
The PCL Plugin for ParaView —
Developer Guide

P. Marion, R. Kwitt and B. Davis

Kitware Inc., June 14, 2012, Version 1.0

Contents

1 Introduction 2

2 Download & Build Instructions 2
2.1 Download and build ParaView . 2
2.2 Download and build PCL . 3
2.3 Download and build the PCL Plugin . 3

3 Contributing to the PCL Plugin 4

4 How to cite the PCL Plugin 4

5 Notation 4

6 Core Functionality 4
6.1 Data Type Compatibility . 4
6.2 Creating Attribute Arrays . 5

7 Wrapping PCL algorithms as VTK Filters 6
7.1 vtkPCLRadiusOutlierRemoval — Radius-based Outlier Removal 6
7.2 vtkPCLNormalEstimation — Estimating Surface Normals 8

8 Using the Python Bindings 10

1

About this Document

This is the developer guide to the PCL Plugin for ParaView, v1.0. The document was created
using LATEXand minted.sty1 for typesetting source code listings.

1 Introduction

This developer guide provides a reference for researchers in the field of point cloud pro-
cessing to use the PCL Plugin for ParaView. Throughout the developer guide, we’ll refer to
the PCL Plugin for Paraview as the PCL Plugin or just the plugin. This guide addresses is-
sues such as data type compatibility, wrapping PCL algorithms as VTK filters, or extending
the plugin by implementing new functionality. We assume that the reader is somewhat fa-
miliar with VTK filter development and refer to [2] for further information on VTK details.
For information about ParaView, we recommend taking a look at the ParaView Wiki.2
Note: While we are working on extending the plugin, this guide will get constantly updated to reflect
the latest changes.

2 Download & Build Instructions

The PCL plugin is currently distributed as a stand-alone tarball. It might — at some point
— be distributed directly with ParaView. For now, we support building against ParaView
v3.14 and PCL v1.5.1. We are however working on supporting the latest PCL trunk.

We propose a three-stage build process to compile and run the PCL plugin for Par-
aView: 1) building a vanilla ParaView, 2) building PCL (with ParaView’s VTK) and 3)
building the PCL plugin. While other strategies are possible, we strongly recommend to
follow this process to ensure that both PCL and ParaView use the same VTK version.

2.1 Download and build ParaView

Download the ParaView 3.14.1 source tarball 3 and follow the build instructions (on the
Wiki) to compile ParaView. In general, it should suffice to 1) unpack the tarball, 2) create
a Build directory and 3) run ccmake to modify or adapt cmake variables.

$ tar xvfz ParaView-3.14.1-Source.tar.gz

$ cd ParaView-3.14.1-Source

$ mkdir Build

$ cmmake ..

1http://code.google.com/p/minted/
2 http://www.paraview.org/Wiki/ParaView
3available at http://www.paraview.org/paraview/resources/software.php

2

http://code.google.com/p/minted/
http://www.paraview.org/Wiki/ParaView
http://www.paraview.org/paraview/resources/software.php

Note: Make sure that BUILD SHARED LIBS is set to ON. Hitting ’c’ followed by ’g’ will con-
figure and generate all files for the build process. Running

$ make

will build ParaView as well as all the submodules (such as VTK). Optionally, you can spec-
ify -jN, e.g., make -j4, to speed up the compilation process by using multiple cores.

2.2 Download and build PCL

Once we have build a vanilla ParaView, we can build PCL against ParaView’s VTK version.
For detailed instructions on how to obtain PCL, we refer to PCL’s installation instructions4

for compiling from source. For convenience, we repeat the basic commands: 1) Unpack
the tarball, 2) Create a Build directory, and 3) Run ccmake:

% tar xvjpf PCL-1.5.1-Source.tar.bz2

$ cd PCL-1.5.1-Source

$ mkdir Build

$ ccmake ..

Note: Ensure that you set the VTK DIR variable correctly, i.e., the VTK directory in Par-
aView’s Builddir., i.e., <FullPathToParaView>/ParaView-3.14.1-Source/Build/VTK. Af-
ter customizing any other cmake variables, run make to build PCL.

2.3 Download and build the PCL Plugin

Now that everything is set up, we are ready to actually build the plugin. First, download
the tarball5 and unpack it

$ tar xvfz PointCloudLibraryPlugin-v1.0.tar.gz

Then, create a Build directory and run ccmake, i.e.,

$ cd PointCloudLibraryPlugin-v1.0

$ mkdir Build

$ ccmake ..

