TubeTK/Build Instructions: Difference between revisions

From KitwarePublic
Jump to navigationJump to search
No edit summary
 
(159 intermediate revisions by 7 users not shown)
Line 1: Line 1:
= Recommended Build Procedure =
There are two ways of building TubeTK:


* Requirements:
* (Option 1) Slicer-Dependent Build
** CMake: http://cmake.org
* (Option 2) Stand-Alone Build
** git
** svn


== Configure the build using CMake ==
If you are going to use TubeTK as a library for building your own C++ programs or for processing data using the command-line or scripts, it is sufficient to build TubeTK as a (Option 2) Stand-Alone Build.


===Create the build directory===
If you want a graphical user interface (albeit to a limited subset of TubeTK's methods), you should follow the (Option 1) Slicer-Dependent Build instructions.


cd ~/Projects # assuming that this is where your TubeTK source directory is located
= (Option 1) Slicer-Dependent Build =
mkdir tubetk-Release


===Run CMake to configure===
It uses a compiled version of Slicer to provide its dependencies. 


====Linux====
In this build format,
# TubeTK produces a set of libraries and command-line programs that can be used to process images from the command line and to build other applications.
# TubeTK methods are available from within the Slicer application against which it is built.


cd tubetk-Release
This build format is tested nightly on Windows, OS X, and Linux machines.
ccmake ../tubetk_source_dir
press 'c' to configure


====Windows====
This build format has the following steps:
* Install requirements and options
* Download source
* Configure using CMake
* Build


run CMake (cmake-gui)
== Install Requirements and Options ==
Where is the source code: your TubeTK source directory
Where to build the binaries: your new TubeTK build directory
Press the 'Configure' button
* If CMake complains that it cannot find Git:
** Toggle the 'Advanced' checkbox to ON
** Set the value of GIT_EXECUTABLE value to C:\Program Files (x86)\Git\bin\git.exe, or its equivalent on your system
** Press the 'Configure' button twice
** Toggle the 'Advanced' checkbox to OFF


===Confirm the following CMake variables===
=== CMake ===
* BUILD_TESTING: ON
CMake 3.4 or greater is required.
* CMAKE_BUILD_TYPE: Specify Debug, Release, RelWithDebInfo or MinSizeRel
* The Mac/Windows binaries can be downloaded from [http://cmake.org http://cmake.org]
* TubeTK_USE_CTK: ON
* The linux installation from source is easiest. Assuming an older version of cmake is already installed, and you want to install v3.4.1, do the following:
* TubeTK_USE_QT: OFF
sudo apt-get build-dep cmake
** If you have Qt 4.6.3 or greater installed, you can turn it on.
sudo apt-get install libgtkmm-2.4-dev glade-gtk2 libglademm-2.4-dev
** If you do not have Qt, CMake will complain until you turn this option off.
git clone http://github.com:/Kitware/CMake.git
* TubeTK_USE_SUPERBUILD: ON
cd CMake
** If "ON", then cmake will fetch and compile ITK and VTK from the Slicer git repository, and will fetch and compile TCLAP, ModuleDescriptionParser, and GenerateCLP from the Slicer3 svn repository
git checkout v3.4.1
* TubeTK_USE_VTK: ON
  cd ..
* USE_SYSTEM_ITK: OFF
mkdir CMake-Release
** If "ON", then you can tell TubeTK to use an ITK build that is already present on your system (using the CMake variable ITK_DIR)See the warning below.
cd CMake-Release
* USE_SYSTEM_VTK: OFF
cmake ../CMake -DCMAKE_BUILD_TYPE=Release
** If "ON", then you can tell TubeTK to use a VTK build that is already present on your system (using the CMake variable VTK_DIR)See the warning below.
  make -j8


