
UseLATEX.cmake: LATEX Document Building

Made Easy

Kenneth Moreland

Version 2.0.0

Contents

1 Description 2

2 Download 2

3 Basic Usage 2
3.1 Using a Bibliography . 3
3.2 Incoporating Images . 4
3.3 Selecting a Default Build . 5
3.4 Force a Type of Build . 6
3.5 Create Nothing by Default . 7
3.6 SyncTeX-Enabled Editors . 7

4 Package Support 7
4.1 Making an Index . 8
4.2 Making a Glossary . 8
4.3 Nomenclature Support . 8
4.4 multibib Support . 9

5 Advanced Configurations 10
5.1 Multipart LATEX Files . 10
5.2 Configuring LATEX Files . 10
5.3 Building Multiple LATEX Documents 11
5.4 Identifying Dependent Files . 12

6 Frequently Asked Questions 12
6.1 How do I process LATEX files on Windows? 13
6.2 How do I process LATEX files on Mac OS X? 13
6.3 How do I process with X ELATEX? 13
6.4 How do I process with LuaLATEX? 13
6.5 Why does UseLATEX.cmake have to copy my tex files? 14
6.6 How can LATEX find a file not a tex, image, or bibliography? . . . 14

1

6.7 Why is convert failing on Windows? 15
6.8 How do I automate plot generation with command line programs? 16
6.9 Why does make stop after each image conversion? 17
6.10 How do I resolve \write 18 errors with pstricks or pdftricks? . . . 18
6.11 Why is UseLATEX.cmake complaining about image file names? . 18
6.12 Why is the MANGLE TARGET NAMES option deprecated? 19

7 Acknowledgments 20

A Sample CMakeLists.txt 21

1 Description

Compiling LATEX files into readable documents is actually a very involved pro-
cess. Although CMake comes with FindLATEX.cmake, it does nothing for you
other than find the commands associated with LATEX. I like using CMake to
build my LATEX documents, but creating targets to do it is actually a pain. Thus,
I’ve compiled a bunch of macros that help me create targets in CMake into a
file I call “UseLATEX.cmake.” Here are some of the things UseLATEX.cmake
handles:

• Runs LATEX multiple times to resolve links.

• Can run bibtex, makeindex, and makeglossaries to make bibliographies, in-
dexes, and/or glossaries.

• Optionally runs configure on your LATEX files to replace @VARIABLE @ with
the equivalent CMake variable.

• Automatically finds png, jpeg, eps, pdf, svg, tiff, and gif files and converts
them to formats latex and pdflatex understand.

2 Download

UseLATEX.cmake is currently posted to the CMake Wiki at

http://public.kitware.com/Wiki/CMakeUserUseLATEX.

3 Basic Usage

Using UseLATEX.cmake is easy. For a basic LATEX file, simply include the file in
your CMakeLists.txt and use the add latex document command to make targets
to build your document. For an example document in the file MyDoc.tex, you
could establish a build with the following simple CMakeLists.txt.

2

http://public.kitware.com/Wiki/CMakeUserUseLATEX

project(MyDoc NONE)

include(UseLATEX.cmake)

add_latex_document(MyDoc.tex)

The add latex document adds the following targets to create a readable
document from MyDoc.tex:

dvi Creates MyDoc.dvi.

pdf Creates MyDoc.pdf using pdflatex. Requires the PDFLATEX COMPILER

CMake variable to be set.

ps Creates MyDoc.ps. Requires the DVIPS CONVERTER CMake variable to be
set.

safepdf Creates MyDoc.pdf from MyDoc.ps using ps2pdf. Many publishers pre-
fer pdfs are created this way. Requires the PS2PDF CONVERTER CMake
variable to be set.

html Creates html pages. Requires the LATEX2HTML CONVERTER CMake vari-
able to be set.

clean To CMake’s default clean target, the numerous files that LATEX often
generates are added.

auxclean Deletes the auxiliary files from LATEX, but not the generated input
files. Sometimes LATEX gets itself in a bad state where the auxiliary files
need to be deleted to successfully build again, and this target does that
without also deleting other build files (such as converted image files or
files from unrelated targets in the same directory).

One caveat about using UseLATEX.cmake is that you are required to do an
out-of-source build. That is, CMake must be run in a directory other than the
source directory. This is necessary as latex is very picky about file locations, and
the relative locations of some generated or copied files can only be maintained
if everything is copied to a separate directory structure. For more details and
hints on workarounds, see the “Why does UseLATEX.cmake have to copy my
tex files?” frequently asked question in Section 6.5.