Note: Make sure to set the ParaView DIR and PCL DIR cmake variables to

PCL_DIR <FullPathToPCLSOurce>/PCL-1.5.1-Source/Build

ParaView_DIR <FullPathToParaViewSource>/ParaView-3.14.1-Source/Build

4see http://www.pointclouds.org
5available at http://www.paraview.org/Wiki/images/d/d2/PointCloudLibraryPlugin-v1.0.tar.gz

3

http://www.pointclouds.org
http://www.paraview.org/Wiki/images/d/d2/PointCloudLibraryPlugin-v1.0.tar.gz

Hit ’c’ and ’g’ to configure and generate. Alternatively, you can set all on the command
line by

$ cmake -DParaView_DIR=<...> -DPCL_DIR=<...> ..

Running make will eventually compile the plugin and make it available for use within
ParaView.

3 Contributing to the PCL Plugin

tbd.

4 How to cite the PCL Plugin

In case you use the plugin for academic publications, please cite the following paper:

@inproceedings{Marion12a,

author = {P.~Marion and R.~Kwitt, B.~Davis and M. Gschwandtner},

title = {PCL and ParaView - Connecting the Dots},

booktitle = {CVPR Workshop on Point Cloud Processing (PCP)},

year = 2012}

5 Notation

Throughout this document, class names will be referred to in boldface, e.g., vtkPCLCon-
versions. Data types and filenames will be referred to in typewriter font, e.g., vtkPolyData
or vtkPCLConversions.h. PCL classes will always be prefixed by the namespace pcl, e.g.,
pcl::PointCloud to avoid confusion with VTK data types. All source code listings shown
in this document also list the corresponding file in the PCL plugin source directory.

6 Core Functionality

6.1 Data Type Compatibility

The core routines of the PCL plugin facilitate conversion between PCL and VTK data
types. In PCL, point clouds are stored in a pcl::PointCloud container that holds points
of a specific point type PointT, e.g., pcl::PointXYZ or pcl::PointXYZRGB. The basic data
structure to represent point cloud data in the plugin, however, is VTK’s vtkPolyData. A
vtkPolyData object can hold vertices, cells and attributes. In order to use PCL algorithms
we need to be able to convert back and forth between those data structures. This function-
ality is implemented in the vtkPCLConversions class.

4

The basic routine to enable the use of PCL’s processing algorithms is to convert VTK’s
vtkPolyData to PCL’s pcl::PointCloud container, using a suitable PCL point type. At
the current stage of development, we only support pcl::PointXYZ. The declaration of the
conversion routine is shown in Listing 1.

see vtkPCLConversions.h

// VTK -> PCL (PointXYZ)

static pcl::PointCloud<pcl::PointXYZ>::Ptr PointCloudFromPolyData(

vtkPolyData* polyData);

Listing 1: Conversion routines (VTK to PCL).

Converting back from a PCL point clouds to a vtkPolyDatadata object is more versatile
in the sense that we support three PCL point types, i.e., pcl::PointXYZ, pcl::PointXYZRGB
and pcl::PointXYZRGBA. The conversion routines are shown in Listing 2. All of them re-
turn a vtkSmartPointer to a vtkPolyData instance.

see vtkPCLConversions.h

// PCL (PointXYZ) -> VTK

static vtkSmartPointer<vtkPolyData> PolyDataFromPointCloud(

pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud);

// PCL (PointXYZRGB) -> VTK

static vtkSmartPointer<vtkPolyData> PolyDataFromPointCloud(

pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr cloud);

// PCL (PointXYZRGBA) -> VTK

static vtkSmartPointer<vtkPolyData> PolyDataFromPointCloud(

pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr cloud);

Listing 2: Conversion routines (PCL to VTK).

6.2 Creating Attribute Arrays

Apart from converting point clouds, the plugin also provides a few methods to create new
attribute arrays from different types of PCL representations of index vectors. The static
NewLabelsArray method of the vtkPCLConversions class supports exactly this function-
ality. The method is overloaded three times, each time taking a different type of PCL index
vector as a first argument and the number of elements in that vector as a second argument.
The method declarations are shown in Listing 3.

5

see vtkPCLConversions.h

static vtkSmartPointer<vtkIntArray> NewLabelsArray(

pcl::IndicesConstPtr indices, vtkIdType length);

static vtkSmartPointer<vtkIntArray> NewLabelsArray(

pcl::PointIndices::ConstPtr indices, vtkIdType length);

static vtkSmartPointer<vtkIntArray> NewLabelsArray(

const std::vector<pcl::PointIndices>& indices, vtkIdType length);

Listing 3: Creating new label (attribute) arrays.