====Warning when using an existing build of ITK or VTK====
=== Slicer ===
* If you like, you can tell TubeTK to use an ITK or VTK build that is already present on your system.
* Note that TubeTK relies on ITK and VTK from 3D Slicer (https://github.com/Slicer/ITK and https://github.com/Slicer/VTK, respectively)
* Slicer's repositories for ITK/VTK contain enhancements that have not yet made it into the ITK/VTK repositories themselves.
* If you get build errors similar to:


> tubetk-Release/Insight/Utilities/vxl/core/vnl/algo/vnl_svd.h: In copy constructor ‘vnl_matrix_inverse<double>::vnl_matrix_inverse(const vnl_matrix_inverse<double>&)’:
* If you are building the Stand-Alone version of TubeTK, you do not need to build Slicer.
> tubetk-Release/Insight/Utilities/vxl/core/vnl/algo/vnl_matrix_inverse.h:35: instantiated from ‘void itk::tube::LDAGenerator<ImageT, LabelmapT>::GenerateLDA() [with ImageT = itk::Image<float, 2u>, LabelmapT = itk::Image<unsigned char, 2u>]’
> tubetk/Base/Filtering/itkTubeNJetLDAGenerator2F.cxx:53: instantiated from here
> tubetk-Release/Insight/Utilities/vxl/core/vnl/algo/vnl_svd.h:193: error: ‘vnl_svd<T>::vnl_svd(const vnl_svd<T>&) [with T = double]’ is private
> tubetk-Release/Insight/Utilities/vxl/core/vnl/algo/vnl_matrix_inverse.h:35: error: within this context
> tubetk/Base/Filtering/itkTubeLDAGenerator.txx: In member function ‘void itk::tube::LDAGenerator<ImageT, LabelmapT>::GenerateLDA() [with ImageT = itk::Image<float, 2u>, LabelmapT = itk::Image<unsigned char, 2u>]’:
> tubetk/Base/Filtering/itkTubeNJetLDAGenerator2F.cxx:53: instantiated from here
> tubetk/Base/Filtering/itkTubeLDAGenerator.txx:572: note: synthesized method ‘vnl_matrix_inverse<double>::vnl_matrix_inverse(const vnl_matrix_inverse<double>&)’ first required here


you likely do not have the correct version of ITK.  Perhaps you have ITK from the official ITK repository instead of from 3D Slicer, or perhaps you haven't fetched updates lately?
* If you are building the Slicer-Dependent version of TubeTK, you must build Slicer from source:
* Generally, unless you are modifying ITK or VTK yourself, it is simpler to have TubeTK build its own versions of ITK and VTK.
** Source: http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Developers/Build_Instructions


===Generate the build files===
<b>Notes:</b>
* To address the multiple dependencies required (and optional) for VTK, we recommend installing the build dependencies of ParaView prior to building Slicer:
sudo apt-get build-dep paraview


* Reinforce the selected CMake variables by configuring a second time (press 'c' on Linux, or the 'Configure' button on Windows)
* Generate the build files by pressing 'g' on Linux, or the 'Generate' button on Windows
* '''Windows''': Close CMake when it reports "Generating done"


===Build TubeTK using your compiler===
=== Boost (optional) ===


====Linux====
Download and build Boost:
* http://www.boost.org/


* Perform the initial build using your compiler at the top-level of tubetk-ReleaseThis will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
<b>Notes:</b>
cd tubetk-Release
* Linux: TubeTK creates dynamic libraries that have static links to Boost librariesSince Boost static libraries on Linux are not compiled with fPIC, you must compile Boost from source to use it with TubeTK.
make -j4
** <code> ./bootstrap.sh <br> </code>
* Subsequent builds should be initiated in the subdir tubetk-Release/TubeTK-Build to save time. This will build TubeTK onlyYou may have to periodically build from the top-level of tubetk-Release to get updates to the libraries that TubeTK depends on.
** <code> ./bjam -j14 </code>
cd tubetk-Release/TubeTK-Build
** <code> ./bjam cxxflags=-fPIC cflags=-fPIC -a link=static -j14 </code>
make -j4
* Mac: if compiling for compatibility with older versions of MacOS, you may need to build boost using the following command:
** <code> ./b2 toolset=clang cxxflags="-stdlib=libstdc++" linkflags="-stdlib=libstdc++" link=static install -a </code>
** Slicer and TubeTK matches its build environment with the environment used to build qmake.   This means that all code build using Slicer and TubeTK must also build using that environmentSo, on some systems you will need to specify stdlib=libstdc++ (for 10.8) or stdlib-libc++ (for 10.9 and beyond).  See the comments starting in line 103 of https://github.com/Slicer/Slicer/blob/master/CMake/SlicerBlockSetCMakeOSXVariables.cmake