3.1 Using a Bibliography

For any technical document, you will probably want to maintain a BibTEX
database of papers you are referencing in the paper. You can incorporate your
.bib files by adding them after the BIBFILES argument to the add latex -

document command.

3

add_latex_document(MyDoc.tex BIBFILES MyDoc.bib)

This will automatically add targets to build your bib file and link it into your
document. To use the BibTEX file in your LATEX file, just do as you normally
would with \cite commands and bibliography commands:

\bibliographystyle{plain}

\bibliography{MyDoc}

You can list as many bibliography files as you like.

3.2 Incoporating Images

To be honest, incorporating images into LATEX documents can be a real pain.
This is mostly because the format of the images needs to depend on the version
of LATEX you are running (latex vs. pdflatex). With these CMake macros, you
only need to convert your raster graphics to png or jpeg format and your vector
graphics to eps or pdf format. Place them all in a common directory (e.g.
images) and then use the IMAGE DIRS option to the add latex document macro
to point to them. UseLATEX.cmake will take care of the rest.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

)

If you want to break up your image files in several different directories, you
can do that, too. Simply provide multiple directories after the IMAGE DIRS

command.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS icons figures

)

Alternatively, you could list all of your image files separatly with the IMAGES
option.

set(MyDocImages

logo.eps

icons/next.png

icons/previous.png

4

figures/flowchart.eps

figures/team.jpeg

)

add_latex_document(MyDoc.tex

IMAGES ${MyDocImages}

)

Both the IMAGE DIRS and IMAGES can be used together. The combined set
of image files will be processed. If you wish to provide a separate eps file and
pdf or png file, that is OK, too. UseLATEX.cmake will handle that by copying
over the correct file instead of converting.

Once you establish the images directory, CMake will automatically find all
files with known image extensions (currently eps, pdf, png, jpeg, and jpg) in it
and add makefile targets to use ImageMagick’s convert to convert the file times
to those appropriate for the build. (One exception is that ps2pdf will be used
when converting eps to pdf to get around a problem where ImageMagick drops
the bounding box information.) If you do not have ImageMagick, you can get it
for free from http://www.imagemagick.org. CMake will also give you a LATEX -

SMALL IMAGES option that, when on, will downsample raster images. This can
help speed up building and viewing documents. It will also make the output
image sizes smaller.

UseLATEX.cmake will occasionally use a conversion program other than Im-
ageMagick’s convert. For example, ps2pdf will be used when converting eps to
pdf to get around a problem where ImageMagick drops the bounding box infor-
mation. When available, the pdftops from the Poppler utilities will be used to
convert pdf to eps because it better preserves vector graphics and color spaces.
At any rate, you do not need to worry about setting the appropriate image con-
version program. UseLATEX.cmake will automatically select the best one and
issue errors or warnings if there is a problem.

Depending on what program is launched to build your LATEX file (either latex
or pdflatex, and UseLATEX.cmake supports both), a particular format for your
image is required. As stated, UseLATEX.cmake handles the necessary conver-
sions for you. However, you will not know in advance what file extension is used
on the image. That is no problem. Simply leave out the file extension in the
file name argument to \includegraphics and LATEX will find the file with the
appropriate extension for you.

Note that in order to ensure that the resulting image files are placed in
the appropriate directory, you are required to give relative paths for images
and image directories. For example, IMAGE DIRS ${CMAKE CURRENT SOURCE -

DIR}/images will fail. Use IMAGE DIRS images instead.

3.3 Selecting a Default Build

By default, when you use add latex document and then run make with no
arguments, pdflatex is used to create a pdf file. You can of course always specify

5

http://www.imagemagick.org

a target described at the top of Section 3 to build a different document format.
However, for convenience you can change the default build.

UseLATEX.cmake defines the CMake variable LATEX DEFAULT BUILD that
controls which build is performed by default. Valid values for this variable
are Pdf, Dvi, Ps, SafePdf, and Html. This variable is usually initialized to Pdf,
but you can override this behavior by setting the LATEX DEFAULT BUILD envi-
ronment variable before the first configuration. Thus, if you have a preference
for a particular default build, you can set your system environment to use it by
default for all UseLATEX.cmake builds.

3.4 Force a Type of Build

UseLATEX.cmake does its best to make LATEX builds as portable as possible,
but there might be a number of technical reasons why a particular document
can only be built using one type of system. If that is the case, it is best if the
configuration only supports one type of build.

add latex document has several options to force the document generation
to a particular type of build. If you give the option FORCE PDF, only the pdf
targets that use the pdflatex command are created.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

FORCE_PDF

)

Likewise, the FORCE DVI option restricts add latex document to targets that
use the latex command. In addition to building dvi files, FORCE DVI also allows
ps generation from the dvi files and “safe” pdf generation from the ps files.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

FORCE_PS

)

Finally, the FORCE HTML option will restrict targets that are used for html
generation.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

FORCE_HTML

)

The behavior is undefined if more than one force option is given.