7 Wrapping PCL algorithms as VTK Filters

Having point clouds in PCL’s point cloud data container allows to call PCL’s processing
algorithms. The output of a PCL algorithm eventually needs to be converted back to a suit-
able VTK data type, so that the data can be visualized and further processed in ParaView.

The conversion routines in 6.1 are very generic and it’s not always necessary to return
a new point cloud upon the completion of a PCL algorithm. For instance, PCL’s VoxelGrid
filter requires to return a new point cloud, however, an outlier removal filter does not have
that requirement. In fact, it suffices to only return the indices of the outliers (or inliers,
resp.) and then use ParaView’s internal thresholding mechanism to prune the point cloud.

The PCL Plugin follows exactly that strategy of avoiding to return new point clouds
whenever it is possible. Instead, attributes (or attribute arrays, resp.) are appended to
existing point clouds, represented as vtkPolyData. The following examples of PCL algo-
rithms, implemented as VTK filters, illustrate the interaction between PCL and VTK data
structures and show the difference between returning new points clouds versus adding
new attributes.

7.1 vtkPCLRadiusOutlierRemoval — Radius-based Outlier Removal

As an introductory example, we show how to implement Radius-based Outlier Removal as
a VTK filter that can be used within ParaView. This is implemented in the vtkPCLRadiu-
sOutlierRemoval class. The filter takes two input arguments: 1) a search radius and 2) the
number of neighbors for a point not to be an outlier.

To implement the VTK filter, the vtkPCLRadiusOutlierRemoval class is derived from
VTK’s vtkPolyDataAlgorithm class. vtkPolyDataAlgorithm is a superclass for algorithms
that produce vtkPolyData as output. Listing 4 shows the important parts of the class dec-
laration. Note that we use vtkGetMacro and vtkSetMacro to implement the Get/Set rou-
tines for the filter configuration parameters SearchRadius and NeighborsInSearchRadius.

The constructor of that class is shown in Listing 5. The constructor sets the default
configuration parameter values as well as the number of input and output ports of the
filter (usually 1/1). We will later see an example of using two input ports.

6

see vtkPCLRadiusOutlierRemoval.h

class vtkPCLRadiusOutlierRemoval : public vtkPolyDataAlgorithm

{

public:

vtkTypeMacro(vtkPCLRadiusOutlierRemoval, vtkPolyDataAlgorithm);

void PrintSelf(ostream& os, vtkIndent indent);

static vtkPCLRadiusOutlierRemoval *New();

vtkSetMacro(SearchRadius, double);

vtkGetMacro(SearchRadius, double);

vtkSetMacro(NeighborsInSearchRadius, int);

vtkGetMacro(NeighborsInSearchRadius, int);

protected:

double SearchRadius;

int NeighborsInSearchRadius;

virtual int RequestData(vtkInformation *request,

vtkInformationVector **inputVector,

vtkInformationVector *outputVector);

vtkPCLRadiusOutlierRemoval();

virtual ~vtkPCLRadiusOutlierRemoval();

private:

vtkPCLRadiusOutlierRemoval(const vtkPCLRadiusOutlierRemoval&); // Not implemented.

void operator=(const vtkPCLRadiusOutlierRemoval&); // Not implemented.

};

Listing 4: Class declaration of the vtkPCLRadiusOutlierRemoval class.

The interface to PCL, i.e., calling the implementation of the algorithm in PCL, is imple-
mented in the ApplyRadiusOutlierRemoval routine. Note that this routine is not a class
method. Listing 6 shows the corresponding source code (which closely resembles one of
the PCL tutorials on outlier removal).

