Coprocessing example
This example is used to demonstrate how the co-processing library can be used with a C++ based simulation code. In the ParaView/CoProcessing/Adaptors/FortranAdaptors directory there is code useful for integrating C or Fortran based simulation codes withthe co-processing library. Note that this example requires MPI to be available on your system. The executable takes in a python coprocessing script and a number of time steps to be run for. Note to remember to set your system environment properly. See [[1]] for details.
CoProcessingExample.cxx
<source lang="cpp">
- include "vtkCPDataDescription.h"
- include "vtkCPInputDataDescription.h"
- include "vtkCPProcessor.h"
- include "vtkCPPythonScriptPipeline.h"
- include "vtkElevationFilter.h"
- include "vtkPolyData.h"
- include "vtkSmartPointer.h"
- include "vtkSphereSource.h"
- include "vtkXMLUnstructuredGridReader.h"
- include <mpi.h>
- include <string>
class DataGenerator { public:
DataGenerator() { this->Sphere = vtkSmartPointer<vtkSphereSource>::New(); this->Sphere->SetThetaResolution(30); this->Sphere->SetPhiResolution(30); int procId; MPI_Comm_rank(MPI_COMM_WORLD, &procId); this->Sphere->SetCenter(procId*4.0, 0, 0); this->Elevation = vtkSmartPointer<vtkElevationFilter>::New(); this->Elevation->SetInputConnection(this->Sphere->GetOutputPort()); this->Index = 0; }
vtkSmartPointer<vtkPolyData> GetNext() { double radius = fabs(sin(0.1 * this->Index)); this->Index++; this->Sphere->SetRadius(1.0 + radius); this->Elevation->Update(); vtkSmartPointer<vtkPolyData> ret = vtkSmartPointer<vtkPolyData>::New(); ret->DeepCopy(this->Elevation->GetOutput()); return ret; }
protected:
int Index; vtkSmartPointer<vtkSphereSource> Sphere; vtkSmartPointer<vtkElevationFilter> Elevation;
};
int main(int argc, char* argv[]) {
if (argc < 3) { printf("Usage: %s <python coprocessing script> <number of time steps>\n", argv[0]); return 1; } // we assume that this is done in parallel MPI_Init(&argc, &argv);
std::string cpPythonFile = argv[1]; int nSteps = atoi(argv[2]);
vtkCPProcessor* processor = vtkCPProcessor::New(); processor->Initialize(); vtkCPPythonScriptPipeline* pipeline = vtkCPPythonScriptPipeline::New();
// read the coprocessing python file if(pipeline->Initialize(cpPythonFile.c_str()) == 0) { cout << "Problem reading the python script.\n"; return 1; }
processor->AddPipeline(pipeline); pipeline->Delete();
if (nSteps == 0) { return 0; }
// create a data source, typically this will come from the adaptor // but here we use generator to create it ourselves DataGenerator generator;
// do coprocessing double tStart = 0.0; double tEnd = 1.0; double stepSize = (tEnd - tStart)/nSteps;
vtkCPDataDescription* dataDesc = vtkCPDataDescription::New(); dataDesc->AddInput("input");
for (int i = 0; i < nSteps; ++i) { double currentTime = tStart + stepSize*i; // set the current time and time step dataDesc->SetTimeData(currentTime, i);
// check if the script says we should do coprocessing now if(processor->RequestDataDescription(dataDesc) != 0) { // we are going to do coprocessing so use generator to // create our grid at this timestep and provide it to // the coprocessing library vtkSmartPointer<vtkDataObject> dataObject = generator.GetNext();
dataDesc->GetInputDescriptionByName("input")->SetGrid(dataObject); processor->CoProcess(dataDesc); } }
dataDesc->Delete(); processor->Finalize(); processor->Delete();
MPI_Finalize();
return 0;
} </source>
CMakeLists.txt
<source lang="cmake"> cmake_minimum_required(VERSION 2.6)
PROJECT(CoProcessingExample)
FIND_PACKAGE(ParaView REQUIRED) INCLUDE(${PARAVIEW_USE_FILE})
INCLUDE_DIRECTORIES(${VTK_MPI_INCLUDE_DIR}) IF(NOT VTK_MPI_INCLUDE_DIR)
MESSAGE(SEND_ERROR "Must build ParaView with MPI.")
ENDIF()
ADD_EXECUTABLE(CoProcessingExample CoProcessingExample.cxx) TARGET_LINK_LIBRARIES(CoProcessingExample vtkCoProcessor) </source>
Python Scripts
The first python script below is used to just output the actual results of the example. This would correspond to a simulation run with a coarse grid in order to set up coprocessing runs for larger grids where outputting the entire simulation results can be computationally prohibitive.
