySlice.png

results in the following values of entropy for different values of number of histogram bins.

Number of Histogram Bins 16 32 64 128 255

Estimated Entropy (bits) 3.02 3.98 4.92 5.89 6.88

This table highlights the importance of carefully considering the characteristics of the histograms

used for estimating Information Theory measures such as the entropy.

Computing Images Mutual Information

The source code for this section can be found in the file

ImageMutualInformation1.cxx.

5.3. Statistics applied to Images 495

This example illustrates how to compute the Mutual Information between two images using classes

from the Statistics framework. Note that you could also use for this purpose the ImageMetrics

designed for the image registration framework.

For example, you could use:

• itk::MutualInformationImageToImageMetric

• itk::MattesMutualInformationImageToImageMetric

• itk::MutualInformationHistogramImageToImageMetric

• itk::MutualInformationImageToImageMetric

• itk::NormalizedMutualInformationHistogramImageToImageMetric

• itk::KullbackLeiblerCompareHistogramImageToImageMetric

Mutual Information as computed in this example, and as commonly used in the context of image

registration provides a measure of how much uncertainty on the value of a pixel in one image is

reduced by measuring the homologous pixel in the other image. Note that Mutual Information as

used here does not measure the amount of information that one image provides on the other image;

this would require us to take into account the spatial structures in the images as well as the semantics

of the image context in terms of an observer.

This implies that there is still an enormous unexploited potential on the use of the Mutual Informa-

tion concept in the domain of medical images, among the most interesting of which is the semantic

description of image in terms of anatomical structures.

In this particular example we make use of classes from the Statistics framework in order to compute

the measure of Mutual Information between two images. We assume that both images have the same

number of pixels along every dimension and that they have the same origin and spacing. Therefore

the pixels from one image are perfectly aligned with those of the other image.

We must start by including the header files of the image, histogram filter, reader and Join image

filter. We will read both images and use the Join image filter in order to compose an image of two

components using the information of each one of the input images in one component. This is the

natural way of using the Statistics framework in ITK given that the fundamental statistical classes

are expecting to receive multi-valued measures.

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkJoinImageFilter.h"

#include "itkImageToHistogramFilter.h"

We define the pixel type and dimension of the images to be read.

https://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MattesMutualInformationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MutualInformationHistogramImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1MutualInformationImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1NormalizedMutualInformationHistogramImageToImageMetric.html
https://www.itk.org/Doxygen/html/classitk_1_1KullbackLeiblerCompareHistogramImageToImageMetric.html

496 Chapter 5. Statistics

using PixelComponentType = unsigned char;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelComponentType, Dimension>;

Using the image type we proceed to instantiate the readers for both input images. Then, we take

their filenames from the command line arguments.

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader1 = ReaderType::New();

auto reader2 = ReaderType::New();

reader1->SetFileName(argv[1]);

reader2->SetFileName(argv[2]);

Using the itk::JoinImageFilter we use the two input images and put them together in an image

of two components.

using JoinFilterType = itk::JoinImageFilter<ImageType, ImageType>;

auto joinFilter = JoinFilterType::New();

joinFilter->SetInput1(reader1->GetOutput());

joinFilter->SetInput2(reader2->GetOutput());

At this point we trigger the execution of the pipeline by invoking the Update() method on the Join

filter. We must put the call inside a try/catch block because the Update() call may potentially result

in exceptions being thrown.

try

{

joinFilter->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

We now prepare the types to be used for the computation of the joint histogram. For this purpose,

we take the type of the image resulting from the JoinImageFilter and use it as template argument of

the itk::ImageToHistogramFilter. We then construct one by invoking the New() method.

using VectorImageType = JoinFilterType::OutputImageType;

https://www.itk.org/Doxygen/html/classitk_1_1JoinImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageToHistogramFilter.html

5.3. Statistics applied to Images 497

using HistogramFilterType =

itk::Statistics::ImageToHistogramFilter<VectorImageType>;

auto histogramFilter = HistogramFilterType::New();

We pass the multiple-component image as input to the histogram filter, and setup the marginal scale

value that will define the precision to be used for classifying values into the histogram bins.

histogramFilter->SetInput(joinFilter->GetOutput());

histogramFilter->SetMarginalScale(10.0);

We must now define the number of bins to use for each one of the components in the joint image.

For this purpose we take the HistogramSizeType from the traits of the histogram filter type.

using HistogramSizeType = HistogramFilterType::HistogramSizeType;

HistogramSizeType size(2);

size[0] = 255; // number of bins for the first channel

size[1] = 255; // number of bins for the second channel

histogramFilter->SetHistogramSize(size);

Finally, we must specify the upper and lower bounds for the histogram using the

SetHistogramBinMinimum() and SetHistogramBinMaximum() methods. The Update() method

is then called in order to trigger the computation of the histogram.

using HistogramMeasurementVectorType =

HistogramFilterType::HistogramMeasurementVectorType;

HistogramMeasurementVectorType binMinimum(3);

HistogramMeasurementVectorType binMaximum(3);

binMinimum[0] = -0.5;

binMinimum[1] = -0.5;

binMinimum[2] = -0.5;

binMaximum[0] = 255.5;

binMaximum[1] = 255.5;

binMaximum[2] = 255.5;

histogramFilter->SetHistogramBinMinimum(binMinimum);

histogramFilter->SetHistogramBinMaximum(binMaximum);

histogramFilter->Update();

The histogram can be recovered from the filter by creating a variable with the histogram type taken

498 Chapter 5. Statistics

from the filter traits.

using HistogramType = HistogramFilterType::HistogramType;

const HistogramType * histogram = histogramFilter->GetOutput();

We now walk over all the bins of the joint histogram and compute their contribution to the value of

the joint entropy. For this purpose we use histogram iterators, and the Begin() and End() methods.

Since the values returned from the histogram are measuring frequency we must convert them to

an estimation of probability by dividing them over the total sum of frequencies returned by the

GetTotalFrequency() method.

HistogramType::ConstIterator itr = histogram->Begin();

HistogramType::ConstIterator end = histogram->End();

const double Sum = histogram->GetTotalFrequency();

We initialize to zero the variable to use for accumulating the value of the joint entropy, and then

use the iterator for visiting all the bins of the joint histogram. For every bin we compute their

contribution to the reduction of uncertainty. Note that in order to avoid logarithmic operations on

zero values, we skip over those bins that have less than one count. The entropy contribution must be

computed using logarithms in base two in order to express entropy in bits.

double JointEntropy = 0.0;

while (itr != end)

{

const double count = itr.GetFrequency();

if (count > 0.0)

{

const double probability = count / Sum;

JointEntropy += -probability * std::log(probability) / std::log(2.0);

}

++itr;

}

Now that we have the value of the joint entropy we can proceed to estimate the values of the entropies

for each image independently. This can be done by simply changing the number of bins and then

recomputing the histogram.

size[0] = 255; // number of bins for the first channel

size[1] = 1; // number of bins for the second channel

histogramFilter->SetHistogramSize(size);

histogramFilter->Update();

5.3. Statistics applied to Images 499

We initialize to zero another variable in order to start accumulating the entropy contributions from

every bin.

itr = histogram->Begin();

end = histogram->End();

double Entropy1 = 0.0;

while (itr != end)

{

const double count = itr.GetFrequency();

if (count > 0.0)

{

const double probability = count / Sum;

Entropy1 += -probability * std::log(probability) / std::log(2.0);

}

++itr;

}

The same process is used for computing the entropy of the other component, simply by swapping

the number of bins in the histogram.

size[0] = 1; // number of bins for the first channel

size[1] = 255; // number of bins for the second channel

histogramFilter->SetHistogramSize(size);

histogramFilter->Update();

The entropy is computed in a similar manner, just by visiting all the bins on the histogram and

accumulating their entropy contributions.

itr = histogram->Begin();

end = histogram->End();

double Entropy2 = 0.0;

while (itr != end)

{

const double count = itr.GetFrequency();

if (count > 0.0)

{

const double probability = count / Sum;

Entropy2 += -probability * std::log(probability) / std::log(2.0);

}

++itr;

}

At this point we can compute any of the popular measures of Mutual Information. For example

500 Chapter 5. Statistics

double MutualInformation = Entropy1 + Entropy2 - JointEntropy;

or Normalized Mutual Information, where the value of Mutual Information is divided by the mean

entropy of the input images.

double NormalizedMutualInformation1 =

2.0 * MutualInformation / (Entropy1 + Entropy2);

A second form of Normalized Mutual Information has been defined as the mean entropy of the two

images divided by their joint entropy.

double NormalizedMutualInformation2 = (Entropy1 + Entropy2) / JointEntropy;

You probably will find very interesting how the value of Mutual Information is strongly dependent

on the number of bins over which the histogram is defined.

5.4 Classification

In statistical classification, each object is represented by d features (a measurement vector), and

the goal of classification becomes finding compact and disjoint regions (decision regions[18]) for

classes in a d-dimensional feature space. Such decision regions are defined by decision rules that

are known or can be trained. The simplest configuration of a classification consists of a decision

rule and multiple membership functions; each membership function represents a class. Figure 5.3

illustrates this general framework.

Membership function

Membership function A priori knowledgeM
ea

su
re

m
en

t v
ec

to
r

Decision Rule

Membership score

Class label
Membership function

Figure 5.3: Simple conceptual classifier.

This framework closely follows that of Duda and Hart[18]. The classification process can be de-

scribed as follows:

1. A measurement vector is input to each membership function.

5.4. Classification 501

Classifier

Membership scores

Parameter Estimation

parameters

Decision Rule

Membership Function Membership Function

Parameter Estimation

Sa
m

pl
e

(T
es

t)

M
em

be
rs

hi
pS

am
pl

e

Figure 5.4: Statistical classification framework.

2. Membership functions feed the membership scores to the decision rule.

3. A decision rule compares the membership scores and returns a class label.

This simple configuration can be used to formulated various classification tasks by using different

membership functions and incorporating task specific requirements and prior knowledge into the

decision rule. For example, instead of using probability density functions as membership func-

tions, through distance functions and a minimum value decision rule (which assigns a class from

the distance function that returns the smallest value) users can achieve a least squared error clas-

sifier. As another example, users can add a rejection scheme to the decision rule so that even in a

situation where the membership scores suggest a “winner”, a measurement vector can be flagged as

ill-defined. Such a rejection scheme can avoid risks of assigning a class label without a proper win

margin.

5.4.1 k-d Tree Based k-Means Clustering

The source code for this section can be found in the file

KdTreeBasedKMeansClustering.cxx.

K-means clustering is a popular clustering algorithm because it is simple and usually converges to a

reasonable solution. The k-means algorithm works as follows:

1. Obtains the initial k means input from the user.

2. Assigns each measurement vector in a sample container to its closest mean among the k

number of means (i.e., update the membership of each measurement vectors to the nearest

502 Chapter 5. Statistics

of the k clusters).

3. Calculates each cluster’s mean from the newly assigned measurement vectors (updates the

centroid (mean) of k clusters).

4. Repeats step 2 and step 3 until it meets the termination criteria.

The most common termination criterion is that if there is no measurement vector that changes its

cluster membership from the previous iteration, then the algorithm stops.

The itk::Statistics::KdTreeBasedKmeansEstimator is a variation of this logic. The k-means

clustering algorithm is computationally very expensive because it has to recalculate the mean at each

iteration. To update the mean values, we have to calculate the distance between k means and each

and every measurement vector. To reduce the computational burden, the KdTreeBasedKmeansEs-

timator uses a special data structure: the k-d tree (itk::Statistics::KdTree) with additional

information. The additional information includes the number and the vector sum of measurement

vectors under each node under the tree architecture.

With such additional information and the k-d tree data structure, we can reduce the computational

cost of the distance calculation and means. Instead of calculating each measurement vector and k

means, we can simply compare each node of the k-d tree and the k means. This idea of utilizing a

k-d tree can be found in multiple articles [2] [44] [28]. Our implementation of this scheme follows

the article by the Kanungo et al [28].

We use the itk::Statistics::ListSample as the input sample, the itk::Vector as the mea-

surement vector. The following code snippet includes their header files.

#include "itkVector.h"

#include "itkListSample.h"

Since our k-means algorithm requires a itk::Statistics::KdTree object as an in-

put, we include the KdTree class header file. As mentioned above, we need a

k-d tree with the vector sum and the number of measurement vectors. There-

fore we use the itk::Statistics::WeightedCentroidKdTreeGenerator instead of the

itk::Statistics::KdTreeGenerator that generate a k-d tree without such additional informa-

tion.

#include "itkKdTree.h"

#include "itkWeightedCentroidKdTreeGenerator.h"

The KdTreeBasedKmeansEstimator class is the implementation of the k-means algorithm. It does

not create k clusters. Instead, it returns the mean estimates for the k clusters.

#include "itkKdTreeBasedKmeansEstimator.h"

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeBasedKmeansEstimator.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTree.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1WeightedCentroidKdTreeGenerator.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1KdTreeGenerator.html

5.4. Classification 503

To generate the clusters, we must create k instances of

itk::Statistics::DistanceToCentroidMembershipFunction function as the

membership functions for each cluster and plug that—along with a sample—

into an itk::Statistics::SampleClassifierFilter object to get a

itk::Statistics::MembershipSample that stores pairs of measurement vectors and their

associated class labels (k labels).

#include "itkMinimumDecisionRule.h"

#include "itkSampleClassifierFilter.h"

We will fill the sample with random variables from two normal distribution using the

itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D, we define our measurement vector

type as one component vector. We then, create a ListSample object for data inputs. Each measure-

ment vector is of length 1. We set this using the SetMeasurementVectorSize() method.

using MeasurementVectorType = itk::Vector<double, 1>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(1);

The following code snippet creates a NormalVariateGenerator object. Since the random variable

generator returns values according to the standard normal distribution (The mean is zero, and the

standard deviation is one), before pushing random values into the sample, we change the mean

and standard deviation. We want two normal (Gaussian) distribution data. We have two for loops.