The actual implementation of the VTK filter’s functionality is done in the RequestData
routine that is shown in Listing 7. First, we obtain pointers to the input and output data.
We then create a PCL point cloud from the vtkPolyData objects using our conversion
routine PointCloudFromPolyData and eventually call the vtkPCLOutlierRemoval routine.
Next, a new attribute array labels is created. This is done by using the static NewLabelsArray
method of the vtkPCLConversions class, explained in Section 6.2. In our example, the
labels array holds a binary-valued attribute, indicating whether a point is a model inlier
(i.e., 0) or a model outlier (i.e., 1). The attribute array is of dimensionalityN×1whereN de-
notes the number of points in the point cloud (obtained via input->GetNumberOfPoints()).
By setting the attribute name to is outlier, we can refer to that name in ParaView for visu-
alization or further processing (e.g., thresholding). In the last step, we shallow-copy the

7

see vtkPCLRadiusOutlierRemoval.cxx

vtkPCLRadiusOutlierRemoval::vtkPCLRadiusOutlierRemoval()

{

this->SearchRadius = 0.3;

this->NeighborsInSearchRadius = 10;

this->SetNumberOfInputPorts(1);

this->SetNumberOfOutputPorts(1);

}

Listing 5: Constructor of the vtkPCLRadiusOutlierRemoval class.
see vtkPCLRadiusOutlierRemoval.cxx

pcl::IndicesConstPtr ApplyRadiusOutlierRemoval(pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud,

double searchRadius,

int neighborsInSearchRadius)

{

if (!cloud || !cloud->points.size())

{

return pcl::IndicesConstPtr(new std::vector<int>);

}

pcl::PointCloud<pcl::PointXYZ>::Ptr cloudFiltered (new pcl::PointCloud<pcl::PointXYZ>);

pcl::RadiusOutlierRemoval<pcl::PointXYZ> outrem(true);

outrem.setInputCloud(cloud);

outrem.setRadiusSearch(searchRadius);

outrem.setMinNeighborsInRadius(neighborsInSearchRadius);

outrem.filter(*cloudFiltered);

return outrem.getRemovedIndices();

}

Listing 6: Calling the PCL algorithm.

input to the output (i.e., the input point cloud will be our output point cloud) and append
the labels attribute array.

7.2 vtkPCLNormalEstimation — Estimating Surface Normals

As a second example, we discuss the PCL plugin implementation of PCL’s surface normal
estimation algorithm. The example illustrates how to deal with PCL algorithms that do
return point clouds with different types of data points, e.g., pcl::Normal. Surface normal
estimation is implemented in PCL’s pcl::NormalEstimation class. As output, we obtain a
pcl::Pointcloud with pcl::Normal elements.

In the PCL plugin, normal estimation is implemented in the vtkPCLNormalEstimation
class. In contrast to our previous example, the filter operates on two input point clouds,
A and B, and requires a search radius to be specified. Passing two point clouds has the
advantage that we can leverage PCL’s setSearchSurface capability which allows to com-
pute surface normals for A, based on a different — usually smaller — set of points B. A

8

see vtkPCLRadiusOutlierRemoval.cxx

int vtkPCLRadiusOutlierRemoval::RequestData(

vtkInformation* vtkNotUsed(request),

vtkInformationVector **inputVector,

vtkInformationVector *outputVector)

{

// get input and output data objects

vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);

vtkPolyData *input =

vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));

vtkInformation *outInfo = outputVector->GetInformationObject(0);

vtkPolyData *output =

vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));

// perform outlier removal

pcl::PointIndices::Ptr inlierIndices;

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud =

vtkPCLConversions::PointCloudFromPolyData(input);

pcl::IndicesConstPtr outlierIndices = ApplyRadiusOutlierRemoval(cloud,

this->SearchRadius,

this->NeighborsInSearchRadius);

// pass thru input add labels

vtkSmartPointer<vtkIntArray> labels = vtkPCLConversions::NewLabelsArray(

outlierIndices, input->GetNumberOfPoints());

labels->SetName("is_outlier");

output->ShallowCopy(input);

output->GetPointData()->AddArray(labels);

return 1;

}

Listing 7: Core filter routine.

commonly used practice is to downsample the point cloud by means of a VoxelGrid filter
and use the resulting decimated set of points as the search cloud B.

Calling the PCL algorithm is implemented by the ComputeNormalEstimation routine
(see Listing 8). Note that this function is not a class method.

While the vtkPCLNormalEstimation class declaration is very similar (not shown here)
to the one of the previous example, there are several interesting differences in the actual
implementation that we need to point out: The first difference is in the constructor of the
filter class, shown in Listing 9. Since we want to support to input two point clouds, we
need to set two input ports, as opposed to one input and one output port in the vtkP-
CLRadiusOutlierRemoval class.