<source lang="python"> try: paraview.simple except: from paraview.simple import *
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep" timestep = datadescription.GetTimeStep() input_name = 'input' if (timestep % 1 == 0) : datadescription.GetInputDescriptionByName(input_name).AllFieldsOn() datadescription.GetInputDescriptionByName(input_name).GenerateMeshOn() else: datadescription.GetInputDescriptionByName(input_name).AllFieldsOff() datadescription.GetInputDescriptionByName(input_name).GenerateMeshOff()
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep" cp_writers = [] timestep = datadescription.GetTimeStep()
grid = CreateProducer( datadescription, "input" ) ParallelPolyDataWriter1 = CreateWriter( XMLPPolyDataWriter, "input_grid_%t.pvtp", 1, cp_writers )
for writer in cp_writers: if timestep % writer.cpFrequency == 0: writer.FileName = writer.cpFileName.replace("%t", str(timestep)) writer.UpdatePipeline()
# explicitly delete the proxies -- we do it this way to avoid problems with prototypes tobedeleted = GetNextProxyToDelete() while tobedeleted != None: Delete(tobedeleted) tobedeleted = GetNextProxyToDelete()
def GetNextProxyToDelete():
proxyiterator = servermanager.ProxyIterator() for proxy in proxyiterator: group = proxyiterator.GetGroup() if group.find("prototypes") != -1: continue if group != 'timekeeper' and group.find("pq_helper_proxies") == -1 : return proxy return None
def CreateProducer(datadescription, gridname):
"Creates a producer proxy for the grid" if not datadescription.GetInputDescriptionByName(gridname): raise RuntimeError, "Simulation input name '%s' does not exist" % gridname grid = datadescription.GetInputDescriptionByName(gridname).GetGrid() producer = TrivialProducer() producer.GetClientSideObject().SetOutput(grid) producer.UpdatePipeline() return producer
def CreateWriter(proxy_ctor, filename, freq, cp_writers):
writer = proxy_ctor() writer.FileName = filename writer.add_attribute("cpFrequency", freq) writer.add_attribute("cpFileName", filename) cp_writers.append(writer) return writer
</source>
This second script is still rather simple and only performs a cut on the input from the simulation code. It demonstrates though how desired results can be obtained while performing coprocessing at specified time steps.
<source lang="python"> try: paraview.simple except: from paraview.simple import *
def RequestDataDescription(datadescription):
"Callback to populate the request for current timestep" timestep = datadescription.GetTimeStep() input_name = 'input' if (timestep % 5 == 0) : datadescription.GetInputDescriptionByName(input_name).AllFieldsOn() datadescription.GetInputDescriptionByName(input_name).GenerateMeshOn() else: datadescription.GetInputDescriptionByName(input_name).AllFieldsOff() datadescription.GetInputDescriptionByName(input_name).GenerateMeshOff()
def DoCoProcessing(datadescription):
"Callback to do co-processing for current timestep" cp_writers = [] timestep = datadescription.GetTimeStep()
grid = CreateProducer( datadescription, "input" ) Clip2 = Clip( guiName="Clip2", InsideOut=0, UseValueAsOffset=0, Scalars=['POINTS', 'Elevation'], Value=0.0, ClipType="Plane" ) Clip2.ClipType.Normal = [0.0, 1.0, 0.0] Clip2.ClipType.Origin = [1.9999999105930328, 0.0, 0.0] Clip2.ClipType.Offset = 0.0
ParallelUnstructuredGridWriter2 = CreateWriter( XMLPUnstructuredGridWriter, "Cut_%t.pvtu", 5, cp_writers ) for writer in cp_writers: if timestep % writer.cpFrequency == 0: writer.FileName = writer.cpFileName.replace("%t", str(timestep)) writer.UpdatePipeline()
# explicitly delete the proxies -- we do it this way to avoid problems with prototypes tobedeleted = GetNextProxyToDelete() while tobedeleted != None: Delete(tobedeleted) tobedeleted = GetNextProxyToDelete()
def GetNextProxyToDelete():
iter = servermanager.vtkSMProxyIterator() iter.Begin() while not iter.IsAtEnd(): if iter.GetGroup().find("prototypes") != -1: iter.Next() continue proxy = servermanager._getPyProxy(iter.GetProxy()) proxygroup = iter.GetGroup() iter.Next() if proxygroup != 'timekeeper' and proxy != None and proxygroup.find("pq_helper_proxies") == -1 : return proxy
return None
def CreateProducer(datadescription, gridname):
"Creates a producer proxy for the grid" if not datadescription.GetInputDescriptionByName(gridname): raise RuntimeError, "Simulation input name '%s' does not exist" % gridname grid = datadescription.GetInputDescriptionByName(gridname).GetGrid() producer = TrivialProducer() producer.GetClientSideObject().SetOutput(grid) producer.UpdatePipeline() return producer
def CreateWriter(proxy_ctor, filename, freq, cp_writers):
writer = proxy_ctor() writer.FileName = filename writer.add_attribute("cpFrequency", freq) writer.add_attribute("cpFileName", filename) cp_writers.append(writer) return writer
</source>