
Support for Time in ITK

Patrick Reynolds
Patrick Cheng
John Galeotti
Arnaud Gelas

Use Cases

 Conventional Video (2D+t)

 Ultrasound (3D+t)

 Microscopy (ND?)

Potential Solutions

Ranked by impact to current ITK infrastructure - ITK library developer’s perspective

1. Treat time as another dimension. (Eg. 4D = 3D+t)

 Pros: No impact on existing architecture, no specialized algorithms for processing time
series data

 Cons: Users need to develop their own specialized algorithms based on their assumptions
on data structure. Does not support live video. Does not support different time steps.

2. Create a new itkVideo class

 Pros: Clear definition/separation of time series data. Relative small impact on ITK. Enable
development of specialized video algorithms in ITK, especially GPU accelerated version.

 Cons: Need to adapt many existing algorithm to process itkVideo objects, or requires use
of an intermediate interpolating filter. Does not support different time steps without also
incorporating timestamps.

3. Separate time dimension, treat it separately (Timestamp all ITK data, make it explicit)

 Pros: Less confusion in data structures, as time is explicitly defined. Enable development
of generic filters on time series data.

 Cons: Involving changing itkData and itkImage classes. Need to either modify many filter
classes to handle time dimension, or requires use of an intermediate interpolating filter.

Needs for ITKv4 Core

 Timestamp on the Data Object (High Precision)

 itk::ImageSet (ImageSequence, ImageBag)
 Leads to itk::ImageRingBuffer
 itk::Video
 itk::ImageSetToImageSetFilter
 itk::ImageSetToImageFilter
 itk::MultiIndexImageSet
 Etc...

Proposed Solution: Timestamps

• Timestamp all ITK data
– Standardized metadata item

• Required to handle different time steps

• Example 1: External-event triggered “video”

• Example 2: Dynamically adjusting frame-rate
vs. crop-size

• Example 3: Looping microscopy z-axis

– Slice z=1,t=1, slice z=2,t=2, …, slice z=n,t=n, slice z=1,t=n+1

Proposed Solution: Itk::ImageSet
Core Base Class

• Base-class is an ordered list

– Appropriate for video storage, etc.

• Sub-classes (not part of core):

– Database-like representation, needed for 9-dimensional
microscopy data

– Ring-buffer representation, needed for live video data

• Also provide a generic core ImageSetIterator

Core Filter Base Classes

• ImageSetToImageSetFilter

• ImageSetToImageFilter
– Default implementation interpolates a set of N-dimensional

images into an (N+M)-dimensional image.

– M is determined by presence of timestamps and global
physical coordinates/orientation
• M=1 if only using timestamps
• M=2 if moving a camera or ultrasound probe through a 3D volume.

– This can be slow in the general case, but a GPU
implementation could really help

– This would be the “normal” way to interface time-stamped
images with the rest of ITK

Proposed Division

Microscopy
itk::MultiIndexImageSet

Video
itk::ImageRingBuffer

itk::Video
…

Common
itk::ImageSet

Itk::ImageSetToImageSetFilter
Itk::ImageSetToImageFilter

Video Module

• RingBuffer subclass of ImageSet

• Video File Reading
– Create native readers, or use OpenCV?

– Templated to output either 2D+t ImageSet, RingBuffer, or 3D
Image Volume.

• Live Video Acquisition to RingBuffer
– Patrick Cheng’s Simple Native Methods

– OpenCV interface
• OpenCV supports camera calibration and undistortion
• OpenCV-interface submodule downloaded by default, but only built if

OpenCV is detected?

– VXL interface
• VXL submodule off by default?

RingBuffer Pipeline Support

• Pipeline Updates can be triggered by interrupts,
events, and/or polling for new frames.
– Do we support all of these?

• When an input RingBuffer is modified, it is
usually appropriate to output a new frame, NOT
recompute the entire output.

• What if 5 new input frames arrive at once?
– Then output at most 5 new frames, up to the size of

our output RingBuffer.

Microscopy Module

• itk::MultiIndexImageSet
boost::multi_index::multi_index_container<

FileName,

boost::multi_index::indexed_by<

ordered_non_unique<

tag<PCoord>,

BOOST_MULTI_INDEX_MEMBER(

FileName, unsigned int, PCoord)>,

ordered_non_unique<

tag<RCoord>,

etc…

Microscopy Module

• What about SimpleITK?
– Provide optional SQL database support to use in lieu

of Boost?
– SQL might also simplify/standardize reading/writting
– Matlab and Python can both interface w/ SQL.

Discussion

● Should we have a generic way to gather data
asynchronously?

● ImageSetToSpatialObjectFilter for things like
SURF and SIFT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