Each for loop uses different mean and standard deviation. Before we fill the sample with the sec-

ond distribution data, we call Initialize(random seed) method, to recreate the pool of random

variables in the normalGenerator.

To see the probability density plots from the two distribution, refer to the Figure 5.5.

using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;

auto normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;

double mean = 100;

double standardDeviation = 30;

for (unsigned int i = 0; i < 100; ++i)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;

sample->PushBack(mv);

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1SampleClassifierFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MembershipSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

504 Chapter 5. Statistics

Figure 5.5: Two normal distributions’ probability density plot (The means are 100 and 200, and the standard

deviation is 30)

}

normalGenerator->Initialize(3024);

mean = 200;

standardDeviation = 30;

for (unsigned int i = 0; i < 100; ++i)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;

sample->PushBack(mv);

}

We create a k-d tree. To see the details on the k-d tree generation, see the Section 5.1.7.

using TreeGeneratorType =

itk::Statistics::WeightedCentroidKdTreeGenerator<SampleType>;

auto treeGenerator = TreeGeneratorType::New();

treeGenerator->SetSample(sample);

treeGenerator->SetBucketSize(16);

treeGenerator->Update();

Once we have the k-d tree, it is a simple procedure to produce k mean estimates.

5.4. Classification 505

We create the KdTreeBasedKmeansEstimator. Then, we provide the initial mean values using the

SetParameters(). Since we are dealing with two normal distribution in a 1-D space, the size of

the mean value array is two. The first element is the first mean value, and the second is the second

mean value. If we used two normal distributions in a 2-D space, the size of array would be four, and

the first two elements would be the two components of the first normal distribution’s mean vector.

We plug-in the k-d tree using the SetKdTree().

The remaining two methods specify the termination condition. The estimation process stops when

the number of iterations reaches the maximum iteration value set by the SetMaximumIteration(),

or the distances between the newly calculated mean (centroid) values and previous ones are within

the threshold set by the SetCentroidPositionChangesThreshold(). The final step is to call the

StartOptimization() method.

The for loop will print out the mean estimates from the estimation process.

using TreeType = TreeGeneratorType::KdTreeType;

using EstimatorType = itk::Statistics::KdTreeBasedKmeansEstimator<TreeType>;

auto estimator = EstimatorType::New();

EstimatorType::ParametersType initialMeans(2);

initialMeans[0] = 0.0;

initialMeans[1] = 0.0;

estimator->SetParameters(initialMeans);

estimator->SetKdTree(treeGenerator->GetOutput());

estimator->SetMaximumIteration(200);

estimator->SetCentroidPositionChangesThreshold(0.0);

estimator->StartOptimization();

EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();

for (unsigned int i = 0; i < 2; ++i)

{

std::cout << "cluster[" << i << "] " << std::endl;

std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;

}

If we are only interested in finding the mean estimates, we might stop. However, to illustrate how

a classifier can be formed using the statistical classification framework. We go a little bit further in

this example.

Since the k-means algorithm is an minimum distance classifier using the estimated k means and the

measurement vectors. We use the DistanceToCentroidMembershipFunction class as membership

functions. Our choice for the decision rule is the itk::Statistics::MinimumDecisionRule that

returns the index of the membership functions that have the smallest value for a measurement vector.

After creating a SampleClassifier filter object and a MinimumDecisionRule object, we plug-in the

decisionRule and the sample to the classifier filter. Then, we must specify the number of classes

that will be considered using the SetNumberOfClasses() method.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MinimumDecisionRule.html

506 Chapter 5. Statistics

The remainder of the following code snippet shows how to use user-specified class labels. The

classification result will be stored in a MembershipSample object, and for each measurement vector,

its class label will be one of the two class labels, 100 and 200 (unsigned int).

using MembershipFunctionType =

itk::Statistics::DistanceToCentroidMembershipFunction<

MeasurementVectorType>;

using DecisionRuleType = itk::Statistics::MinimumDecisionRule;

auto decisionRule = DecisionRuleType::New();

using ClassifierType = itk::Statistics::SampleClassifierFilter<SampleType>;

auto classifier = ClassifierType::New();

classifier->SetDecisionRule(decisionRule);

classifier->SetInput(sample);

classifier->SetNumberOfClasses(2);

using ClassLabelVectorObjectType =

ClassifierType::ClassLabelVectorObjectType;

using ClassLabelVectorType = ClassifierType::ClassLabelVectorType;

using ClassLabelType = ClassifierType::ClassLabelType;

auto classLabelsObject = ClassLabelVectorObjectType::New();

ClassLabelVectorType & classLabelsVector = classLabelsObject->Get();

ClassLabelType class1 = 200;

classLabelsVector.push_back(class1);

ClassLabelType class2 = 100;

classLabelsVector.push_back(class2);

classifier->SetClassLabels(classLabelsObject);

The classifier is almost ready to do the classification process except that it needs two membership

functions that represents two clusters respectively.

In this example, the two clusters are modeled by two Euclidean distance functions. The distance

function (model) has only one parameter, its mean (centroid) set by the SetCentroid() method.

To plug-in two distance functions, we create a MembershipFunctionVectorObject that contains a

MembershipFunctionVector with two components and add it using the SetMembershipFunctions

method. Then invocation of the Update() method will perform the classification.

using MembershipFunctionVectorObjectType =

ClassifierType::MembershipFunctionVectorObjectType;

using MembershipFunctionVectorType =

ClassifierType::MembershipFunctionVectorType;

auto membershipFunctionVectorObject =

MembershipFunctionVectorObjectType::New();

MembershipFunctionVectorType & membershipFunctionVector =

membershipFunctionVectorObject->Get();

5.4. Classification 507

int index = 0;

for (unsigned int i = 0; i < 2; ++i)

{

auto membershipFunction = MembershipFunctionType::New();

MembershipFunctionType::CentroidType centroid(

sample->GetMeasurementVectorSize());

for (unsigned int j = 0; j < sample->GetMeasurementVectorSize(); ++j)

{

centroid[j] = estimatedMeans[index++];

}

membershipFunction->SetCentroid(centroid);

membershipFunctionVector.push_back(membershipFunction);

}

classifier->SetMembershipFunctions(membershipFunctionVectorObject);

classifier->Update();

The following code snippet prints out the measurement vectors and their class labels in the sample.

const ClassifierType::MembershipSampleType * membershipSample =

classifier->GetOutput();

ClassifierType::MembershipSampleType::ConstIterator iter =

membershipSample->Begin();

while (iter != membershipSample->End())

{

std::cout << "measurement vector = " << iter.GetMeasurementVector()

<< " class label = " << iter.GetClassLabel() << std::endl;

++iter;

}

5.4.2 K-Means Classification

The source code for this section can be found in the file

ScalarImageKmeansClassifier.cxx.

This example shows how to use the KMeans model for classifying the pixel of a scalar image.

The itk::Statistics::ScalarImageKmeansImageFilter is used for taking a scalar image and

applying the K-Means algorithm in order to define classes that represents statistical distributions of

intensity values in the pixels. The classes are then used in this filter for generating a labeled image

where every pixel is assigned to one of the classes.

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkScalarImageKmeansImageFilter.h"

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ScalarImageKmeansImageFilter.html

508 Chapter 5. Statistics

First we define the pixel type and dimension of the image that we intend to classify. With this image

type we can also declare the itk::ImageFileReader needed for reading the input image, create

one and set its input filename.

using PixelType = short;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(inputImageFileName);

With the ImageType we instantiate the type of the itk::ScalarImageKmeansImageFilter that

will compute the K-Means model and then classify the image pixels.

using KMeansFilterType = itk::ScalarImageKmeansImageFilter<ImageType>;

auto kmeansFilter = KMeansFilterType::New();

kmeansFilter->SetInput(reader->GetOutput());

const unsigned int numberOfInitialClasses = std::stoi(argv[4]);

In general the classification will produce as output an image whose pixel values are integers associ-

ated to the labels of the classes. Since typically these integers will be generated in order (0,1,2,...N),

the output image will tend to look very dark when displayed with naive viewers. It is therefore

convenient to have the option of spreading the label values over the dynamic range of the output

image pixel type. When this is done, the dynamic range of the pixels is divided by the number

of classes in order to define the increment between labels. For example, an output image of 8

bits will have a dynamic range of [0:256], and when it is used for holding four classes, the non-

contiguous labels will be (0,64,128,192). The selection of the mode to use is done with the method

SetUseNonContiguousLabels().

const unsigned int useNonContiguousLabels = std::stoi(argv[3]);

kmeansFilter->SetUseNonContiguousLabels(useNonContiguousLabels);

For each one of the classes we must provide a tentative initial value for the mean of the class. Given

that this is a scalar image, each one of the means is simply a scalar value. Note however that in a

general case of K-Means, the input image would be a vector image and therefore the means will be

vectors of the same dimension as the image pixels.

for (unsigned int k = 0; k < numberOfInitialClasses; ++k)

{

const double userProvidedInitialMean = std::stod(argv[k + argoffset]);

https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html
https://www.itk.org/Doxygen/html/classitk_1_1ScalarImageKmeansImageFilter.html

5.4. Classification 509

kmeansFilter->AddClassWithInitialMean(userProvidedInitialMean);

}

The itk::ScalarImageKmeansImageFilter is predefined for producing an 8 bits scalar image

as output. This output image contains labels associated to each one of the classes in the K-Means

algorithm. In the following lines we use the OutputImageType in order to instantiate the type of a

itk::ImageFileWriter . Then create one, and connect it to the output of the classification filter.

using OutputImageType = KMeansFilterType::OutputImageType;

using WriterType = itk::ImageFileWriter<OutputImageType>;

auto writer = WriterType::New();

writer->SetInput(kmeansFilter->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking the

Update() method in the writer. This call will propagate the update request to the reader and then to

the classifier.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Problem encountered while writing ";

std::cerr << " image file : " << argv[2] << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

At this point the classification is done, the labeled image is saved in a file, and we can take a look at

the means that were found as a result of the model estimation performed inside the classifier filter.

KMeansFilterType::ParametersType estimatedMeans =

kmeansFilter->GetFinalMeans();

const unsigned int numberOfClasses = estimatedMeans.Size();

for (unsigned int i = 0; i < numberOfClasses; ++i)

{

std::cout << "cluster[" << i << "] ";

std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;

}

https://www.itk.org/Doxygen/html/classitk_1_1ScalarImageKmeansImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

510 Chapter 5. Statistics

Figure 5.6: Effect of the KMeans classifier on a T1 slice of the brain.

Figure 5.6 illustrates the effect of this filter with three classes. The means were estimated by

ScalarImageKmeansModelEstimator.cxx.

5.4.3 Bayesian Plug-In Classifier

The source code for this section can be found in the file

BayesianPluginClassifier.cxx.

In this example, we present a system that places measurement vectors into two Gaussian classes. The

Figure 5.7 shows all the components of the classifier system and the data flow. This system differs

with the previous k-means clustering algorithms in several ways. The biggest difference is that this

classifier uses the itk::Statistics::GaussianDensityFunctions as membership functions in-

stead of the itk::Statistics::DistanceToCentroidMembershipFunction . Since the mem-

bership function is different, the membership function requires a different set of parameters, mean

vectors and covariance matrices. We choose the itk::Statistics::CovarianceSampleFilter

(sample covariance) for the estimation algorithms of the two parameters. If we want a more ro-

bust estimation algorithm, we can replace this estimation algorithm with more alternatives without

changing other components in the classifier system.

It is a bad idea to use the same sample for test and training (parameter estimation) of the parameters.

However, for simplicity, in this example, we use a sample for test and training.

We use the itk::Statistics::ListSample as the sample (test and training). The itk::Vector

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1GaussianDensityFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1CovarianceSampleFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector.html

5.4. Classification 511

(P
ar

am
et

er
 e

st
im

at
io

n)

(P
ar

am
et

er
 e

st
im

at
io

n)

Subsample (Class sample) Subsample (Class sample)

CovarianceCalculator

MeanCalculator

Covariance matrix

Mean

CovarianceCalculator

MeanCalculator

Mean

Measurement
vectors

Covariance matrix

GaussianDensityFunction GaussianDensityFunction

Probability density

Sample size Sample size

GaussianDensityFunction
Index of winning

SampleClassifier

Sa
m

pl
e

(T
es

t)

MaximumRatioDecisionRule

Sample size

Sample (Training)

Sa
m

pl
e

(L
ab

el
ed

)

Figure 5.7: Bayesian plug-in classifier for two Gaussian classes.

512 Chapter 5. Statistics

is our measurement vector class. To store measurement vectors into two separate sample containers,

we use the itk::Statistics::Subsample objects.

#include "itkVector.h"

#include "itkListSample.h"

#include "itkSubsample.h"

The following file provides us the parameter estimation algorithm.

#include "itkCovarianceSampleFilter.h"

The following files define the components required by ITK statistical classification framework: the

decision rule, the membership function, and the classifier.