===== Recommended Compilation Options =====
== Download Source ==


* For Linux developers (and Linux dashboard machines) we recommend:
Download the source via git
** CMAKE_CXX_FLAGS:STRING=-W -Wall -Wextra -Wshadow -Wno-system-headers -Wwrite-strings -Wno-deprecated -Woverloaded-virtual
* <code> git clone https://github.com/KitwareMedical/TubeTK TubeTK </code>
** CMAKE_C_FLAGS:STRING=-W -Wall -Wextra -Wshadow -Wno-system-headers -Wwrite-strings
* A summary of warning options for gcc and g++ are given at:
** http://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
** http://gcc.gnu.org/onlinedocs/gcc-4.3.4/gcc/C_002b_002b-Dialect-Options.html


====Windows====
== Configure ==


* Open Microsoft Visual Studio
Create a directory, outside of the source directory, to hold the compilation
* File -> Open -> Project/Solution -> open tubetk-Release/TubeTK.sln
* <code> mkdir TubeTK-Release </code>
* <code> cd TubeTK-Release </code>


* Perform the initial build using your compiler at the top-level of tubetk-Release.  This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
Within that compilation directory, run cmake and point it to where the source is located. We recommend using a cmake with a GUI configuration editor.  This is the default on Windows and Mac.  On Linux (or from Mac command-line) type:
** Right click on the "ALL_BUILD" project and select "Build".
* <code> cmake-gui ../TubeTK </code>
* Subsequent builds should be initiated in the subdir tubetk-Release/TubeTK-Build to save time. This will build TubeTK only. You may have to periodically build from the top-level of tubetk-Release to get updates to the libraries that TubeTK depends on.
** Right click on the "TubeTK" project and select "Build".


= Inside TubeTK =
Set the following CMake variables
* TubeTK_USE_SLICER = On
* Slicer_DIR = <Path to your Slicer build directory>
* Linux and Mac only, also set:
** CMAKE_BUILD_TYPE = <same build type as Slicer installation: Debug or Release>