6

3.5 Create Nothing by Default

Sometimes it is desirable to disable the building of your LATEX document by
default (that is, not build it with the all target). This is convenient when
including LATEX documentation with some other source to build such as when
you are documenting a library. To remove all targets from the default, simply
add the EXCLUDE FROM ALL option to add latex document.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

EXCLUDE_FROM_ALL

)

3.6 SyncTeX-Enabled Editors

Some implementations of LATEX compilers have a feature called SyncTeX that
allows an editor or viewer to link between the compiled version of the document
(such as a pdf) and the original LATEX source code. The most common way to
do this is to add -synctex=1 to the pdflatex command. This will create a file
named 〈base-name〉.synctex.gz where each part of the final document points to
the original LATEX files.

However, there is a problem. UseLATEX.cmake copies all of the input LATEX
source files to an out-of-source build directory (see Section 6.5 for more infor-
mation on why). But the LATEX compiler does not know that. Thus, the created
〈base-name〉.synctex.gz will point to the temporary files in the build directory
rather than your original source files.

UseLATEX.cmake can add commands to the make targets that “correct”
the 〈base-name〉.synctex.gz. To add these commands, simply turn on the LA-

TEX USE SYNCTEX in ccmake or equivalent CMake configuring tool. When this
option is on, the -synctex=1 argument is added to the LATEX compile commands
(settable with the LATEX SYNCTEX FLAGS variable) and a command is added to
targets that will find files in 〈base-name〉.synctex.gz and change their paths to
the original files in the source directory.

4 Package Support

Modern LATEX distributions provide a great many packages to provide additional
features to the document building process. A great many more packages are
available in online package distributions. The vast majority of these packages
provide features that are self contained within the LATEX call itself. That is, the
build process does not have to change to accommodate these packages.

That said, there are a small number of packages that require supplementary
programs to be run or to otherwise change the build process. These packages
require special options to add latex document, which are documented here.

7

4.1 Making an Index

You can make an index in a LATEX document by using the makeidx package.
However, this package requires you to run the makeindex command. Simply add
the USE INDEX option anywhere in the add latex document arguments, and
makeindex will automatically be added to the build.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

USE_INDEX

)

4.2 Making a Glossary

There are multiple ways to make a glossary in a LATEX document, but the glos-
saries package provides one of the most convenient ways of doing so. Like the
makeidx package, glossaries requires running makeindex or xindy for building aux-
iliary files. However, building the glossary files can be more complicated as there
can be different sets of glossary files with different extensions. UseLATEX.cmake
will handle that for you. It does it in a way similar to the makeglossary command,
but in a more portable way. Simply add the USE GLOSSARY option anywhere in
the add latex document arguments, and the glossary creating will be handled
for you.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

USE_GLOSSARY

)

4.3 Nomenclature Support

The nomencl package provides a mechanism to collect nomenclature and print
it together in a single section. The nomencl behaves very similarly to glossaries
(described in Section 4.2) including running the makeindex command. However,
the arguments to makeindex are a bit different (to avoid clashes with creating
glossaries), and unfortunately nomencl provides no hints in the auxiliary file
about it. Thus, UseLATEX.cmake provides a special USE NOMENCL option to
add latex document to add the necessary commands to build the nomenclature.

add_latex_document(MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

8

USE_NOMENCL

)

It should be noted that this feature only works with nomencl version 4.0 or
later. The nomencl package changed how makeindex is called to make it compati-
ble with indices and glossaries. The correct version of nomencl is easily identified
as the one that uses the \makenomenclature and \printnomenclature com-
mands (as opposed to the old \makeglossary and \printglossary commands).
If you are using an older version of nomencl, you are best off to update for a
number of reasons.

4.4 multibib Support

The multibib package provides a mechanism to create a set of distinct bibliogra-
phies that are not necessarily associated with sections of the document. Part
of the operation of this package creates multiple LATEX auxiliary files that need
to be processed independently with BibTEX. Consequently, the build needs to
be modified to run BibTEX multiple times with different inputs. This can be
achieved with the MULTIBIB NEWCITES argument to add latex document.