In Listing 10, we show the first part of the RequestData routine of the vtkPCLNor-
malEstimation filter that is responsible for fetching the two input point clouds provided
to the filter. In case no second cloud is provided, no search cloud is set and the first one is

9

see vtkPCLNormalEstimation.cxx

pcl::PointCloud<pcl::Normal>::Ptr ComputeNormalEstimation(

pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud,

pcl::PointCloud<pcl::PointXYZ>::ConstPtr searchCloud,

double searchRadius)

{

pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne;

pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>);

pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ> ());

ne.setSearchMethod(tree);

ne.setInputCloud(cloud);

if (searchCloud)

{

ne.setSearchSurface(searchCloud);

}

ne.setRadiusSearch(searchRadius);

ne.compute(*cloud_normals);

return cloud_normals;

}

Listing 8: Calling PCL’s normal estimation algorithm.
see vtkPCLNormalEstimation.cxx

vtkPCLNormalEstimation::vtkPCLNormalEstimation()

{

this->SearchRadius = 0.1;

this->SetNumberOfInputPorts(2);

this->SetNumberOfOutputPorts(1);

}

Listing 9: Constructor of the vtkPCLNormalEstimation class.

used for normal estimation.
In the second part of the filter’s RequestData routine, shown in Listing 11, we create

a new attribute array normals and shallow copy the first input point cloud. The new at-
tribute array is then appended. The attribute normals will contain a normal vector for
each point of the first input point cloud. We use our conversion routines to convert both
input clouds to PCL’s point cloud data type pcl::PointCloud<pcl::PointXYZ> and call
our ComputeNormalEstimation routine returning a pointer to a pcl::Pointcloud with
<pcl::Normal> elements. Eventually, we fill the normals attribute array with the returned
surface normal vector information.

8 Using the Python Bindings

tbd.

10

see vtkPCLNormalEstimation.cxx

...

vtkInformation *outInfo = outputVector->GetInformationObject(0);

vtkPolyData *output = vtkPolyData::SafeDownCast(outInfo->Get(vtkDataObject::DATA_OBJECT()));

// information on first port

vtkInformation *inInfo = inputVector[0]->GetInformationObject(0);

vtkPolyData *input = vtkPolyData::SafeDownCast(inInfo->Get(vtkDataObject::DATA_OBJECT()));

// information on second port

vtkInformation *searchInfo = inputVector[1]->GetInformationObject(0);

vtkPolyData *searchCloudPolyData = 0;

if (searchInfo)

{

searchCloudPolyData =

vtkPolyData::SafeDownCast(searchInfo->Get(vtkDataObject::DATA_OBJECT()));

}

...

Listing 10: RequestData routine of the vtkPCLNormalEstimation filter (Part I).

References

[1] P. Marion, B. Davis R. Kwitt, and M. Gschwandtner. PCL and ParaView - connecting
the dots. In CVPR Workshop on Point Cloud Processing (PCP), 2012.

[2] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit. Kitware Inc., 4th
edition, 2006.

11

see vtkPCLNormalEstimation.cxx

...

// create new normals array

vtkSmartPointer<vtkFloatArray> normals = vtkSmartPointer<vtkFloatArray>::New();

normals->SetNumberOfComponents(3);

normals->SetNumberOfTuples(input->GetNumberOfPoints());

normals->SetName("normals");

// pass input thru to output and add new array

output->ShallowCopy(input);

output->GetPointData()->AddArray(normals);

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud = vtkPCLConversions::PointCloudFromPolyData(input);

pcl::PointCloud<pcl::PointXYZ>::Ptr searchCloud;

if (searchCloudPolyData)

{

searchCloud = vtkPCLConversions::PointCloudFromPolyData(searchCloudPolyData);

}

pcl::PointCloud<pcl::Normal>::Ptr cloudNormals = ComputeNormalEstimation(cloud,

searchCloud, this->SearchRadius);

assert(cloudNormals);

assert(cloudNormals->size() == normals->GetNumberOfTuples());

for (size_t i = 0; i < cloudNormals->size(); ++i)

{

normals->SetTuple(i, cloudNormals->points[i].normal);

}

...

Listing 11: RequestData routine of the vtkPCLNormalEstimation filter (Part II).

12

	Introduction
	Download & Build Instructions
	Download and build ParaView
	Download and build PCL
	Download and build the PCL Plugin

	Contributing to the PCL Plugin
	How to cite the PCL Plugin
	Notation
	Core Functionality
	Data Type Compatibility
	Creating Attribute Arrays

	Wrapping PCL algorithms as VTK Filters
	vtkPCLRadiusOutlierRemoval — Radius-based Outlier Removal
	vtkPCLNormalEstimation — Estimating Surface Normals

	Using the Python Bindings