#include "itkMaximumRatioDecisionRule.h"

#include "itkGaussianMembershipFunction.h"

#include "itkSampleClassifierFilter.h"

We will fill the sample with random variables from two normal distribution using the

itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D, we define our measurement vector type

as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors in sample into two

separate sample containers. Each Subsample object stores only the measurement vectors belonging

to a single class. This class sample will be used by the parameter estimation algorithms.

constexpr unsigned int measurementVectorLength = 1;

using MeasurementVectorType = itk::Vector<double, measurementVectorLength>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

// length of measurement vectors in the sample.

sample->SetMeasurementVectorSize(measurementVectorLength);

using ClassSampleType = itk::Statistics::Subsample<SampleType>;

std::vector<ClassSampleType::Pointer> classSamples;

for (unsigned int i = 0; i < 2; ++i)

{

classSamples.push_back(ClassSampleType::New());

classSamples[i]->SetSample(sample);

}

The following code snippet creates a NormalVariateGenerator object. Since the random variable

generator returns values according to the standard normal distribution (the mean is zero, and the

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

5.4. Classification 513

standard deviation is one) before pushing random values into the sample, we change the mean and

standard deviation. We want two normal (Gaussian) distribution data. We have two for loops. Each

for loop uses different mean and standard deviation. Before we fill the sample with the second dis-

tribution data, we call Initialize(random seed) method, to recreate the pool of random variables

in the normalGenerator. In the second for loop, we fill the two class samples with measurement

vectors using the AddInstance() method.

To see the probability density plots from the two distributions, refer to Figure 5.5.

using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;

auto normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;

double mean = 100;

double standardDeviation = 30;

SampleType::InstanceIdentifier id = 0UL;

for (unsigned int i = 0; i < 100; ++i)

{

mv.Fill((normalGenerator->GetVariate() * standardDeviation) + mean);

sample->PushBack(mv);

classSamples[0]->AddInstance(id);

++id;

}

normalGenerator->Initialize(3024);

mean = 200;

standardDeviation = 30;

for (unsigned int i = 0; i < 100; ++i)

{

mv.Fill((normalGenerator->GetVariate() * standardDeviation) + mean);

sample->PushBack(mv);

classSamples[1]->AddInstance(id);

++id;

}

In the following code snippet, notice that the template argument for the CovarianceCalculator is

ClassSampleType (i.e., type of Subsample) instead of SampleType (i.e., type of ListSample). This

is because the parameter estimation algorithms are applied to the class sample.

using CovarianceEstimatorType =

itk::Statistics::CovarianceSampleFilter<ClassSampleType>;

std::vector<CovarianceEstimatorType::Pointer> covarianceEstimators;

for (unsigned int i = 0; i < 2; ++i)

{

covarianceEstimators.push_back(CovarianceEstimatorType::New());

covarianceEstimators[i]->SetInput(classSamples[i]);

covarianceEstimators[i]->Update();

514 Chapter 5. Statistics

}

We print out the estimated parameters.

for (unsigned int i = 0; i < 2; ++i)

{

std::cout << "class[" << i << "] " << std::endl;

std::cout << " estimated mean : " << covarianceEstimators[i]->GetMean()

<< " covariance matrix : "

<< covarianceEstimators[i]->GetCovarianceMatrix() << std::endl;

}

After creating a SampleClassifier object and a MaximumRatioDecisionRule object, we plug in the

decisionRule and the sample to the classifier. Then, we specify the number of classes that will be

considered using the SetNumberOfClasses() method.

The MaximumRatioDecisionRule requires a vector of a priori probability values. Such a priori

probability will be the P(ωi) of the following variation of the Bayes decision rule:

Decide ωi if
p(−→x |ωi)

p(−→x |ω j)
>

P(ω j)

P(ωi)
for all j 6= i (5.4)

The remainder of the code snippet shows how to use user-specified class labels. The classification

result will be stored in a MembershipSample object, and for each measurement vector, its class label

will be one of the two class labels, 100 and 200 (unsigned int).

using MembershipFunctionType =

itk::Statistics::GaussianMembershipFunction<MeasurementVectorType>;

using DecisionRuleType = itk::Statistics::MaximumRatioDecisionRule;

auto decisionRule = DecisionRuleType::New();

DecisionRuleType::PriorProbabilityVectorType aPrioris;

aPrioris.push_back(

static_cast<double>(classSamples[0]->GetTotalFrequency()) /

static_cast<double>(sample->GetTotalFrequency()));

aPrioris.push_back(

static_cast<double>(classSamples[1]->GetTotalFrequency()) /

static_cast<double>(sample->GetTotalFrequency()));

decisionRule->SetPriorProbabilities(aPrioris);

using ClassifierType = itk::Statistics::SampleClassifierFilter<SampleType>;

auto classifier = ClassifierType::New();

classifier->SetDecisionRule(decisionRule);

classifier->SetInput(sample);

classifier->SetNumberOfClasses(2);

using ClassLabelVectorObjectType =

ClassifierType::ClassLabelVectorObjectType;

5.4. Classification 515

using ClassLabelVectorType = ClassifierType::ClassLabelVectorType;

auto classLabelVectorObject = ClassLabelVectorObjectType::New();

ClassLabelVectorType classLabelVector = classLabelVectorObject->Get();

ClassifierType::ClassLabelType class1 = 100;

classLabelVector.push_back(class1);

ClassifierType::ClassLabelType class2 = 200;

classLabelVector.push_back(class2);

classLabelVectorObject->Set(classLabelVector);

classifier->SetClassLabels(classLabelVectorObject);

The classifier is almost ready to perform the classification except that it needs two membership

functions that represent the two clusters.

In this example, we can imagine that the two clusters are modeled by two Gaussian distribu-

tion functions. The distribution functions have two parameters, the mean, set by the SetMean()

method, and the covariance, set by the SetCovariance() method. To plug-in two distribution

functions, we create a new instance of MembershipFunctionVectorObjectType and populate

its internal vector with new instances of MembershipFunction (i.e. GaussianMembershipFunc-

tion). This is done by calling the Get() method of membershipFunctionVectorObject to get

the internal vector, populating this vector with two new membership functions and then calling

membershipFunctionVectorObject->Set(membershipFunctionVector). Finally, the invo-

cation of the Update() method will perform the classification.

using MembershipFunctionVectorObjectType =

ClassifierType::MembershipFunctionVectorObjectType;

using MembershipFunctionVectorType =

ClassifierType::MembershipFunctionVectorType;

auto membershipFunctionVectorObject =

MembershipFunctionVectorObjectType::New();

MembershipFunctionVectorType membershipFunctionVector =

membershipFunctionVectorObject->Get();

for (unsigned int i = 0; i < 2; ++i)

{

auto membershipFunction = MembershipFunctionType::New();

membershipFunction->SetMean(covarianceEstimators[i]->GetMean());

membershipFunction->SetCovariance(

covarianceEstimators[i]->GetCovarianceMatrix());

membershipFunctionVector.push_back(membershipFunction);

}

membershipFunctionVectorObject->Set(membershipFunctionVector);

classifier->SetMembershipFunctions(membershipFunctionVectorObject);

classifier->Update();

The following code snippet prints out pairs of a measurement vector and its class label in the sample.

516 Chapter 5. Statistics

const ClassifierType::MembershipSampleType * membershipSample =

classifier->GetOutput();

ClassifierType::MembershipSampleType::ConstIterator iter =

membershipSample->Begin();

while (iter != membershipSample->End())

{

std::cout << "measurement vector = " << iter.GetMeasurementVector()

<< " class label = " << iter.GetClassLabel() << std::endl;

++iter;

}

5.4.4 Expectation Maximization Mixture Model Estimation

The source code for this section can be found in the file

ExpectationMaximizationMixtureModelEstimator.cxx.

In this example, we present an implementation of the expectation maximization (EM) process to

generates parameter estimates for a two Gaussian component mixture model.

The Bayesian plug-in classifier example (see Section 5.4.3) used two Gaussian probability density

functions (PDF) to model two Gaussian distribution classes (two models for two class). However, in

some cases, we want to model a distribution as a mixture of several different distributions. Therefore,

the probability density function (p(x)) of a mixture model can be stated as follows :

p(x) =
c

∑
i=0

αi fi(x) (5.5)

where i is the index of the component, c is the number of components, αi is the proportion of the

component, and fi is the probability density function of the component.

Now the task is to find the parameters(the component PDF’s parameters and the proportion values)

to maximize the likelihood of the parameters. If we know which component a measurement vector

belongs to, the solutions to this problem is easy to solve. However, we don’t know the membership

of each measurement vector. Therefore, we use the expectation of membership instead of the exact

membership. The EM process splits into two steps:

1. E step: calculate the expected membership values for each measurement vector to each

classes.

2. M step: find the next parameter sets that maximize the likelihood with the expected member-

ship values and the current set of parameters.

The E step is basically a step that calculates the a posteriori probability for each measurement vector.

5.4. Classification 517

The M step is dependent on the type of each PDF. Most of distributions be-

longing to exponential family such as Poisson, Binomial, Exponential, and Nor-

mal distributions have analytical solutions for updating the parameter set. The

itk::Statistics::ExpectationMaximizationMixtureModelEstimator class assumes

that such type of components.

In the following example we use the itk::Statistics::ListSample as the sample (test and

training). The itk::Vector::is our measurement vector class. To store measurement vectors into

two separate sample container, we use the itk::Statistics::Subsample objects.

#include "itkVector.h"

#include "itkListSample.h"

The following two files provides us the parameter estimation algorithms.

#include "itkGaussianMixtureModelComponent.h"

#include "itkExpectationMaximizationMixtureModelEstimator.h"

We will fill the sample with random variables from two normal distribution using the

itk::Statistics::NormalVariateGenerator.

#include "itkNormalVariateGenerator.h"

Since the NormalVariateGenerator class only supports 1-D, we define our measurement vector type

as a one component vector. We then, create a ListSample object for data inputs.

We also create two Subsample objects that will store the measurement vectors in the sample into two

separate sample containers. Each Subsample object stores only the measurement vectors belonging

to a single class. This class sample will be used by the parameter estimation algorithms.

unsigned int numberOfClasses = 2;

using MeasurementVectorType = itk::Vector<double, 1>;

using SampleType = itk::Statistics::ListSample<MeasurementVectorType>;

auto sample = SampleType::New();

sample->SetMeasurementVectorSize(1); // length of measurement vectors

// in the sample.

The following code snippet creates a NormalVariateGenerator object. Since the random variable

generator returns values according to the standard normal distribution (the mean is zero, and the

standard deviation is one) before pushing random values into the sample, we change the mean and

standard deviation. We want two normal (Gaussian) distribution data. We have two for loops. Each

for loop uses different mean and standard deviation. Before we fill the sample with the second

distribution data, we call Initialize() method to recreate the pool of random variables in the

normalGenerator. In the second for loop, we fill the two class samples with measurement vectors

using the AddInstance() method.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ExpectationMaximizationMixtureModelEstimator.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1ListSample.html
https://www.itk.org/Doxygen/html/classitk_1_1Vector_1_1i.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1Subsample.html
https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1NormalVariateGenerator.html

518 Chapter 5. Statistics

To see the probability density plots from the two distribution, refer to Figure 5.5.

using NormalGeneratorType = itk::Statistics::NormalVariateGenerator;

auto normalGenerator = NormalGeneratorType::New();

normalGenerator->Initialize(101);

MeasurementVectorType mv;

double mean = 100;

double standardDeviation = 30;

for (unsigned int i = 0; i < 100; ++i)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;

sample->PushBack(mv);

}

normalGenerator->Initialize(3024);

mean = 200;

standardDeviation = 30;

for (unsigned int i = 0; i < 100; ++i)

{

mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;

sample->PushBack(mv);

}

In the following code snippet notice that the template argument for the MeanCalculator and Covari-

anceCalculator is ClassSampleType (i.e., type of Subsample) instead of SampleType (i.e., type of

ListSample). This is because the parameter estimation algorithms are applied to the class sample.

using ParametersType = itk::Array<double>;

ParametersType params(2);

std::vector<ParametersType> initialParameters(numberOfClasses);

params[0] = 110.0;

params[1] = 800.0;

initialParameters[0] = params;

params[0] = 210.0;

params[1] = 850.0;

initialParameters[1] = params;

using ComponentType =

itk::Statistics::GaussianMixtureModelComponent<SampleType>;

std::vector<ComponentType::Pointer> components;

for (unsigned int i = 0; i < numberOfClasses; ++i)

{

components.push_back(ComponentType::New());

(components[i])->SetSample(sample);

(components[i])->SetParameters(initialParameters[i]);

}

5.4. Classification 519

We run the estimator.

using EstimatorType =

itk::Statistics::ExpectationMaximizationMixtureModelEstimator<SampleType>;

auto estimator = EstimatorType::New();

estimator->SetSample(sample);

estimator->SetMaximumIteration(200);

itk::Array<double> initialProportions(numberOfClasses);

initialProportions[0] = 0.5;

initialProportions[1] = 0.5;

estimator->SetInitialProportions(initialProportions);

for (unsigned int i = 0; i < numberOfClasses; ++i)

{

estimator->AddComponent(

(ComponentType::Superclass *)(components[i]).GetPointer());

}

estimator->Update();

We then print out the estimated parameters.

for (unsigned int i = 0; i < numberOfClasses; ++i)

{

std::cout << "Cluster[" << i << "]" << std::endl;

std::cout << " Parameters:" << std::endl;

std::cout << " " << (components[i])->GetFullParameters()

<< std::endl;

std::cout << " Proportion: ";

std::cout << " " << estimator->GetProportions()[i] << std::endl;

}

5.4.5 Classification using Markov Random Field

Markov Random Fields are probabilistic models that use the correlation between pixels in a neigh-

borhood to decide the object region. The itk::Statistics::MRFImageFilter uses the maximum

a posteriori (MAP) estimates for modeling the MRF. The object traverses the data set and uses the

model generated by the Mahalanobis distance classifier to gets the the distance between each pixel

in the data set to a set of known classes, updates the distances by evaluating the influence of its

neighboring pixels (based on a MRF model) and finally, classifies each pixel to the class which has

the minimum distance to that pixel (taking the neighborhood influence under consideration). The

energy function minimization is done using the iterated conditional modes (ICM) algorithm [6].