As an example, consider the following usage of the multibib package, par-
tially taken from its documentation. It creates a set of distinct citation com-
mands named own, submitted, and internal with the section heads Own Work,
Submitted Work, and Master Theses and Ph.D. Theses respectively. They
collectively use the bibliography files own.bib, submitted.bib, techreports.bib, and
theses.bib.

\newcites{own,submitted,internal}%

{Own Work,%

Submitted Work,%

{Technical Reports, Master Theses and Ph.D. Theses}}

\bibliographyown{own.bib}

\bibliographysubmitted{submitted.bib}

\bibliographyinternal{techreports.bib,theses.bib}

The three suffixes specified to the \newcite command and the four bibliog-
raphy files referenced must all be specified in the add latex document command
with the MULTIBIB NEWCITES and BIBFILES arguments, respectively.

add_latex_document(MyDoc.tex

BIBFILES own.bib submitted.bib techreports.bib theses.bib

9

MULTIBIB_NEWCITES own submitted internal

)

5 Advanced Configurations

This document has heretofore described using UseLATEX.cmake for a single
LATEX document and associated files (bibliographies, images, indices, etc.). How-
ever there are many configurations to document building that extend beyond
this simple scenario including multipart files, multiple documents, and depended
builds.

5.1 Multipart LATEX Files

Often, it is convenient to split a LATEX document into multiple files and use
the LATEX \input or \include command to put them back together. To do
this, all the files have to be located together. UseLATEX.cmake can take care
of that, too. Simply add the INPUTS argument to add latex document to copy
these files along with the target tex file. Build dependencies to these files is also
established.

add_latex_document(MyDoc.tex

INPUTS Chapter1.tex Chapter2.tex Chapter3.tex Chapter4.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

USE_INDEX

)

As far as UseLATEX.cmake is concerned, input files do not necessarily have to
be tex files. For example, you might be including the contents of a text file into
your document with the \VerbatimInput command of the fancyvrb package. In
fact, you could also add graphic files as inputs, but you would not get the extra
conversion features described in Section 3.2.

5.2 Configuring LATEX Files

Sometimes it is convenient to control the build options of your tex file with
CMake variables. You can achieve this by using the CONFIGURE argument to
add latex document.

add_latex_document(MyDoc.tex

INPUTS Chapter1.tex Chapter2.tex Chapter3.tex Chapter4.tex

CONFIGURE MyDoc.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

10

USE_INDEX

)

In the above example, in addition to copying MyDoc.tex to the binary di-
rectory, UseLATEX.cmake will configure MyDoc.tex. That is, it will find all
occurrences of @VARIABLE @ and replace that string with the current CMake
variable VARIABLE .

With the CONFIGURE argument you can list the target tex file (as shown
above) as well as any other tex file listed in the INPUTS argument.

add_latex_document(MyDoc.tex

INPUTS Ch1Config.tex Ch1.tex Ch2Config.tex

Ch2.tex Ch3Config Ch3.tex

CONFIGURE Ch1Config.tex Ch2Config.tex Ch3Config.tex

BIBFILES MyDoc.bib

IMAGE_DIRS images

USE_INDEX

)

Be careful when using the CONFIGURE option. Unfortunately, the @ symbol
is used by LATEX in some places. For example, when establishing a tabular
environment, an @ is used to define the space between columns. If you use
it more than once, then UseLATEX.cmake will erroneously replace part of the
definition of your columns for a macro (which is probably an empty string).
This can be particularly troublesome to debug as LATEX will give an error in a
place that, in the original document, is legal. Hence, it is best to only configure
tex files that contain very little text of the actual document and instead are
mostly setup and options.

5.3 Building Multiple LATEX Documents

The most common use for UseLATEX.cmake is to build a single document, such
as a paper you are working on. However, some use cases involve building several
documents at one time.

Multiple LATEX documents in the same CMake project can be created by sim-
ply calling add latex document multiple times. Each call to add latex docu-

ment will create its own set of unique targets that will be added as dependencies
of dvi, pdf, ps, safepdf and html.

Consider the following code.

add_latex_document(MyDoc1.tex)

add_latex_document(MyDoc2.tex)

11

In the example above, the first call to add latex document will create targets
named MyDoc1 dvi, MyDoc1 pdf, MyDoc1 ps, etc. whereas the second call
will create targets named MyDoc2 *. Calling dvi, pdf, etc. will execute the
respective targets for the two documents.

