
Generic Data Set API

David Thompson
Sandia National Laboratories

Advanced Visualization
with ParaView

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin
Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Outline

•Example code will be provided. 40 minutes is not enough time
to provide a detailed implementation, so one is provided for our
running example: edge/face elements.

•Introduction

•Is GenericDataSet a match for your application?

•Class structure

•Notes for implementation

•Adding to ParaView

VTK Datasets

What to inherit?

Graph

DataObject

arcs,

nodes

CompositeDataSet

container for

other datasets

Object

field

data

DataSet

cells,

attributes

DirectedAcyclicGraph

DirectedGraph

GenericDataSet

nonlinear or

discontinuous or

non-traditional

HierarchicalBoxDataSet HyperOctree ImageData

implicit

points

MultiBlockDataSet MultiPieceDataSet

MutableDirectedGraph MutableUndirectedGraph

UndirectedGraph

PiecewiseFunction

volumentric

implicit

function

PointSet

explicit

points

PolyData

unstructured

surfaces

RectilinearGrid

Selection

StructuredGrid

implicit cells

StructuredPoints

Table

columns

rows

TemporalDataSet

Tree

UniformGrid UnstructuredGrid

unstructured

volumes

VTK Datasets

What to inherit?

Graph

DataObject

arcs,

nodes

CompositeDataSet

container for

other datasets

Object

field

data

DataSet

cells,

attributes

DirectedAcyclicGraph

DirectedGraph

GenericDataSet

nonlinear or

discontinuous or

non-traditional

HierarchicalBoxDataSet HyperOctree ImageData

implicit

points

MultiBlockDataSet MultiPieceDataSet

MutableDirectedGraph MutableUndirectedGraph

UndirectedGraph

PiecewiseFunction

volumentric

implicit

function

PointSet

explicit

points

PolyData

unstructured

surfaces

RectilinearGrid

Selection

StructuredGrid

implicit cells

StructuredPoints

Table

columns

rows

TemporalDataSet

Tree

UniformGrid UnstructuredGrid

unstructured

volumes

Introduction

•Allow proprietary solvers to present simulation results

•Provide a way for novel PDE solvers to present their results

•Many new solvers use esoteric cell types (higher order, edge/
face elements, X-FEM elements with discontinuities, etc.)

•Assumptions that VTK algorithms make do not apply

•Discontinuities at shared boundaries or cell interiors

•Maxima and minima interior to cell or its boundaries

•Attributes interpolation may be dependent on geometry

•Purpose is reduction for visualization, not significant analysis

Assumptions

•When subclassing the generic dataset API,

•Generic datasets are read-only

•Cell type may not fully specify interpolant the way vtkCell does.
Example: p-refinement needs shape, order (r,s,t), and polynomial basis

•New cell types must provide traditional vis. operations
(interpolation, location, line intersection, clip, contour, ...)

•Filters on generic algorithms may not have access to entire mesh definition;
you may need to write mesh-specific filters.

•Facilities exist for approximating a dataset with an unstructured grid

Class Hierarchy

•GenericDataSet: Hold mesh data in a compact, private format

•GenericAdaptorCell: Provide public access to one cell’s mesh data

•GenericAttribute: Access and interpolate field data

•GenericPointIterator (GenericCellIterator):
Ordered access to points (cells) within a mesh

Object

DataObject

GenericDataSet

GenericAdaptorCell GenericAttribute GenericAttributeCollection GenericPointIterator GenericCellIterator Algorithm

GenericDataSetAlgorithm

Class Hierarchy

PointSet

DataSet

Object

DataObject

Graph GenericDataSet

GenericAdaptorCell

GenericPointIterator

GetPointIterator

GenericCellIterator

GetCellIterator

GenericAttribute

GenericAttributeCollection

Algorithm

GenericDataSetAlgorithm

PolyData StructuredGridUnstructuredGrid

Running Example

•Edge/face elements (actually point←edge←face←cell elements)

•Each set of basis functions is dual to discrete boundary
operator and obtained by applying div, grad, or curl to
previous entry in sequence.

•Scalars on cells and points yield scalar defined on cell

•Scalars on edges and faces yield vectors defined on cell

•Values not cell or point centered, not isoparametric
⇒ GenericDataSet is for us.✓

Class Hierarchy

•Edge-face elements as an example:

•Attributes are boundary-centered (edges or faces).

•Scalar values stored on boundary yield vector fields.

•We must implement the classes in green.