The source code for this section can be found in the file

ScalarImageMarkovRandomField1.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MRFImageFilter.html

520 Chapter 5. Statistics

This example shows how to use the Markov Random Field approach for classifying the pixel of a

scalar image.

The itk::Statistics::MRFImageFilter is used for refining an initial classification by intro-

ducing the spatial coherence of the labels. The user should provide two images as input. The first

image is the one to be classified while the second image is an image of labels representing an initial

classification.

The following headers are related to reading input images, writing the output image, and making the

necessary conversions between scalar and vector images.

#include "itkImage.h"

#include "itkImageFileReader.h"

#include "itkImageFileWriter.h"

#include "itkComposeImageFilter.h"

The following headers are related to the statistical classification classes.

#include "itkMRFImageFilter.h"

#include "itkDistanceToCentroidMembershipFunction.h"

#include "itkMinimumDecisionRule.h"

First we define the pixel type and dimension of the image that we intend to classify. With this image

type we can also declare the itk::ImageFileReader needed for reading the input image, create

one and set its input filename. In this particular case we choose to use short as pixel type, which is

typical for MicroMRI and CT data sets.

using PixelType = short;

constexpr unsigned int Dimension = 2;

using ImageType = itk::Image<PixelType, Dimension>;

using ReaderType = itk::ImageFileReader<ImageType>;

auto reader = ReaderType::New();

reader->SetFileName(inputImageFileName);

As a second step we define the pixel type and dimension of the image of labels that provides the

initial classification of the pixels from the first image. This initial labeled image can be the output

of a K-Means method like the one illustrated in section 5.4.2.

using LabelPixelType = unsigned char;

using LabelImageType = itk::Image<LabelPixelType, Dimension>;

using LabelReaderType = itk::ImageFileReader<LabelImageType>;

auto labelReader = LabelReaderType::New();

labelReader->SetFileName(inputLabelImageFileName);

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1MRFImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileReader.html

5.4. Classification 521

Since the Markov Random Field algorithm is defined in general for images whose pixels have multi-

ple components, that is, images of vector type, we must adapt our scalar image in order to satisfy the

interface expected by the MRFImageFilter. We do this by using the itk::ComposeImageFilter.

With this filter we will present our scalar image as a vector image whose vector pixels contain a

single component.

using ArrayPixelType = itk::FixedArray<LabelPixelType, 1>;

using ArrayImageType = itk::Image<ArrayPixelType, Dimension>;

using ScalarToArrayFilterType =

itk::ComposeImageFilter<ImageType, ArrayImageType>;

auto scalarToArrayFilter = ScalarToArrayFilterType::New();

scalarToArrayFilter->SetInput(reader->GetOutput());

With the input image type ImageType and labeled image type LabelImageType we instantiate the

type of the itk::MRFImageFilter that will apply the Markov Random Field algorithm in order to

refine the pixel classification.

using MRFFilterType = itk::MRFImageFilter<ArrayImageType, LabelImageType>;

auto mrfFilter = MRFFilterType::New();

mrfFilter->SetInput(scalarToArrayFilter->GetOutput());

We set now some of the parameters for the MRF filter. In particular, the number of classes to be

used during the classification, the maximum number of iterations to be run in this filter and the error

tolerance that will be used as a criterion for convergence.

mrfFilter->SetNumberOfClasses(numberOfClasses);

mrfFilter->SetMaximumNumberOfIterations(numberOfIterations);

mrfFilter->SetErrorTolerance(1e-7);

The smoothing factor represents the tradeoff between fidelity to the observed image and the smooth-

ness of the segmented image. Typical smoothing factors have values between 1 5. This factor will

multiply the weights that define the influence of neighbors on the classification of a given pixel. The

higher the value, the more uniform will be the regions resulting from the classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

Given that the MRF filter need to continually relabel the pixels, it needs access to a set of mem-

bership functions that will measure to what degree every pixel belongs to a particular class. The

classification is performed by the itk::ImageClassifierBase class, that is instantiated using the

type of the input vector image and the type of the labeled image.

https://www.itk.org/Doxygen/html/classitk_1_1ComposeImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1MRFImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageClassifierBase.html

522 Chapter 5. Statistics

using SupervisedClassifierType =

itk::ImageClassifierBase<ArrayImageType, LabelImageType>;

auto classifier = SupervisedClassifierType::New();

The classifier need a decision rule to be set by the user. Note that we must use GetPointer() in the

call of the SetDecisionRule() method because we are passing a SmartPointer, and smart pointer

cannot perform polymorphism, we must then extract the raw pointer that is associated to the smart

pointer. This extraction is done with the GetPointer() method.

using DecisionRuleType = itk::Statistics::MinimumDecisionRule;

auto classifierDecisionRule = DecisionRuleType::New();

classifier->SetDecisionRule(classifierDecisionRule);

We now instantiate the membership functions. In this case we use the

itk::Statistics::DistanceToCentroidMembershipFunction class templated over the

pixel type of the vector image, that in our example happens to be a vector of dimension 1.

using MembershipFunctionType =

itk::Statistics::DistanceToCentroidMembershipFunction<ArrayPixelType>;

using MembershipFunctionPointer = MembershipFunctionType::Pointer;

double meanDistance = 0;

MembershipFunctionType::CentroidType centroid(1);

for (unsigned int i = 0; i < numberOfClasses; ++i)

{

MembershipFunctionPointer membershipFunction =

MembershipFunctionType::New();

centroid[0] = std::stod(argv[i + numberOfArgumentsBeforeMeans]);

membershipFunction->SetCentroid(centroid);

classifier->AddMembershipFunction(membershipFunction);

meanDistance += static_cast<double>(centroid[0]);

}

if (numberOfClasses > 0)

{

meanDistance /= numberOfClasses;

}

else

{

std::cerr << "ERROR: numberOfClasses is 0" << std::endl;

return EXIT_FAILURE;

}

https://www.itk.org/Doxygen/html/classitk_1_1Statistics_1_1DistanceToCentroidMembershipFunction.html

5.4. Classification 523

We set the Smoothing factor. This factor will multiply the weights that define the influence of

neighbors on the classification of a given pixel. The higher the value, the more uniform will be the

regions resulting from the classification refinement.

mrfFilter->SetSmoothingFactor(smoothingFactor);

and we set the neighborhood radius that will define the size of the clique to be used in the compu-

tation of the neighbors’ influence in the classification of any given pixel. Note that despite the fact

that we call this a radius, it is actually the half size of an hypercube. That is, the actual region of

influence will not be circular but rather an n-dimensional box. For example, a neighborhood radius

of 2 in a 3D image will result in a clique of size 5x5x5 pixels, and a radius of 1 will result in a clique

of size 3x3x3 pixels.

mrfFilter->SetNeighborhoodRadius(1);

We should now set the weights used for the neighbors. This is done by passing an array of values

that contains the linear sequence of weights for the neighbors. For example, in a neighborhood

of size 3x3x3, we should provide a linear array of 9 weight values. The values are packaged in a

std::vector and are supposed to be double. The following lines illustrate a typical set of values

for a 3x3x3 neighborhood. The array is arranged and then passed to the filter by using the method

SetMRFNeighborhoodWeight().

std::vector<double> weights;

weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(0.0); // This is the central pixel

weights.push_back(2.0);

weights.push_back(1.5);

weights.push_back(2.0);

weights.push_back(1.5);

We now scale weights so that the smoothing function and the image fidelity functions have com-

parable value. This is necessary since the label image and the input image can have different

dynamic ranges. The fidelity function is usually computed using a distance function, such as

the itk::DistanceToCentroidMembershipFunction or one of the other membership functions.

They tend to have values in the order of the means specified.

double totalWeight = 0;

for (double weight : weights)

{

totalWeight += weight;

}

for (double & weight : weights)

https://www.itk.org/Doxygen/html/classitk_1_1DistanceToCentroidMembershipFunction.html

524 Chapter 5. Statistics

{

weight = static_cast<double>(weight * meanDistance / (2 * totalWeight));

}

mrfFilter->SetMRFNeighborhoodWeight(weights);

Finally, the classifier class is connected to the Markov Random Fields filter.

mrfFilter->SetClassifier(classifier);

The output image produced by the itk::MRFImageFilter has the same pixel type as the labeled

input image. In the following lines we use the OutputImageType in order to instantiate the type of

a itk::ImageFileWriter. Then create one, and connect it to the output of the classification filter

after passing it through an intensity rescaler to rescale it to an 8 bit dynamic range

using OutputImageType = MRFFilterType::OutputImageType;

using WriterType = itk::ImageFileWriter<OutputImageType>;

auto writer = WriterType::New();

writer->SetInput(intensityRescaler->GetOutput());

writer->SetFileName(outputImageFileName);

We are now ready for triggering the execution of the pipeline. This is done by simply invoking the

Update() method in the writer. This call will propagate the update request to the reader and then to

the MRF filter.

try

{

writer->Update();

}

catch (const itk::ExceptionObject & excp)

{

std::cerr << "Problem encountered while writing ";

std::cerr << " image file : " << argv[2] << std::endl;

std::cerr << excp << std::endl;

return EXIT_FAILURE;

}

Figure 5.8 illustrates the effect of this filter with three classes. In this example the filter was run with

a smoothing factor of 3. The labeled image was produced by ScalarImageKmeansClassifier.cxx and

the means were estimated by ScalarImageKmeansModelEstimator.cxx.

https://www.itk.org/Doxygen/html/classitk_1_1MRFImageFilter.html
https://www.itk.org/Doxygen/html/classitk_1_1ImageFileWriter.html

5.4. Classification 525

Figure 5.8: Effect of the MRF filter on a T1 slice of the brain.

BIBLIOGRAPHY

[1] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.

Professional Computing Series. Addison-Wesley, 2001. 1.8.3, 1.10, 3.9.1

[2] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. In First Work-

shop on High-Performance Data Mining, 1998. 5.4.1

[3] L. Alvarez and J.-M. Morel. A Morphological Approach To Multiscale Analysis: From Princi-

ples to Equations, pages 229–254. Kluwer Academic Publishers, 1994. 2.7.3

[4] ANSI-ISO. Programming Languages - C++. American National Standards Institue, 1998. 1.9

[5] M. H. Austern. Generic Programming and the STL:. Professional Computing Series. Addison-

Wesley, 1999. 1.8.3, 1.10, 3.9.1

[6] J. Besag. On the statistical analysis of dirty pictures. J. Royal Statist. Soc. B., 48:259–302,

1986. 5.4.5

[7] Eric Boix, Mathieu Malaterre, Benoit Regrain, and Jean-Pierre Roux. The GDCM Library.

CNRS, INSERM, INSA Lyon, UCB Lyon, https://www.creatis.insa-lyon.fr/Public/Gdcm/.

1.12.1

[8] R. N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, 1999. 2.10.1

[9] R. N. Bracewell. Fourier Analysis and Imaging. Plenum US, 2004. 2.10.1

[10] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained op-

timization. SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

3.12

[11] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal on

Computer Vision, 22(1):61–97, 1997. 4.3.3

528 Bibliography

[12] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated

multimodality image registration based on information theory. In Information Processing in

Medical Imaging 1995, pages 263–274. Kluwer Academic Publishers, Dordrecht, The Nether-

lands, 1995. 3.5

[13] P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing,

14:227–248, 1980. 2.8

[14] M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. A physics-based coordinate

transformation for 3-d image matching. IEEE Transactions on Medical Imaging, 16(3), June

1997. 3.9.18

[15] R. Deriche. Fast algorithms for low level vision. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12(1):78–87, 1990. 2.4.2, 2.7.1, 2.7.1

[16] R. Deriche. Recursively implementing the gaussian and its derivatives. Technical Report 1893,

Unite de recherche INRIA Sophia-Antipolis, avril 1993. Research Repport. 2.4.2, 2.7.1, 2.7.1

[17] C. Dodson and T. Poston. Tensor Geometry: The Geometric Viewpoint and its Uses. Springer,

1997. 3.9.1, 7

[18] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. A Wiley-

Interscience Publication, second edition, 2000. 5.2.3, 5.4, 5.4

[19] David Eberly. Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dordrecht,

1996. 4.2.1

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable

Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995. 1.2, 3.4

[21] G. Gerig, O. Kübler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI data.

IEEE Transactions on Medical Imaging, 11(2):221–232, June 1992. 2.7.3

[22] Stephen Grossberg. Neural dynamics of brightness perception: Features, boundaries, diffusion,

and resonance. Perception and Psychophysics, 36(5):428–456, 1984. 2.7.3

[23] J. Hajnal, D. J. Hawkes, and D. Hill. Medical Image Registration. CRC Press, 2001. 3.5,

3.11.4

[24] W. R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, 1969. 3.6.4, 3.9.1,

3.9.11, 3.12

[25] A. Hendersen. The Paraview Guide. Kitware, Inc, 2004. 3.15

[26] B. K. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of

the Optical Society of America, 4:629–642, April 1987. 3.17

[27] C. J. Joly. A Manual of Quaternions. MacMillan and Co. Limited, 1905. 3.6.4, 3.9.11

Bibliography 529

[28] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine Piatko, Ruth Silverman,

and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation.