The EXCLUDE FROM DEFAULTS option suppresses these links to the docu-
ment’s targets.

add_latex_document(MyDoc1.tex)

add_latex_document(MyDoc2.tex)

add_latex_document(MyDoc3.tex EXCLUDE_FROM_DEFAULTS)

In this augmented example, MyDoc1 and MyDoc2 are built when targets
such as dvi and pdf are called, but MyDoc3 is not. Note, however, that in this
example MyDoc3 is still built as part of the all target that CMake sets as the
default build target. Use EXCLUDE FROM ALL to remove a document from the
default all build. EXCLUDE FROM ALL and EXCLUDE FROM DEFAULTS can be used
together or independently.

5.4 Identifying Dependent Files

In some circumstances, CMake’s configure mechanism is not sufficient for cre-
ating input files. Input LATEX files might be auto-generated by any number of
other mechanisms.

If this is the case, simply add the appropriate CMake commands to generate
the input files, and then add that file to the DEPENDS option of add latex -

document. To help you build the CMake commands to place the generated
files in the correct place, you can use the LATEX GET OUTPUT PATH con-
venience function to get the output path.

latex_get_output_path(output_dir)

add_custom_command(OUTPUT ${output_dir}/generated_file.tex

COMMAND tex_file_generate_exe

ARGS ${output_dir}/generated_file.tex

)

add_latex_document(MyDoc.tex DEPENDS generated_file.tex)

6 Frequently Asked Questions

This section includes resolutions to common questions and issues concerning use
of UseLATEX.cmake and with LATEX in general.

12

6.1 How do I process LATEX files on Windows?

I have successfully used two different ports of LaTeX for windows:
the cygwin port (http://www.cygwin.com/) and the MikTEX port
(http://www.miktex.org/).

If you use the cygwin port of LATEX, you must also use the cygwin port
of CMake, make, and ImageMagick. If you use the MikTEX port of LATEX,
you must use the CMake from http://www.cmake.org/HTML/Download.html,
the ImageMagick port from http://www.imagemagick.org/script/index.php,
and a native build tool like MSVC or the GNU make port at
http://unxutils.sourceforge.net/. Do not use the “native” CMake program with
any cygwin programs or the cygwin CMake program with any non-cygwin pro-
grams. This issue at hand is that the cygwin ports create and treat filenames
differently then other windows programs.1

Also be aware that if you have images in your document, there are numerous
problems that can occur on Windows with the ImageMagick convert program.
See Section 6.7 for more information.

6.2 How do I process LATEX files on Mac OS X?

Using LATEX on Mac OS X is fairly straightforward because this OS is built
on top of Unix. By using the Terminal program or X11 host, you can run
LATEX much like any other Unix variant. The only real issue is that LATEX and
some of the supporting programs like CMake and ImageMagick are not typically
installed (whereas on Linux they often are).

Most applications port fairly easily to Mac OS so long as you are willing
to use them as typical Unix or X11 programs. To make things even easier, I
recommend taking advantage of a Mac porting project to make this process
even easier. MacPorts (http://www.macports.org) is a good tool providing a
comprehensive set of tool ports including LATEX, CMake, and ImageMagick. The
fink project and FinkCommander (http://finkcommander.sourceforge.net/) is a
similar although less active project.

6.3 How do I process with X ELATEX?

UseLATEX.cmake was not designed with X ELATEX in mind, but the interface
of that program is similar enough to LATEX that you should be able to use it.
Simply change the PDFLATEX COMPILER CMake variable to the xelatex program
and build the pdf target.

6.4 How do I process with LuaLATEX?

UseLATEX.cmake was not designed with LuaLATEX in mind, but the interface
of that program is similar enough to LATEX that you should be able to use it.

1If you are careful, you can use the cygwin version of make with the windows ports of
CMake, LATEX, and ImageMagick. It is an easy way around the problems described in Sec-
tion 6.7.

13

http://www.cygwin.com/
http://www.cygwin.com/
http://www.miktex.org/
http://www.miktex.org/
http://www.cmake.org/HTML/Download.html
http://www.imagemagick.org/script/index.php
http://unxutils.sourceforge.net/
http://www.macports.org
http://www.macports.org
http://www.finkproject.org/
http://finkcommander.sourceforge.net/
http://finkcommander.sourceforge.net/

Simply change the PDFLATEX COMPILER CMake variable to the lualatex program
and build the pdf target.

6.5 Why does UseLATEX.cmake have to copy my tex files?

UseLATEX.cmake cannot process your tex file without copying it. As explained
in Section 3, LATEX is very picky about file locations. The relative locations of
files that your input files point to, and all but the most simple LATEX files point
to other files, must remain consistent.