Object

DataObject

GenericDataSet

EdgeFaceDataSet

GenericAdaptorCell

EdgeFaceCell

GenericAttribute

EdgeFaceAttribute

GenericAttributeCollection GenericPointIterator

EdgeFacePointIterator

GenericCellIterator

EdgeFaceCellIterator

Algorithm

GenericDataSetAlgorithm

EdgeFaceSampler

Attributes

•This class should hold necessary (but not always sufficient)
information for interpolating values on cells;

•Because interpolant may be tied to cell type, an attribute may
not be usable without a pointer to the dataset.
Example: p-refined elements need basis, order, & coefficients.

•Centering may be Point, Cell, or Boundary. This is not
meant to be exhaustive, only to aid filters that must work on
all types of GenericDataSets. You may need to store add’l info.

Cell

•Cell is responsible for interpolation of attributes, including
geometry.

•Think of cell as an iterator over the mesh; it need not store
any attribute values.

•However, all boundaries (d=0,1,2) of cells in mesh must be
represented as cells in their own right.

•Contouring (of attributes and geometry), intersection,
derivatives, bounds, evaluation, and inverse lookup must all be
provided by your implementation.

Cell (cont.)

•Facilities for tessellating cells are provided in order to generate
primitives for rendering because the API is geared towards
nonlinear geometry + fields and video HW is not.

•The GenericCellTessellator adaptively samples geometry and/
or fields;

•Because the mathematics of novel PDE solvers varies so much,
you are responsible for providing an initial tessellation that
captures all salient feature topology. Override the provided
vtkGenericAdaptorCell::Tessellate() method to do this.

Cell (cont.)

•Degree of freedom (DOF): a value used to characterize a cell’s
shape or attributes that is not a geometric coordinate.
Example: For spectral finite elements, this is the magnitude
associated with a given mode shape.

•With higher-order elements, an arbitrary number of DOF may
be associated with a cell.

•DOFs may be grouped together by how they are shared among
neighboring cells. Each group of DOF values is called a DOF
node and there may be one for each boundary of a cell.

Running Example

•Edge/face elements have a DOF node for each edge and face of
a cell.

•Since we are only considering hexahedra, each element will
have 12 + 6 = 18 DOF nodes.

•The total number of boundaries in the mesh determine the
number of values each element must store.
Example: 2 hexahedra sharing a face and 4 edges will have

•Edge attributes specified with 20 values.

•Face attributes specified with 11 values.

Cell Iterators

•You must implement an iterator that can traverse

•each cell in the mesh,

•each cell boundary in the mesh,

•each cell boundary on the mesh boundary.

•Users can request cells/boundaries of a given dimension.

•Note that when asked to traverse mesh boundaries of dim 2,
no surface cells in the mesh should be included.

•Likewise, when traversing mesh boundaries of dim 1, do not
include edges that appear as cells in the mesh directly.

Point Iterators

•The GenericDataSet::NewPointIterator() should prepare an
iterator that will visit all mesh points.

•But the CellIterator may need to traverse

•the points associated with a single cell, or

•the points associated with a single boundary of a single cell.

•You may implement separate subclasses for each type of
traversal, but usually it’s simplest to put all of these traversal
rules into one class.

DataSet

•The most painful methods in this class are

•FindPoint() and FindCell()

•Cannot use VTK’s point locators because they require data
objects which inherit vtkDataSet. vtkGenericDataSet
inherits vtkDataObject because vtkDataSet would require
the mesh to present cells using vtkCell.

ParaView Plugin

•Plugin must include your reader and (for ParaView 3.4 or
newer) any filters from the vtkGenericFiltering library you
want to expose.

•Need GUI and ServerManager XML files. From CMake:
ADD_PARAVIEW_PLUGIN(EdgeFaceElements "1.0"
 SERVER_MANAGER_XML EdgeFaceServerManager.xml
 GUI_RESOURCE_FILES EdgeFaceUserInterface.xml
 SERVER_MANAGER_SOURCES ${EDGEFACE_SRCS}
)

•The “1.0” is a version number and EDGEFACE_SRCS is the list of
C++ files implementing generic dataset API subclasses.

ParaView Plugin

•GUI XML is trivial for most filters. See the example.

• ServerManager XML:
<ServerManagerConfiguration>
 <ProxyGroup name="sources">
 <SourceProxy name="EdgeFaceReader"
 class="vtkEdgeFaceReader" label="Edge/face reader">
 <Documentation short_help="Read edge/face meshes."
 long_help="...">
 The edge/face reader ...
 </Documentation>
 </SourceProxy>
 </ProxyGroup> <!-- any filters go here -->
</ServerManagerConfiguration>

Conclusion

•Frequently use SafeDownCast() in order to access methods
specific to your implementation from another class.
Example: Cell’s InterpolateTuple() to access Attribute.

•Remember the point is to generate primitives that can be
rendered or analysis that can be displayed; expect to use the
tessellator, write a custom filter, or write a custom mapper.