5.1.7, 5.4.1

[29] J. Koënderink and A. van Doorn. The Structure of Two-Dimensional Scalar Fields with Ap-

plications to Vision. Biol. Cybernetics, 33:151–158, 1979. 4.2.1

[30] J. Koenderink and A. van Doorn. Local features of smooth shapes: Ridges and courses. SPIE

Proc. Geometric Methods in Computer Vision II, 2031:2–13, 1993. 4.2.1

[31] L. Kohn, J. Corrigan, and M.Donaldson, editors. To Err is Human: Building a safer health

system. National Academy Press, 2001. 1.12.4

[32] S. Kullback. Information Theory and Statistics. Dover Publications, 1997. 5.3.2

[33] M. Leventon, W. Grimson, and O. Faugeras. Statistical shape influence in geodesic active

contours. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

volume 1, pages 316–323, 2000. 4.3.7

[34] T. Lindeberg. Scale-Space Theory in Computer Science. Kluwer Academic Publishers, 1994.

2.7.1

[35] H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular Cell

Biology. W. H. Freeman and Company, 2000. 3.9.1

[36] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction

algorithm. Computer Graphics, 21(4):163–169, July 1987. 2.11.1

[37] F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. Suetens. Multi-modality image regis-

tration by maximization of mutual information. IEEE Trans. on Med. Imaging, 16:187–198,

1997. 3.5

[38] R. Malladi, J. A. Sethian, and B. C. Vermuri. Shape modeling with front propagation: A

level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(2):158–174,

1995. 4.3.2

[39] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. Non-rigid multimodality

image registration. In Medical Imaging 2001: Image Processing, pages 1609–1620, 2001.

3.9.17, 3.11.3

[40] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image registra-

tion in the chest using free-form deformations. IEEE Trans. on Medical Imaging, 22(1):120–

128, January 2003. 3.5.1, 3.9.17

[41] E. H. Meijering, W. J. Niessen, J. P. Pluim, and M. A. Viergever. Quantitative comparison of

sinc-approximating kernels for medical image interpolation. In W. M. Wells, A. Colchester,

and S. Delp, editors, MICCAI’98 First International Conference on Medical Image Comput-

ing and Computer-Assisted Intervention, Lecture Notes in Computer Science, pages 972–980.

Springer Verlag, September 1999. 3.10.4

530 Bibliography

[42] David R. Musser. Introspective sorting and selection algorithms. Software–Practice and Ex-

perience, 8:983–993, 1997. 5.2.3

[43] NEMA. The dicom standard. Technical report, NEMA, http://medial.nema.org/, 2013. 1.12.1

[44] Dan Pelleg and Andrew Moore. Accelerating exact k -means algorithms with geometric rea-

soning. In Fifth ACM SIGKDD International Conference On Knowledge Discovery and Data

Mining, pages 277–281, 1999. 5.4.1

[45] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE

Transactions on Pattern Analysis Machine Intelligence, 12:629–639, 1990. 2.7.3, 2.7.3, 2.7.3

[46] J. P. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information-Based Registration of

Medical Images: A Survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, August

2003. 3.5, 3.11.3

[47] K. Popper. Open Society and Its Enemies. Princenton University Press, 1971. 3.5.1

[48] K. Popper. The Logic of Scientific Discovery. Routledge, 2002. 3.5.1, 5.3.1

[49] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C.

Cambridge University Press, second edition, 1992. 3.12

[50] K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elastric regis-

tration: Integration of landmark errors and orientation attributes. In A. Kuba, M. Samal, and

A. Todd-Pkropek, editors, Information Processing in Medical Imaging 1999 (IPMI’99), pages

252–265. Springer, 1999. 3.9.18

[51] K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H Kuhn. Landmark-based

elastic registration using approximating thin-plate splines. IEEE Transactions on Medical

Imaging, 20(6):526–534, June 1997. 3.9.18, 3.17

[52] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid

registration using free-form deformations: Application to breast mr images. IEEE Transaction

on Medical Imaging, 18(8):712–721, 1999. 3.9.17

[53] G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images with applications to

color filtering. IEEE Trans. on Image Processing, 5:1582–1586, 1996. 2.7.3

[54] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An Object Oriented

Approach to 3D Graphics. Kitware Inc, 1998. 2.11.1

[55] J. P. Serra. Image Analysis and Mathematical Morphology. Academic Press Inc., 1982. 2.6.3,

4.2.1

[56] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press,

1996. 4.3

Bibliography 531

[57] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,

27:379–423, July 1948. 2.9.4, 5.3.2

[58] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of

Illinois Press, 1948. 2.9.4, 5.3.2

[59] M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Parametric estimate of intensity homo-

geneities applied to MRI. IEEE Trans. Medical Imaging, 19(3):153–165, March 2000. 3.12

[60] Baart M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Computer Vision. Kluwer

Academic Publishers, 1994. 2.7.3

[61] J. P. Thirion. Fast non-rigid matching of 3D medical image. Technical report, Research Report

RR-2547, Epidure Project, INRIA Sophia, May 1995. 3.14

[62] J.-P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons.

Medical Image Analysis, 2(3):243–260, 1998. 3.14

[63] P. Viola and W. M. Wells III. Alignment by maximization of mutual information. IJCV,

24(2):137–154, 1997. 3.5

[64] J. Weickert, B.M. ter Haar Romeny, and M.A. Viergever. Conservative image transformations

with restoration and scale-space properties. In Proc. 1996 IEEE International Conference on

Image Processing (ICIP-96, Lausanne, Sept. 16-19, 1996), pages 465–468, 1996. 2.7.3

[65] R. T. Whitaker and G. Gerig. Vector-Valued Diffusion, pages 93–134. Kluwer Academic

Publishers, 1994. 2.7.3, 2.7.3

[66] R. T. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for Image Processing.

In International Conference on Image Processing, pages 142–145. IEEE, 2001. 2.7.3

[67] Ross T. Whitaker. Characterizing first and second order patches using geometry-limited diffu-

sion. In Information Processing in Medical Imaging 1993 (IPMI’93), pages 149–167, 1993.

2.7.3

[68] Ross T. Whitaker. Geometry-Limited Diffusion. PhD thesis, The University of North Carolina,

Chapel Hill, North Carolina 27599-3175, 1993. 2.7.3, 2.7.3

[69] Ross T. Whitaker. Geometry-limited diffusion in the characterization of geometric patches in

images. Computer Vision, Graphics, and Image Processing: Image Understanding, 57(1):111–

120, January 1993. 2.7.3

[70] Ross T. Whitaker and Stephen M. Pizer. Geometry-based image segmentation using

anisotropic diffusion. In Ying-Lie O, A. Toet, H.J.A.M Heijmans, D.H. Foster, and P. Meer,

editors, Shape in Picture: The mathematical description of shape in greylevel images. Springer

Verlag, Heidelberg, 1993. 2.7.3

532 Bibliography

[71] Ross T. Whitaker and Stephen M. Pizer. A multi-scale approach to nonuniform diffusion. Com-

puter Vision, Graphics, and Image Processing: Image Understanding, 57(1):99–110, January

1993. 2.7.3

[72] Terry S. Yoo and James M. Coggins. Using statistical pattern recognition techniques to con-

trol variable conductance diffusion. In Information Processing in Medical Imaging 1993

(IPMI’93), pages 459–471, 1993. 2.7.3

[73] T.S. Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, J. Rhoades, and R.T. Whitaker. Direct

visualization of volume data. IEEE Computer Graphics and Applications, 12(4):63–71, 1992.

4.2.1

[74] T.S. Yoo, S.M. Pizer, H. Fuchs, T. Cullip, J. Rhoades, and R. Whitaker. Achieving direct

volume visualization with interactive semantic region selection. In Information Processing in

Medical Images. Springer Verlag, 1991. 4.2.1, 4.2.1

[75] C. Zhu, R. H. Byrd, and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for

large scale bound constrained optimization. ACM Transactions on Mathematical Software,

23(4):550–560, November 1997. 3.12

INDEX

Amount of information

Image, 492

Anisotropic data sets, 165

BinaryMask3DMeshSource

Header, 175

Instantiation, 176

SetInput, 176

BSplineInterpolateImageFunction, 276

BSplineTransform, 314

Instantiation, 302, 309, 311, 315

New, 302, 309, 311, 315

Casting Images, 64

CenteredTransformInitializer

GeometryOn(), 226

MomentsOn(), 226

CenteredTransformInitializer

GeometryOn(), 216

MomentsOn(), 216

Complex images

Instantiation, 21

Reading, 21

Writing, 21

CreateStructuringElement()

itk::BinaryBallStructuringElement, 89,

92

DICOM, 32

Changing Headers, 51

Dictionary, 44

GDCM, 44

Header, 44, 48

Introduction, 32

Printing Tags, 44, 48

Series, 32

Standard, 32

Tags, 44, 48

Dicom

HIPPA, 41

Distance Map

itk::SignedDanielssonDistanceMap-

ImageFilter, 137

EllipseSpatialObject

Instantiation, 337

Entropy

Images, 492

What’s wrong in images, 491

GDCM

Dictionary, 44

GDCMImageIO

header, 44

GDCMSeriesFileNames

GetOutputFileNames(), 43

SetOutputDirectory(), 43

534 Index

GetMetaDataDictionary()