UseLATEX.cmake will often have to modify at least one file either through
configurations or image format and size conversions. When creating new files,
UseLATEX.cmake will have to copy either all of the files or none of the files. Since
configuring and writing over an original file is unacceptable, UseLATEX.cmake
forces you to configure it such that LATEX builds in a different directory than
where you have placed the original. If you do not specify a seperate directory,
you get an error like the following.

CMake Error at UseLATEX.cmake:377 (MESSAGE):

LaTeX files must be built out of source or you must set

LATEX_OUTPUT_PATH.

The best way around this problem is do an “out of source” build, which is
really the preferred method of using CMake in general. To do an out of source
build, create a new build directory, go to that directory, and run cmake from
there, pointing to the source directory.

If for some reason an out of source build is not feasable or desireable, you can
set the LATEX OUTPUT PATH variable to a directory other than . (the local direc-
tory). If you are building a LATEX document in the context of a larger project
for which you wish to support in source builds, consider pragmatically setting
the LATEX OUTPUT PATH CMake cache variable from within your CMakeLists.txt.

6.6 How can LATEX find a file not a tex, image, or bibliog-
raphy?

The most common files included from a LATEX tex file are other tex files, images,
and bibliographies, all of which are handled with options to add latex docu-

ment.
But what happens if the LATEX build includes some other type of file? For

example, the fancyvrb package can import a text file with the \VerbatimInput

command to be formatted in a teletype font. Other examples occur, such as
program formatting packages that can read in source code files.

As far as UseLATEX.cmake is concerned, these types of files are simply other
inputs to LATEX and handled in the same way as included tex files. They can be
included by adding them to the INPUTS argument as described in Section 5.1.

14

If an inputted file does not immediately exist but is generated by some other
process, then the file should be generated in the output directory and added to
the DEPENDS of the build as described in Section 5.4.

6.7 Why is convert failing on Windows?

Assuming that you have correctly downloaded and installed an appropriate ver-
sion of ImageMagick (as specified in Section 6.1), there are several other prob-
lems that users can run into the created build files attempt to run the convert
program.

A common error is that convert not finding a file that is clearly there.

convert: unable to open image ‘filename’

If you notice that the drive letter is stripped off of the filename (i.e. C:),
then you are probably mixing the Cygwin version of convert with the non-
cygwin CMake. The cygwin version of convert uses the colon (:), as a directory
separator for inputs. Thus, it assumes the output file name is really two input
files separated by the colon. Switch to the non-cygwin port of ImageMagick to
fix this.

If you are using nmake, you may also see the following error:

convert.exe: unable to open image ‘C:’: Permission denied.

I don’t know what causes this error, but it appears to have something to do
with some strange behavior of nmake when quoting the convert executable. The
easiest solution is to use a different build program (such as make or MSVC’s
IDE or a unix port of make). If anyone finds away around this problem, please
contribute back.

Another possible error seen is

Invalid Parameter - filename

This is probably because CMake has found the wrong convert program. Win-
dows is installed with a program named convert in %SYSTEMROOT%\system32.
This convert program is used to change the filesystem type on a hard drive. Since
the windows convert is in a system binary directory, it is usually found in the
path before the installed ImageMagick convert program. (Don’t get me started
about the logic behind this.) Make sure that the IMAGEMAGICK CONVERT CMake
variable is pointing to the correct convert program. Recent versions of UseLA-
TEX.cmake should give a specific warning about this with instructions on how
to fix it.

15

6.8 How do I automate plot generation with command
line programs?

LATEX is often used in conjunction with plotting programs that run on the
command line like gri or gnuplot. Although there is no direct support for these
programs in UseLATEX.cmake, it is straightforward to use these programs.

One way to use a plotting program is simply to run it yourself to generate the
plot and then incorporate the image file into your LATEX document as you would
any other image file (see Section 3.2). This the easiest way to incorporate these
plots since it does not require additional CMake code. It also ensures consistency
of how the plot looks (often the plots will look different if created on different
platforms), and it provides the opportunity to edit the image to make it look
better for publication.

Another way to use these plotting programs is to automatically run them
when building the LATEX document. This is convenient if you frequently change
the data you are plotting or if you are creating many plots. To automate running
the plotting program build one or more targets to generate these files and then
add these targets as LATEX dependencies (see Section 5.4 for information on
adding dependencies). Here is an example of creating the targets for converting
a directory of gri files and incorporating the resulting files in a LATEX document.

Set GRI executable

set(GRI_COMPILE "/usr/bin/gri")

Set the location of data files

set(DATA_DIR data)

Set the location of the directory for image files

set(IMAGE_DIR graphics)

Get a list of gri files

file(GLOB_RECURSE GRI_FILES "*.gri")

foreach(file ${GRI_FILES})

get_filename_component(basename "${file}" NAME_WE)

Replace stings in gri file so data files can be found

file(READ

${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${basename}.gri

file_contents

)

string(REPLACE "${DATA_DIR}" "${IMAGE_DIR}/${DATA_DIR}"

changed_file_contents ${file_contents}

)

file(WRITE

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri

${changed_file_contents}

)

16

Command to run gri

if(GRI_COMPILE)

add_custom_command(

OUTPUT

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps

DEPENDS

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}

COMMAND

${GRI_COMPILE}

ARGS

-output

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.gri

)

endif()

Make a list of all gri files (for ADD_LATEX_DOCUMENT depend)

set(ALL_GRI_FILES ${ALL_GRI_FILES}

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${basename}.eps

)

endforeach(file)

Copy over all data files needed to generate gri graphs

add_custom_command(

OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}

DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${DATA_DIR}

COMMAND ${CMAKE_COMMAND} -E copy_directory

${CMAKE_CURRENT_SOURCE_DIR}/${IMAGE_DIR}/${DATA_DIR}

${CMAKE_CURRENT_BINARY_DIR}/${IMAGE_DIR}/${DATA_DIR}

)

add_latex_document(MyDoc.tex

IMAGE_DIRS ${IMAGE_DIR}

DEPENDS ${ALL_GRI_FILES}

)

6.9 Why does make stop after each image conversion?

There is a bug in the ImageMagick convert version 6.1.8 that inappropriatly
returns a failure condition even when the image convert was successful. The
problem might also occur in other ImageMagick versions. Try updating your
installation of ImageMagick.

17

6.10 How do I resolve \write 18 errors with pstricks or
pdftricks?

A \write18 command is LATEX’s obtuse syntax for running a command on your
system. Commands in the pstricks and pdftricks packages may need to run
commands on your system to, for example, convert graphics from one format to
another.

Unfortunately, allowing LATEX to run commands on your system can be
considered a security issue. Some versions of LATEX such as MikTEX disable
the feature by default. Thus, in order to use packages that rely on \write18,
you may have to enable the feature, typically with a command line option. For
MikTEX, this command line option is --enable-write18.

You can instruct UseLATEX.cmake to pass any flag to LATEX by adding it to
the LATEX COMPILER FLAGS CMake variable. One way to do this is through the
CMake GUI. Simply go to the advanced variables, find LATEX COMPILER FLAGS,
and add --enable-write18 (or equivalent flag) to the list of arguments.

You can also automatically add this flag by setting the flag in your CMake-
Lists.txt file. For example:

set(LATEX_COMPILER_FLAGS

"-interaction=nonstopmode --enable-write18"

CACHE STRING "Flags passed to latex."

)

include(UseLATEX.cmake)

The disadvantage of this latter approach is the reduction of portability. This
addition could cause a failure for any LATEX implementation that does not sup-
port the --enable-write18 flag (for which there are many).

6.11 Why is UseLATEX.cmake complaining about image
file names?

If you have an image file with a filename that contains multiple periods, for
example my.image.pdf, UseLATEX.cmake will issue a warning like the following.

Some LaTeX distributions have problems with image file names

with multiple extensions. Consider changing my.image.pdf to

something like my-image.pdf.

This is because, just as the warning reports, some versions of LATEX have
problems with including image filenames with multiple extensions. For example,
if you tried to include my.image.pdf with a command like

\includegraphics{my.image}

18

then some versions of LATEX will respond that the image extension .image is not
recognized or that the file my.image is not found because it fails to look for files
with valid extensions.

Although it is inadvisable (per Section 3.2), you might try to get around the
problem by specifying the extension like this.

\includegraphics{my.image.pdf}

This might work, or it might just make LATEX complain that it does not recognize
images with extension .image.pdf.

In the end, the best solution is to simply use filenames that will not trouble
LATEX. Even though some LATEX distributions (like MacTEX) seem to handle
this extension ambiguity correctly, others clearly do not. Thus, even if your
LATEX distribution handles these image filenames correctly, it is still a bad idea
in case you need to change distributions or build on other computers. Your best
course of action is to simply heed the warning and rename your files.

6.12 Why is the MANGLE TARGET NAMES option deprecated?

The original concept for UseLATEX.cmake was part of a build system for a single
document. As such, add latex document created generically named targets
(like dvi and pdf). This became problematic when UseLATEX.cmake was used
in larger projects that built multiple targets. The multiple documents would
each try to create their own dvi, pdf, etc. targets, and this would create CMake
errors when they conflicted with each other.