ImageIOBase, 45

GroupSpatialObject

Instantiation, 337

HIPAA

Dicom, 41

Privacy, 41

Image

Amount of information, 492

Entropy, 492

Image Series

Reading, 25

Writing, 25

ImageToSpatialObjectMetric

GetValue(), 337

ImageFileRead

Vector images, 19

ImageFileWriter

Vector images, 17

ImageIO

GetMetaDataDictionary(), 49

ImageIOBase

GetMetaDataDictionary(), 45

ImageSeriesWriter

SetFileNames(), 43

Isosurface extraction

Mesh, 175

itk::AddImageFilter

Instantiation, 81

itk::AffineTransform, 230, 271

Composition, 154

header, 139, 230

Image Registration, 243

Instantiation, 231, 245

instantiation, 140, 155

New(), 155, 231

Pointer, 155, 231

resampling, 155

Rotate2D(), 154, 156

SetIdentity(), 146

Translate(), 143, 154, 156–158

itk::AmoebaOptimizer, 290

itk::ANTSNeighborhoodCorrelationImage-

ToImageMetricv4, 289

itk::BilateralImageFilter, 122

header, 122

instantiation, 123

New(), 123

Pointer, 123

SetDomainSigma(), 123

SetRangeSigma(), 123

itk::BinaryThresholdImageFilter

Header, 55

Instantiation, 55

SetInput(), 57

SetInsideValue(), 57

SetOutsideValue(), 57

itk::BinaryBallStructuringElement

CreateStructuringElement(), 89, 92

SetRadius(), 89, 92

itk::BinaryDilateImageFilter

header, 88

New(), 89

Pointer, 89

SetDilateValue(), 90

SetKernel(), 89

Update(), 90

itk::BinaryErodeImageFilter

header, 88

New(), 89

Pointer, 89

SetErodeValue(), 90

SetKernel(), 89

Update(), 90

itk::BinaryMedianImageFilter, 94

GetOutput(), 94

header, 94

instantiation, 94

Neighborhood, 94

New(), 94

Pointer, 94

Radius, 94

SetInput(), 94

itk::BinomialBlurImageFilter, 104

itk::BinomialBlurImageFilter

Index 535

header, 105

instantiation, 105

New(), 105

Pointer, 105

SetInput(), 106

SetRepetitions(), 106

Update(), 106

itk::BSplineDeformableTransform, 273

itk::BSplineInterpolateImageFunction, 277

itk::BSplineTransform, 302, 309, 311

DeformableRegistration, 302, 309, 311

header, 302, 309, 311

itk::BSplineTransformParametersAdaptor,

309

itk::CannySegmentationLevelSetImageFilter,

411

GenerateSpeedImage(), 415

GetSpeedImage(), 415

SetAdvectionScaling(), 413

itk::CannyEdgeDetectionImageFilter, 62

header, 62

itk::CastImageFilter, 64

header, 64

instantiation, 130, 132

New(), 65, 130, 132

Pointer, 65, 130, 132

SetInput(), 65

Update(), 65

itk::CenteredRigid2DTransform, 264

itk::CenteredTransformInitializer

header, 225

In 3D, 225

Instantiation, 226

New(), 226

SmartPointer, 226

itk::ChangeInformationImageFilter

CenterImageOn(), 422

itk::ComplexToRealImageFilter, 171

itk::ConfidenceConnectedImageFilter, 366

header, 366

SetInitialNeighborhoodRadius(), 369

SetMultiplier(), 368

SetNumberOfIterations(), 368

SetReplaceValue(), 368

SetSeed(), 369

itk::ConjugateGradientLineSearch-

Optimizerv4, 290

itk::ConnectedThresholdImageFilter, 356

header, 356

SetLower(), 357

SetReplaceValue(), 358

SetSeed(), 358

SetUpper(), 357

itk::CorrelationImageToImageMetricv4, 286

itk::CovariantVector

Concept, 256

itk::CurvatureAnisotropicDiffusionImage-

Filter, 114

header, 114

instantiation, 114

New(), 114

Pointer, 114

SetConductanceParameter(), 115

SetNumberOfIterations(), 115

SetTimeStep(), 115

Update(), 115

itk::CurvatureFlowImageFilter, 116

header, 116

instantiation, 117

New(), 117

Pointer, 117

SetNumberOfIterations(), 117

SetTimeStep(), 117

Update(), 117

itk::DanielssonDistanceMapImageFilter

GetOutput(), 134

GetVoronoiMap(), 135

Header, 134

Instantiation, 134

instantiation, 134

New(), 134

Pointer, 134

SetInput(), 134

itk::DataObjectDecorator

Get(), 188

Use in Registration, 188

536 Index

itk::DemonsImageToImageMetricv4, 289

itk::DemonsRegistrationFilter, 320

SetFixedImage(), 320

SetMovingImage(), 320

SetNumberOfIterations(), 320

SetStandardDeviations(), 320

itk::DerivativeImageFilter, 73

GetOutput(), 74

header, 73

instantiation, 74

New(), 74

Pointer, 74

SetDirection(), 74

SetInput(), 74

SetOrder(), 74

itk::DiscreteGaussianImageFilter, 103

header, 103

instantiation, 103

New(), 103

Pointer, 103

SetMaximumKernelWidth(), 104

SetVariance(), 104

Update(), 104

itk::ElasticBodyReciprocalSplineKernel-

Transform, 274

itk::ElasticBodySplineKernelTransform, 274

itk::EllipseSpatialObject

header, 334

SetRadius(), 338

itk::Euler2DTransform, 207, 215, 263

header, 207, 216

Instantiation, 207, 216

New(), 208, 216

Pointer, 208, 216

SmartPointer, 216

itk::Euler3DTransform, 269

itk::EventObject

CheckEvent, 197

itk::ExhaustiveOptimizerv4, 290

itk::ExtractImageFilter

header, 13

SetExtractionRegion(), 15

itk::FastMarchingImageFilter

Multiple seeds, 390, 398

NodeContainer, 390, 398

Nodes, 390, 398

NodeType, 390, 398

Seed initialization, 390, 398

SetStoppingValue(), 390

SetTrialPoints(), 390, 398

itk::FFTWForwardFFTImageFilter, 170, 173

itk::FileImageReader

GetOutput(), 57, 60, 360

itk::FlipImageFilter, 138

GetOutput(), 138

header, 138

instantiation, 138

Neighborhood, 138

New(), 138

Pointer, 138

Radius, 138

SetInput(), 138

itk::FloodFillIterator

In Region Growing, 356, 366

itk::ForwardFFTImageFilter, 170, 173

itk::GDCMImageIO

header, 37

itk::GDCMSeriesFileNames

GetFileNames(), 39

header, 37

SetDirectory(), 38

itk::GeodesicActiveContourLevelSetImage-

Filter

SetAdvectionScaling(), 404

SetCurvatureScaling(), 404

SetPropagationScaling(), 404

itk::GeodesicActiveContourShapePrior-

LevelSetImageFilter

Monitoring, 421

SetAdvectionScaling(), 422

SetCurvatureScaling(), 422

SetPropagationScaling(), 422

itk::GradientAnisotropicDiffusionImage-

Filter, 112

header, 112

instantiation, 112

Index 537

New(), 112

Pointer, 112

SetConductanceParameter(), 112

SetNumberOfIterations(), 112

SetTimeStep(), 112

Update(), 112

itk::GradientDescentLineSearch-

Optimizerv4, 290

itk::GradientDescentOptimizerv4, 290

itk::GradientDescentOptimizerv4Template

GetCurrentIteration(), 186

SetLearningRate(), 185

SetMinimumStepLength(), 185

SetNumberOfIterations(), 185

SetRelaxationFactor(), 185

itk::GradientMagnitudeRecursiveGaussian-

ImageFilter, 71

header, 71

Instantiation, 72

New(), 72

Pointer, 72

SetSigma(), 72, 389, 397

Update(), 72

itk::GradientRecursiveGaussianImageFilter

header, 17

itk::GradientMagnitudeImageFilter, 69

header, 69

instantiation, 69

New(), 70

Pointer, 70

Update(), 70

itk::GrayscaleDilateImageFilter

header, 91

New(), 92

Pointer, 92

SetKernel(), 92

Update(), 92

itk::GrayscaleErodeImageFilter

header, 91

New(), 92

Pointer, 92

SetKernel(), 92

Update(), 92

itk::GroupSpatialObject

header, 334

New(), 339

Pointer, 339

itk::HistogramMatchingImageFilter, 324

SetNumberOfHistogramLevels(), 324

SetNumberOfMatchPoints(), 324

SetInput(), 324

SetReferenceImage(), 324

SetSourceImage(), 324

ThresholdAtMeanIntensityOn(), 324

itk::HistogramMatchingImageFilter, 305,

319

SetInput(), 305, 320

SetNumberOfHistogramLevels(), 305,

320

SetNumberOfMatchPoints(), 305, 320

SetReferenceImage(), 305, 320

SetSourceImage(), 305, 320

ThresholdAtMeanIntensityOn(), 306,

320

itk::IdentityTransform, 260

itk::Image

Header, 181

Instantiation, 181

itk::ImageRegistrationMethod

Multi-Modality, 199

itk::ImageRegistrationMethodv4

SetMovingInitialTransform(), 244

SetNumberOfLevels(), 240

SetShrinkFactorsPerLevel(), 240

SetSmoothingSigmasPerLevel(), 240

itk::ImageToImageMetricv4, 281

GetDerivatives(), 281

GetValue(), 281

GetValueAndDerivatives(), 281

itk::ImageToSpatialObjectMetric

header, 335

Instantiation, 340

itk::ImageToSpatialObjectRegistration-

Method

Instantiation, 340

New(), 340

538 Index

Pointer, 340

SetFixedImage(), 342

SetInterpolator(), 342

SetMetric(), 342

SetMovingSpatialObject(), 342

SetOptimizer(), 342

SetTransform(), 342

Update(), 342, 343

itk::ImageFileRead

Complex images, 21

Vector images, 15, 23

itk::ImageFileReader, 1

header, 1, 6, 9, 27

Instantiation, 2, 6, 9

New(), 2, 6, 10, 12, 13, 18, 20, 24

RGB Image, 8

SetFileName(), 2, 6, 10, 12, 13, 18, 20,

24

SmartPointer, 2, 6, 10, 12, 13, 18, 20, 24

itk::ImageFileWrite

Complex images, 21

Vector images, 15

itk::ImageFileWriter, 1

header, 1, 6, 9, 37

Instantiation, 2, 6, 9, 26

New(), 2, 6, 10, 12, 13, 18, 20, 24

RGB Image, 8, 30

SetFileName(), 2, 6, 10, 12, 13, 18, 20,

24

SetImageIO(), 7

SmartPointer, 2, 6, 10, 12, 13, 18, 20, 24

UseInputMetaDataDictionaryOff(), 36

itk::ImageMaskSpatialObject

header, 294

Instantiation, 294

New, 294

Pointer, 294

SetImage(), 295

itk::ImageMomentsCalculator, 215

itk::ImageRegistrationMethod

DataObjectDecorator, 188

GetOutput(), 188

Monitoring, 195

Pipeline, 188

Resampling image, 188

itk::ImageRegistrationMethodv4

AffineTransform, 243

GetTransform(), 186

InPlaceOn(), 312

Multi-Modality, 200, 236, 243, 293

Multi-Resolution, 236, 243

Multi-Stage, 243, 251

Scaling parameter space, 243

SetInitialTransform(), 312

itk::ImageSeriesReader

GetMetaDataDictionaryArray(), 43

header, 25, 37

Instantiation, 26

RGB Image, 30

SetFileNames(), 40

itk::ImageSeriesWriter

header, 27

SetMetaDataDictionaryArray(), 43

itk::ImageToImageMetricv4

SetFixedImageMask(), 295

itk::InterpolateImageFunction, 277

Evaluate(), 277

EvaluateAtContinuousIndex(), 277

IsInsideBuffer(), 277

SetInputImage(), 277

itk::IsolatedConnectedImageFilter

AddSeed1(), 372

AddSeed2(), 372

GetIsolatedValue(), 373

header, 372

SetLower(), 372

SetReplaceValue(), 372

itk::KernelTransforms, 274

itk::LaplacianSegmentationLevelSetImage-

Filter, 415

SetPropagationScaling(), 417

itk::LaplacianRecursiveGaussianImageFilter,

82

header, 83

New(), 83

Pointer, 83

Index 539

SetSigma(), 83

Update(), 83

itk::LBFGS2Optimizer

header, 309

itk::LBFGS2Optimizerv4, 309

itk::LBFGSOptimizerv4, 290

itk::LBFGSBOptimizerv4, 290

itk::LBFGSBOptimizerv4, 311

header, 311

itk::LBFGSOptimizerv4, 302

header, 302

itk::LevelSetMotionRegistrationFilter, 306

SetFixedImage(), 306

SetMovingImage(), 306

SetNumberOfIterations(), 306

SetStandardDeviations(), 306

itk::LinearInterpolateImageFunction, 277

header, 335

itk::MaskImageFilter, 173

itk::MattesMutualInformationImageTo-

ImageMetricv4, 288

SetNumberOfHistogramBins(), 200,

288

itk::MeanSquaresImageToImageMetricv4,

283

itk::MeanImageFilter, 85

GetOutput(), 85

header, 85

instantiation, 85

Neighborhood, 85

New(), 85

Pointer, 85

Radius, 85

SetInput(), 85

itk::MeanSquaresImageToImageMetricv4

SetFixedInterpolator(), 182

SetMovingInterpolator(), 182

itk::MedianImageFilter, 86

GetOutput(), 87

header, 86

instantiation, 87

Neighborhood, 87

New(), 87

Pointer, 87

Radius, 87

SetInput(), 87

itk::MinMaxCurvatureFlowImageFilter, 119

header, 120

instantiation, 120

New(), 120

Pointer, 120

SetNumberOfIterations(), 120

SetTimeStep(), 120

Update(), 120

itk::MultiGradientOptimizerv4, 290

itk::MultiResolutionPyramidImageFilter,

235

GetSchedule(), 236

SetNumberOfLevels(), 235

SetSchedule(), 236

SetStartingShrinkFactors(), 236

itk::MutualInformationImageToImage-

Metricv4

Trade-offs, 202

itk::NearestNeighborInterpolateImage-

Function, 277

header, 139

instantiation, 140

itk::NeighborhoodConnectedImageFilter

SetLower(), 365

SetReplaceValue(), 365

SetSeed(), 365

SetUpper(), 365

itk::NormalizeImageFilter, 64

header, 64

New(), 65

Pointer, 65

SetInput(), 65

Update(), 65

itk::NormalVariateGenerator

Initialize(), 294, 341

New(), 293, 341

Pointer, 293, 341

itk::NumericSeriesFileNames

header, 25

itk::ObjectToObjectOptimizer, 290

540 Index

GetCurrentPosition(), 290

SetMetric(), 290

SetScales(), 290

SetScalesEstimator(), 290

StartOptimization(), 290

itk::OnePlusOneEvolutionaryOptimizer

Instantiation, 340

itk::OnePlusOneEvolutionaryOptimizerv4,

290

itk::OnePlusOneEvolutionaryOptimizer

Initialize(), 426

SetEpsilon(), 426

SetMaximumIteration(), 426

SetNormalVariateGenerator(), 425

SetScales(), 425

itk::OnePlusOneEvolutionaryOptimizerv4

Multi-Modality, 293

itk::Optimizer

MaximizeOff(), 342

MaximizeOn(), 342

itk::OtsuThresholdImageFilter

SetInput(), 360

SetInsideValue(), 360

SetOutsideValue(), 360

itk::OtsuMultipleThresholdsCalculator

GetOutput(), 362

itk::PCAShapeSignedDistanceFunction

New(), 423

SetPrincipalComponentStandard-

Deviations(), 424

SetMeanImage(), 423

SetNumberOfPrincipalComponents(),

423

SetPrincipalComponentsImages(), 423

SetTransform(), 424

itk::Point

Concept, 256

itk::PowellOptimizerv4, 290

itk::QuasiNewtonOptimizerv4, 290

itk::QuaternionRigidTransform, 267

itk::RecursiveGaussianImageFilter, 79, 107

header, 79, 107

Instantiation, 79, 83, 107

New(), 79, 107

Pointer, 79, 107

SetSigma(), 81, 108

Update(), 109

itk::RegionOfInterestImageFilter

header, 10

SetRegionOfInterest(), 12

itk::RegistrationMethod

SetTransform(), 309

itk::RegistrationMethodv4

GetCurrentIteration(), 232

GetValue(), 232

SetFixedImage(), 182

SetMetric(), 182

SetMovingImage(), 182

SetMovingInitialTransform(), 183

SetOptimizer(), 182

SetTransform(), 231

itk::RegularStepGradientDescentOptimizer

SetRelaxationFactor(), 201

itk::RegularStepGradientDescent-

Optimizerv4, 290

itk::ResampleImageFilter, 139, 306, 321, 325

GetOutput(), 141

header, 139

Image internal transform, 145

instantiation, 140

New(), 140

Pointer, 140

SetDefaultPixelValue(), 140, 144, 145,

153

SetInput(), 141, 306, 321, 325

SetInterpolator(), 140, 321

SetOutputOrigin(), 141, 145–149, 153,

321

SetOutputSpacing(), 141, 145, 148,

151, 153, 321

SetReferenceImage(), 306, 325

SetSize(), 141, 146, 148, 149, 154

SetTransform(), 140, 146, 307, 325

itk::RescaleIntensityImageFilter, 64

header, 9, 64

New(), 65

Index 541

Pointer, 65

SetInput(), 65

SetOutputMaximum(), 9, 65

SetOutputMinimum(), 9, 65

Update(), 65

itk::RGBPixel

header, 488

Image, 8, 30

Instantiation, 8, 30

Statistics, 488

itk::Rigid3DPerspectiveTransform, 271

itk::Sample

Histogram, 446

Interfaces, 438

PointSetToListSampleAdaptor, 444

itk::ScaleLogarithmicTransform, 263

itk::ScaleTransform, 261

itk::SegmentationLevelSetImageFilter

SetAdvectionScaling(), 404

SetCurvatureScaling(), 399, 404, 409

SetMaximumRMSError(), 399

SetNumberOfIterations(), 399

SetPropagationScaling(), 399, 404, 409,

417

itk::SegmentationLevelSetImageFilter

GenerateSpeedImage(), 415

GetSpeedImage(), 415

SetAdvectionScaling(), 413

itk::ShapeDetectionLevelSetImageFilter

SetCurvatureScaling(), 399

SetMaximumRMSError(), 399

SetNumberOfIterations(), 399

itk::ShapeDetectionLevelSetImageFilter

SetPropagationScaling(), 399

itk::ShapePriorSegmentationLevelSetImage-

Filter

Monitoring, 421

SetAdvectionScaling(), 422

SetCurvatureScaling(), 422

SetPropagationScaling(), 422

itk::ShapePriorMAPCostFunction

SetShapeParameterMeans(), 425

SetShapeParameterStandardDevia-

tions(), 425

SetWeights(), 424

itk::ShapeSignedDistanceFunction

SetTransform(), 424

itk::ShiftScaleImageFilter, 64

header, 64

New(), 65

Pointer, 65

SetInput(), 65

SetScale(), 65

SetShift(), 65

Update(), 65

itk::SigmoidImageFilter

GetOutput(), 67

header, 67

instantiation, 67

New(), 67

Pointer, 67

SetAlpha(), 67

SetBeta(), 67

SetInput(), 67

SetOutputMaximum(), 67

SetOutputMinimum(), 67

itk::SigmoidImageFilter , 67

itk::SignedDanielssonDistanceMapImage-

Filter

Header, 136

Instantiation, 136

itk::Similarity2DTransform, 221, 266

header, 157, 221

Instantiation, 221

instantiation, 157

New(), 158

Pointer, 158, 221

SetAngle(), 158, 222

SetRotationCenter(), 158

SetScale(), 158, 222

itk::Similarity3DTransform, 270

itk::SingleValuedNonLinearVnlOptimizerv4,

290

itk::SpatialObjectToImageFilter

header, 334

Instantiation, 339

542 Index

itk::SpatialObjectToImageFilter

New(), 339

Pointer, 339

SetInput(), 339

SetSize(), 339

Update(), 339

itk::Statistics

Color Images, 484

itk::Statistics::CovarianceSampleFilter, 462

itk::Statistics::EuclideanDistanceMetric, 474

itk::Statistics::ExpectationMaximization-

MixtureModelEstimator, 516

itk::Statistics::GaussianMixtureModel-

Component, 516

itk::Statistics::GaussianMembershipFunction,

473, 510

itk::Statistics::HeapSort, 470

itk::Statistics::Histogram

GetFrequency(), 486

Iterators, 483

Size(), 486

itk::Statistics::ImageToListAdaptor, 440

itk::Statistics::ImageToHistogramFilter

GetOutput(), 486

header, 484, 488

Update(), 485

itk::Statistics::InsertSort, 470

itk::Statistics::IntrospectiveSort, 470

itk::Statistics::JointDomainImageToList-

Adaptor, 440

itk::Statistics::KdTree, 456

itk::Statistics::KdTreeBasedKmeans-

Estimator, 501

itk::Statistics::KdTreeGenerator, 456

itk::Statistics::ListSampleToHistogramFilter,

454, 466

itk::Statistics::ListSampleToHistogram-

Generator, 454

header, 480

itk::Statistics::ListSample, 438

itk::Statistics::MaximumDecisionRule, 476

itk::Statistics::MaximumRatioDecisionRule,

477

itk::Statistics::MeanCalculator, 462

itk::Statistics::MembershipSampleGenerator,

454

itk::Statistics::MembershipSample, 451

itk::Statistics::MinimumDecisionRule, 477

itk::Statistics::NeighborhoodSampler, 454

itk::Statistics::NeighborhoodSampler, 468

itk::Statistics::NormalVariateGenerator, 479,

510

Initialize(), 425

itk::Statistics::PointSetToListSampleAdaptor,

442

itk::Statistics::QuickSelect, 470

itk::Statistics::SampleToHistogramFilter

instantiation, 481

itk::Statistics::SampleToHistogram-

ProjectionFilter, 454

itk::Statistics::SampleClassifier, 510

itk::Statistics::ScalarImageToHistogram-

Generator

Compute(), 483

header, 482

itk::Statistics::ScalarImageToListAdaptor,

440

header, 479

instantiation, 480

itk::Statistics::SelectiveSubsampleGenerator,

454

itk::Statistics::Subsample, 449, 470

itk::Statistics::WeightedCentroidKdTree-

Generator, 456

itk::Statistics::WeightedCovariance-

Calculator, 464

itk::Statistics::WeightedMeanCalculator, 464

itk::SymmetricForcesDemonsRegistration-

Filter, 324

SetFixedImage(), 324

SetMovingImage(), 324

SetNumberOfIterations(), 325

SetStandardDeviations(), 325

itk::ThinPlateR2LogRSplineKernel-

Transform, 274

itk::ThinPlateSplineKernelTransform, 274

Index 543

itk::ThresholdSegmentationLevelSetImage-

Filter, 405

SetCurvatureScaling(), 409

SetPropagationScaling(), 409

itk::ThresholdImageFilter

Header, 60

Instantiation, 60

SetInput(), 60

SetOutsideValue(), 61

ThresholdAbove(), 60

ThresholdBelow(), 60, 61

ThresholdOutside(), 60

itk::Transform, 256

GetJacobian(), 259

SetParameters(), 259

TransformCovariantVector(), 256

TransformPoint(), 256

TransformVector(), 256

itk::TranslationTransform, 260

GetNumberOfParameters(), 183

Instantiation, 244

New(), 244

Pointer, 244

itk::Vector

Concept, 256

itk::VectorConfidenceConnectedImageFilter

SetInitialNeighborhoodRadius(), 375

SetMultiplier(), 375

SetNumberOfIterations(), 375

SetReplaceValue(), 375

SetSeed(), 375

itk::VectorCurvatureAnisotropicDiffusion-

ImageFilter, 127

header, 127, 130

instantiation, 127, 131

New(), 127, 131

Pointer, 127, 131

RGB Images, 130

SetNumberOfIterations(), 127, 132

SetTimeStep(), 127, 132

Update(), 127, 132

itk::VectorGradientAnisotropicDiffusion-

ImageFilter, 125

header, 125, 129

instantiation, 125, 129

New(), 125, 129

Pointer, 125, 129

RGB Images, 129

SetNumberOfIterations(), 126, 130

SetTimeStep(), 126, 130

Update(), 126, 130

itk::VectorIndexSelectionCastImageFilter

header, 23

Instantiation, 23

New(), 23

Pointer, 23

SetIndex(), 24

itk::Versor

Definition, 268

itk::VersorRigid3DTransform, 225

header, 225

Instantiation, 225

Pointer, 226

itk::VersorRigid3DTransform, 268

itk::VersorTransform, 268

itk::VersorTransformOptimizer, 268

itk::VnlForwardFFTImageFilter, 170, 173

itk::VolumeSplineKernelTransform, 274

itk::VotingBinaryHoleFillingImageFilter, 97

GetOutput(), 98

header, 97

instantiation, 97

Neighborhood, 97

New(), 97

Pointer, 97

Radius, 97

SetBackgroundValue(), 97

SetForegroundValue(), 97

SetInput(), 98

SetMajorityThreshold(), 98

itk::VotingBinaryIterativeHoleFillingImage-

Filter, 98

GetOutput(), 101

header, 98

instantiation, 100

Neighborhood, 100

544 Index

New(), 100

Pointer, 100

Radius, 100

SetBackgroundValue(), 100

SetForegroundValue(), 100

SetInput(), 101

SetMajorityThreshold(), 100

SetMaximumNumberOfIterations(),

101

itk::VTKImageIO

header, 6

Instantiation, 6

New(), 6

SetFileTypeToASCII(), 7

SmartPointer, 6

itk::WarpImageFilter

SetInterpolator(), 160

itk::WarpImageFilter, 159

itk::WindowedSincInterpolateImage-

Function, 278

itksys

MakeDirectory, 42

SystemTools, 42

Joint Entropy

Statistics, 495

Joint Histogram

Statistics, 495

LandmarkDisplacementFieldSource, 312

LaplacianRecursiveGaussianImageFilter

SetNormalizeAcrossScale(), 83

LinearInterpolateImageFunction, 276

MakeDirectory

itksys, 42

SystemTools, 42

Marching Cubes, 175

Medical Errors, 41

Mesh

Isosurface extraction, 175

MetaDataDictionary, 45, 49

Begin(), 49

ConstIterator, 49

End(), 49

header, 44

Iterator, 49

MetaDataObject, 49

String entries, 49

MetaDataObject

GetMetaDataObjectValue(), 46

header, 44

Strings, 49

Model to Image Registration

Observer, 335

Mutual Information

Statistics, 495

NearestNeighborInterpolateImageFunction,

276

Open Science, 207

RecursiveGaussianImageFilter

SetDirection(), 79, 107

SetNormalizeAcrossScale(), 80, 108

SetOrder(), 80, 107

Registration

Finite Element-Based, 299

RegularStepGradientDescentOptimizer

SetLearningRate(), 210

SetMinimumStepLength(), 210

SetNumberOfIterations(), 210

SetRelaxationFactor(), 210

Resampling, 165

RescaleIntensityImageFilter

Instantiation, 20, 24

New(), 20, 24

Pointer, 20, 24

SetOutputMaximum(), 20, 24

SetOutputMinimum(), 20, 24

RGB

reading Image, 8, 30

writing Image, 8, 30

Series

Reading, 25

Writing, 25

Index 545

SetConductanceParameter()

itk::CurvatureAnisotropicDiffusion-

ImageFilter, 115

SetDilateValue()

itk::BinaryDilateImageFilter, 90

SetDomainSigma()

itk::BilateralImageFilter, 123

SetErodeValue()

itk::BinaryErodeImageFilter, 90

SetFileName()

itk::ImageFileReader, 2, 10, 12, 13, 18,

20, 24

itk::ImageFileWriter, 2, 10, 12, 13, 18,

20, 24

SetInsideValue()

itk::BinaryThresholdImageFilter, 57

itk::OtsuThresholdImageFilter, 360

SetKernel()

itk::BinaryDilateImageFilter, 89

itk::BinaryErodeImageFilter, 89

itk::GrayscaleDilateImageFilter, 92

itk::GrayscaleErodeImageFilter, 92

SetNumberOfIterations()

itk::CurvatureAnisotropicDiffusion-

ImageFilter, 115

itk::CurvatureFlowImageFilter, 117

itk::GradientAnisotropicDiffusion-

ImageFilter, 112

itk::MinMaxCurvatureFlowImageFilter,

120

itk::VectorCurvatureAnisotropic-

DiffusionImageFilter, 127, 132

itk::VectorGradientAnisotropic-

DiffusionImageFilter, 126, 130

SetOutputMaximum()

itk::RescaleIntensityImageFilter, 65

SetOutputMinimum()

itk::RescaleIntensityImageFilter, 65

SetOutsideValue()

itk::BinaryThresholdImageFilter, 57

itk::OtsuThresholdImageFilter, 360

itk::ThresholdImageFilter, 61

SetRadius()

itk::BinaryBallStructuringElement, 89,

92

SetRangeSigma()

itk::BilateralImageFilter, 123

SetScale()

itk::ShiftScaleImageFilter, 65

SetShift()

itk::ShiftScaleImageFilter, 65

SetSigma()

itk::GradientMagnitudeRecursive-

GaussianImageFilter, 72

itk::LaplacianRecursiveGaussianImageFilter,

83

itk::RecursiveGaussianImageFilter, 81,

108

SetTimeStep()

itk::CurvatureAnisotropicDiffusion-

ImageFilter, 115

itk::CurvatureFlowImageFilter, 117

itk::GradientAnisotropicDiffusion-

ImageFilter, 112

itk::MinMaxCurvatureFlowImageFilter,

120

itk::VectorCurvatureAnisotropic-

DiffusionImageFilter, 127, 132

itk::VectorGradientAnisotropic-

DiffusionImageFilter, 126, 130

Statistics

Bayesian plugin classifier, 510

Covariance, 462

Expectation maximization, 516

Gaussian (normal) probability density

function, 473

Heap sort, 470

Images, 479

Importing ListSample to Histogram,

466

Insert sort, 470

Introspective sort, 470

Joint Entropy, 495

Joint Histogram, 495

k-means clustering (using k-d tree), 501

Mean, 462

546 Index

Mixture model estimation, 516

Mutual Information, 495

Order statistics, 470

Quick select, 470

Random number generation

Normal (Gaussian) distribution, 479

Sampling measurement vectors using

radius, 468

Sorting, 470

Weighted covariance, 464

Weighted mean, 464

Subsampling, 165

Supersampling, 165

Surface Extraction, 175

SystemTools, 42

MakeDirectory, 42

Vector

Geometrical Concept, 256

Vector images

Reading, 15

Writing, 15

VectorMagnitudeImageFilter

header, 19

Instantiation, 20

New(), 20

Pointer, 20

Voronoi partitions, 135

itk::DanielssonDistanceMapImage-

Filter, 135

WarpImageFilter, 312

Watersheds, 377

ImageFilter, 379

Overview, 377

WindowedSincInterpolateImageFunction,

276

	I Introduction
	Welcome
	Organization
	How to Learn ITK
	Software Organization
	The Insight Community and Support
	A Brief History of ITK

	Configuring and Building ITK
	Obtaining the Software
	Downloading Packaged Releases
	Downloading From Git
	Data

	Using CMake for Configuring and Building ITK
	Preparing CMake
	Configuring ITK
	Advanced Module Configuration
	Static and Shared Libraries
	Compiling ITK
	Installing ITK on Your System

	Cross compiling ITK
	Getting Started With ITK
	Using ITK as an External Library
	Hello World!