To solve this problem, in 2006 the MANGLE TARGET NAMES was added to add -

latex document. When this option was given, add latex document would cre-
ate “mangled” targets that are unique to the name of the document so that
they would not conflict with each other.

This option solved the problem for projects building multiple documents,
but a couple of undesirable elements were later discovered. The first was that
LATEX documents built with the MANGLE TARGET NAMES option were never built
by default. To build the document, the user had to specifically request the
target, which had an unwieldy name, to be built or to explicitly set up depen-
dencies to those targets. The second and more serious issue was that if a project
incorporated one or more sub-projects (not uncommon) and more than one of
these projects used UseLATEX.cmake, you were likely to get conflicting targets
again.

Consequently, in 2015 a change was made to add latex document to man-
gle all targets. The UseLATEX.cmake package establishes a single set of default
target names (dvi, pdf, etc.), and add latex document sets up dependencies
from these default targets to the mangled target names. Thus, when UseLA-
TEX.cmake is used for a single document, the same simple targets work fine.
When multiple documents are added, the default targets are automatically set
up for all documents without conflicts. See Section 5.3 for more details on
building multiple LATEX documents in a project.

19

So, MANGLE TARGET NAMES is deprecated because it is redundant. All tar-
gets are mangled. The only difference is that add latex document establishes
dependencies to the default target names. If these dependency targets are not
desired, use the EXCLUDE FROM DEFAULTS option. (Once again, see Section 5.3
for more details.)

7 Acknowledgments

Thanks to all of the following contributors.

Matthias Bach Instructions for using LuaLATEX.

Martin Baute Check for Windows version of convert being used instead of
ImageMagick’s version.

Arnout Boelens Example of using gri in conjunction with LATEX.

Mark de Wever Fixes for interactions between the makeglossaries and
BibTEX commands.

Alin Elena Suggestions on removing dependence on makeglossaries command.

Myles English Support for the nomencl package.

Tomasz Grzegurzko Support for htlatex.

Øystein S. Haaland Support for making glossaries.

Sven Klomp Help with SyncTeX support.

Thimo Langbehn Support for pstricks with the --enable-write18 option.

Antonio LaTorre Support for the multibib package.

Edwin van Leeuwen Fix for a bug when copying BibTEX files.

Lukasz Lis Workaround for problem with ImageMagick dropping the Bound-
ingBox of eps files by using the ps2pdf program instead.

Eric Noulard Support for any file extension on LATEX input files.

Theodore Papadopoulo DEPENDS parameter for add latex document and
help in identifying some dependency issues.

Jorge Gerardo Peña Pastor Support for SVG files.

Julien Schueller Check for existence of Imagemagick convert only when used.

Raymod Wan DEFAULT SAFEPDF option.

This work was primarily done at Sandia National Laboratories. Sandia is
a multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

This document is released as technical report SAND 2008-2743P.

20

A Sample CMakeLists.txt

Following is a sample listing of CMakeLists.txt. In fact, it is the CMakeLists.txt
that is used to build this document.

cmake_minimum_required(VERSION 3.0)

project(UseLATEX_DOC NONE)

include(UseLATEX.cmake)

Note that normally CMakeLists.txt would not be considered an

input to the document, but in this special case of documenting

UseLATEX.cmake the contents of this file is actually included

in the document.

add_latex_document(UseLATEX.tex

INPUTS CMakeLists.txt

)

21

	Description
	Download
	Basic Usage
	Using a Bibliography
	Incoporating Images
	Selecting a Default Build
	Force a Type of Build
	Create Nothing by Default
	SyncTeX-Enabled Editors

	Package Support
	Making an Index
	Making a Glossary
	Nomenclature Support
	multibib Support

	Advanced Configurations
	Multipart LaTeX Files
	Configuring LaTeX Files
	Building Multiple LaTeX Documents
	Identifying Dependent Files

	Frequently Asked Questions
	How do I process LaTeX files on Windows?
	How do I process LaTeX files on Mac OS X?
	How do I process with XeLaTeX?
	How do I process with LuaLaTeX?
	Why does UseLATEX.cmake have to copy my tex files?
	How can LaTeX find a file not a tex, image, or bibliography?
	Why is convert failing on Windows?
	How do I automate plot generation with command line programs?
	Why does make stop after each image conversion?
	How do I resolve \write 18 errors with pstricks or pdftricks?
	Why is UseLATEX.cmake complaining about image file names?
	Why is the MANGLE_TARGET_NAMES option deprecated?

	Acknowledgments
	Sample CMakeLists.txt