	II Architecture
	System Overview
	System Organization
	Essential System Concepts
	Generic Programming
	Include Files and Class Definitions
	Object Factories
	Smart Pointers and Memory Management
	Error Handling and Exceptions
	Event Handling
	Multi-Threading

	Numerics
	Data Representation
	Data Processing Pipeline
	Spatial Objects
	Wrapping
	Python Setup
	Install Stable Python Packages
	Install Latest Python Packages
	Build Python Packages from Source

	Data Representation
	Image
	Creating an Image
	Reading an Image from a File
	Accessing Pixel Data
	Defining Origin and Spacing
	RGB Images
	Vector Images
	Importing Image Data from a Buffer

	PointSet
	Creating a PointSet
	Getting Access to Points
	Getting Access to Data in Points
	RGB as Pixel Type
	Vectors as Pixel Type
	Normals as Pixel Type

	Mesh
	Creating a Mesh
	Inserting Cells
	Managing Data in Cells
	Customizing the Mesh
	Topology and the K-Complex
	Representing a PolyLine
	Simplifying Mesh Creation
	Iterating Through Cells
	Visiting Cells
	More on Visiting Cells

	Path
	Creating a PolyLineParametricPath

	Spatial Objects
	Introduction
	Hierarchy
	Transformations
	Types of Spatial Objects
	ArrowSpatialObject
	BlobSpatialObject
	EllipseSpatialObject
	GaussianSpatialObject
	GroupSpatialObject
	ImageSpatialObject
	ImageMaskSpatialObject
	LandmarkSpatialObject
	LineSpatialObject
	MeshSpatialObject
	SurfaceSpatialObject
	TubeSpatialObject
	DTITubeSpatialObject

	Read/Write SpatialObjects
	Statistics Computation via SpatialObjects

	Iterators
	Introduction
	Programming Interface
	Creating Iterators
	Moving Iterators
	Accessing Data
	Iteration Loops

	Image Iterators
	ImageRegionIterator
	ImageRegionIteratorWithIndex
	ImageLinearIteratorWithIndex
	ImageSliceIteratorWithIndex
	ImageRandomConstIteratorWithIndex

	Neighborhood Iterators
	NeighborhoodIterator
	Basic neighborhood techniques: edge detection
	Convolution filtering: Sobel operator
	Optimizing iteration speed
	Separable convolution: Gaussian filtering
	Slicing the neighborhood
	Random access iteration

	ShapedNeighborhoodIterator
	Shaped neighborhoods: morphological operations

	Image Adaptors
	Image Casting
	Adapting RGB Images
	Adapting Vector Images
	Adaptors for Simple Computation
	Adaptors and Writers

	III Development Guidelines
	How To Write A Filter
	Terminology
	Overview of Filter Creation
	Streaming Large Data
	Overview of Pipeline Execution
	Details of Pipeline Execution
	UpdateOutputInformation()
	PropagateRequestedRegion()
	UpdateOutputData()

	Threaded Filter Execution
	Filter Conventions
	Optional
	Useful Macros

	How To Write A Composite Filter
	Implementing a Composite Filter
	A Simple Example

	How To Create A Module
	Name and dependencies
	CMakeLists.txt
	itk-module.cmake

	Headers
	Libraries
	Tests
	Wrapping
	CMakeLists.txt
	Class wrap files
	Wrapping Variables
	Wrapping Enumerations
	Wrapping Macros
	Wrapping Tests

	Debugging Strategies
	Swig Python Architecture
	Python Runtime Tracing
	C++ Runtime Tracing

	Third-Party Dependencies
	itk-module-init.cmake
	CMakeList.txt

	Contributing with a Remote Module
	Policy for Adding and Removing Remote Modules
	Procedure for Adding a Remote Module

	Software Process
	Git Source Code Repository
	CDash Regression Testing System
	Developing tests

	Working The Process
	The Effectiveness of the Process

	Appendices
	Licenses
	Insight Toolkit License
	Third Party Licenses
	DICOM Parser
	Double Conversion
	Expat
	GDCM
	GIFTI
	HDF5
	JPEG
	KWSys
	MetaIO
	Netlib's SLATEC
	NIFTI
	NrrdIO
	OpenJPEG
	PNG
	TIFF
	VNL
	ZLIB

	ITK Git Workflow
	Git Setup
	Windows
	Git for Windows
	Cygwin

	macOS
	Xcode 4
	OS X Installer
	MacPorts

	Linux

	Workflow
	A Primer
	A Topic
	Motivation
	Design
	Notation
	Published Branches
	Development
	Discussion
	Troubleshooting
	Conflicts

	Publish
	Push Access
	Patches

	Hooks
	Setup
	Local
	Server

	TipsAndTricks
	Editor support
	Shell Customization

	Coding Style Guide
	Purpose
	Overview
	System Overview & Philosophy
	Clang Style
	Kitware Style
	Implementation Language
	Constants
	Generic Programming and the STL
	Portability
	Multi-Layer Architecture
	CMake Build Environment
	Doxygen Documentation System
	vnl Math Library
	Reference Counting

	Copyright
	Citations
	Naming Conventions
	ITK
	Naming Namespaces
	Naming Classes
	Naming Files
	Naming Tests

	Examples
	Naming Methods and Functions
	Naming Class Data Members
	Naming Enumerations
	Naming Local Variables
	Temporary Variable Naming
	Variable Initialization
	Control Statement Variable Naming
	Variable Scope

	Naming Template Parameters
	Naming Typedefs
	Naming Constants
	Using Operators to Pointers
	Using Operators to Arrays
	Using Underscores
	Include Guards
	Preprocessor Directives
	Header Includes
	Const Correctness
	Integer Type Specifiers

	Namespaces
	Aliasing Template Parameter Typenames
	Pipelines
	The auto Keyword
	Initialization and Assignment
	Accessing Members
	Code Layout and Indentation
	General Layout
	Class Layout
	Method Definition
	Use of Braces
	Braces in Control Sequences
	Braces in Arrays

	Indentation and Tabs
	White Spaces
	Grouping
	Conditional Expressions
	Assignments
	Return Statements

	Alignment
	Line Splitting Policy
	Empty Lines
	New Line Character
	End Of File Character

	Increment/decrement Operators
	Trailing Return Types
	Empty Arguments in Methods
	Ternary Operator
	Using Standard Macros
	Exception Handling
	Errors in Pipelines

	Messages
	Messages in Macros
	Messages in Tests

	Concept Checking
	Printing Variables
	Checking for Null
	Writing Tests
	Code Layout in Tests
	Regressions in Tests
	Arguments in Tests
	Testing Enumeration Streaming
	Test Return Value

	Writing Examples
	Doxygen Documentation System
	General Principles
	Documenting Classes
	Documenting Methods
	Documenting Data Members
	Documenting Macros
	Documenting Tests

	CMake Style
	Documentation Style

	Reading and Writing Images
	Basic Example
	Pluggable Factories
	Using ImageIO Classes Explicitly
	Reading and Writing RGB Images
	Reading, Casting and Writing Images
	Extracting Regions
	Extracting Slices
	Reading and Writing Vector Images
	The Minimal Example
	Producing and Writing Covariant Images
	Reading Covariant Images

	Reading and Writing Complex Images
	Extracting Components from Vector Images
	Reading and Writing Image Series
	Reading Image Series
	Writing Image Series
	Reading and Writing Series of RGB Images

	Reading and Writing DICOM Images
	Foreword
	Reading and Writing a 2D Image
	Reading a 2D DICOM Series and Writing a Volume
	Reading a 2D DICOM Series and Writing a 2D DICOM Series
	Printing DICOM Tags From One Slice
	Printing DICOM Tags From a Series
	Changing a DICOM Header

	Filtering
	Thresholding
	Binary Thresholding
	General Thresholding

	Edge Detection
	Canny Edge Detection

	Casting and Intensity Mapping
	Linear Mappings
	Non Linear Mappings

	Gradients
	Gradient Magnitude
	Gradient Magnitude With Smoothing
	Derivative Without Smoothing

	Second Order Derivatives
	Second Order Recursive Gaussian
	Laplacian Filters
	Laplacian Filter Recursive Gaussian

	Neighborhood Filters
	Mean Filter
	Median Filter
	Mathematical Morphology
	Binary Filters
	Grayscale Filters

	Voting Filters
	Binary Median Filter
	Hole Filling Filter
	Iterative Hole Filling Filter

	Smoothing Filters
	Blurring
	Discrete Gaussian
	Binomial Blurring
	Recursive Gaussian IIR

	Local Blurring
	Gaussian Blur Image Function

	Edge Preserving Smoothing
	Introduction to Anisotropic Diffusion
	Gradient Anisotropic Diffusion
	Curvature Anisotropic Diffusion
	Curvature Flow
	MinMaxCurvature Flow
	Bilateral Filter

	Edge Preserving Smoothing in Vector Images
	Vector Gradient Anisotropic Diffusion
	Vector Curvature Anisotropic Diffusion

	Edge Preserving Smoothing in Color Images
	Gradient Anisotropic Diffusion
	Curvature Anisotropic Diffusion

	Distance Map
	Geometric Transformations
	Filters You Should be Afraid to Use
	Change Information Image Filter
	Flip Image Filter
	Resample Image Filter
	Introduction
	Importance of Spacing and Origin
	A Complete Example
	Rotating an Image
	Rotating and Scaling an Image
	Resampling using a deformation field
	Subsampling and image in the same space
	Resampling an Anisotropic image to make it Isotropic

	Frequency Domain
	Computing a Fast Fourier Transform (FFT)
	Filtering on the Frequency Domain

	Extracting Surfaces
	Surface extraction

	Registration
	Registration Framework
	"Hello World" Registration
	Features of the Registration Framework
	Monitoring Registration
	Multi-Modality Registration
	Mattes Mutual Information

	 Center Initialization
	Rigid Registration in 2D
	Initializing with Image Moments
	Similarity Transform in 2D
	Rigid Transform in 3D
	Centered Initialized Affine Transform

	Multi-Resolution Registration
	Fundamentals
	Fundamentals

	Multi-Stage Registration
	Fundamentals
	Cascaded Multistage Registration

	Transforms
	Geometrical Representation
	Transform General Properties
	Identity Transform
	Translation Transform
	Scale Transform
	Scale Logarithmic Transform
	Euler2DTransform
	CenteredRigid2DTransform
	Similarity2DTransform
	QuaternionRigidTransform
	VersorTransform
	VersorRigid3DTransform
	Euler3DTransform
	Similarity3DTransform
	Rigid3DPerspectiveTransform
	AffineTransform
	BSplineDeformableTransform
	KernelTransforms

	Interpolators
	Nearest Neighbor Interpolation
	Linear Interpolation
	B-Spline Interpolation
	Windowed Sinc Interpolation

	Metrics
	Mean Squares Metric
	Exploring a Metric

	Normalized Correlation Metric
	Mutual Information Metric
	Parzen Windowing
	Mattes et al. Implementation

	Normalized Mutual Information Metric
	Demons metric
	ANTS neighborhood correlation metric

	Optimizers
	Registration using the One plus One Evolutionary Optimizer
	Registration using masks constructed with Spatial objects
	Rigid registrations incorporating prior knowledge

	Deformable Registration
	FEM-Based Image Registration
	BSplines Image Registration
	Level Set Motion for Deformable Registration
	BSplines Multi-Grid Image Registration
	BSplines Multi-Grid Image Registration in 3D
	Image Warping with Kernel Splines
	Image Warping with BSplines

	Demons Deformable Registration
	Asymmetrical Demons Deformable Registration
	Symmetrical Demons Deformable Registration

	Visualizing Deformation fields
	Visualizing 2D deformation fields
	Visualizing 3D deformation fields

	Model Based Registration
	Point Set Registration
	Point Set Registration in 2D
	Point Set Registration in 3D
	Point Set to Distance Map Metric

	Registration Troubleshooting
	Too many samples outside moving image buffer
	General heuristics for parameter fine-tunning

	Segmentation
	Region Growing
	Connected Threshold
	Otsu Segmentation
	Neighborhood Connected
	Confidence Connected
	Application of the Confidence Connected filter on the Brain Web Data

	Isolated Connected
	Confidence Connected in Vector Images

	Segmentation Based on Watersheds
	Overview
	Using the ITK Watershed Filter

	Level Set Segmentation
	Fast Marching Segmentation
	Shape Detection Segmentation
	Geodesic Active Contours Segmentation
	Threshold Level Set Segmentation
	Canny-Edge Level Set Segmentation
	Laplacian Level Set Segmentation
	Geodesic Active Contours Segmentation With Shape Guidance

	Feature Extraction
	Hough Transform
	Line Extraction
	Circle Extraction

	Statistics
	Data Containers
	Sample Interface
	Sample Adaptors
	ImageToListSampleAdaptor
	PointSetToListSampleAdaptor

	Histogram
	Subsample
	MembershipSample
	MembershipSampleGenerator
	K-d Tree

	Algorithms and Functions
	Sample Statistics
	Mean and Covariance
	Weighted Mean and Covariance

	Sample Generation
	SampleToHistogramFilter
	NeighborhoodSampler

	Sample Sorting
	Probability Density Functions
	Gaussian Distribution

	Distance Metric
	Euclidean Distance

	Decision Rules
	Maximum Decision Rule
	Minimum Decision Rule
	Maximum Ratio Decision Rule

	Random Variable Generation
	Normal (Gaussian) Distribution

	Statistics applied to Images
	Image Histograms
	Scalar Image Histogram with Adaptor
	Scalar Image Histogram with Generator
	Color Image Histogram with Generator
	Color Image Histogram Writing

	Image Information Theory
	Computing Image Entropy
	Computing Images Mutual Information

	Classification
	k-d Tree Based k-Means Clustering
	K-Means Classification
	Bayesian Plug-In Classifier
	Expectation Maximization Mixture Model Estimation
	Classification using Markov Random Field