* As noted above, TubeTK uses CMake's Superbuild include other libraries, as needed for the options selected.
== Build ==
* Libraries that may be automatically downloaded and included by TubeTK include:
** ITK
** VTK
** CTK
** Select tools from the NA-MIC Kit:
*** TCLAP, GenerateCLP, ModuleDescriptionParser, RegisterImages
* Libraries that must be externally installed if you want to use them with TubeTK
** CMake (2.8.2 or greater - REQUIRED)
** Qt (4.6.2 or greater - OPTIONAL)
* You can manually install the above toolkits and then configure TubeTK to use those installations instead of building its own copies of those toolkits, BUT we don't recommend heading down that road.
** Requires CMake expertise
** Requires making sure each of the toolkits is correctly configured (via their own cmake configuration processes) for use with TubeTK.
** If you still want to try this complex, manual, unsupported approach, then the following steps will help somewhat:
**# Read tubetk/SuperBuild.cmake to find out the current set of cmake options required for each library.
**# For example, at one point in tubetk history, you were required to build ITK v3.20.0, as mirrored and customized on the Slicer github account, using the following cmake vars
**#* BUILD_SHARED_LIBS = OFF (or ON, but libs are VERY small in ITK because of templates)
**#* ITK_USE_LIBXML2 = ON
**#* ITK_USE_REVIEW = ON
**#* ITK_USE_OPTIMIZED_REGISTRATION_METHODS = ON
**#* ITK_USE_TRANSFORM_IO_FACTORIES = ON
**#* CMAKE_CXX_FLAGS = -fPIC
**#* CMAKE_C_FLAGS = -fPIC
**#** adding -fPIC to both c and cxx flags can be ignored if you build with shared libs ON.
**# You must also build non-cmake libraries, such as Qt 4.6.2 or greater
**#* Tips for installing Open Source Qt to run with Visual Studio
**#*# Open a visual studio command shell.
**#*# Go to the Qt source directory and run "configure -platform win32-msvc2005". This will tell Qt to prepare itself for being compiled by the Visual Studio compiler. If you use another version of VS than 2005, replace win32-msvc-2005 with the appropriate one.
**#*# Type "nmake" and take a break when it compiles.
**#*# Add QMAKESPEC=win32-msvc2005 as a system environment variable and add QTDIR=your_dir into the system path. It is done.
**#* Tips for installing Qt on Linux
**#*# apt-get qt4
**# After Qt, you must also build the Slicer customized version of VTK v5.6, from the Slicer github account, using the appropriate cmake vars, such as
**#* BUILD_SHARED_LIBS = ON
**#* VTK_USE_GUISupport = ON
**#* VTK_USE_QVTK
**# Again, many details are missing in the above list.  We really recommend using Superbuild instead.


= References =
=== Windows ===
Load the TubeTK solution file in Visual Studio
* <code> Select File -> Open -> Project/Solution -> open TubeTK-Release/TubeTK.sln </code>
** INITIAL BUILD: Perform the initial build using the TubeTK.sln file at the top-level of TubeTK-Release.  This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
** SUBSEQUENT BUILDS: Subsequent builds <b>MUST</b> be initiated using the TubeTK.sln file in the subdir <b>TubeTK-Release/TubeTK-build</b>.  This will build TubeTK only.  You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
* Choose your build type: Release, Debug, etc.  It MUST match the build type chosen for Slicer.
* <code> Right click on the "ALL_BUILD" project and select "Build". </code>


* Superbuild and EXTERNAL_PROJECTS
=== Linux and OS X ===
** Dave Cole's article in the October Kitware Source [http://www.kitware.com/products/archive/kitware_quarterly1009.pdf]
* INITIAL BUILD: Perform the initial build using your compiler at the top-level of TubeTK-Release.  This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
** <code> cd TubeTK-Release </code>
** <code> make -j8 </code>
* SUBSEQUENT BUILDS: Subsequent builds <b>MUST</b> be initiated in the subdir TubeTK-Release/TubeTK-build.  This will build TubeTK only.  You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
** <code> cd TubeTK-Release/TubeTK-build </code>
** <code> make -j8 </code>
 
= (Option 2) Stand-Alone Build =
 
In this build format, TubeTK produces a set of libraries and command-line programs that can be used to process images from the command line and to build other applications.
 
This build format is tested nightly on Windows, OS X, and Linux machines.
 
This build format has the following steps:
* Install requirements and options
* Download source
* Configure using CMake
* Build
 
== Install Requirements and Options ==
 
=== GIT ===
 
Install the latest stable release.
* Windows
** http://msysgit.github.io/
* Linux
** <code> sudo apt-get install git </code>
* Mac
** git is included with MacOS
 
=== Qt ===
QT version 4.8.6 or 4.8.7 is REQUIRED.
* Windows
** You will want the 64-bit version of Qt, with WebKIT support.  See details at:
http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Developers/Build_Instructions/Prerequisites/Qt#Windows_3
* Linux
** Qt is included with most versions of Linux
* Mac
** Download the installer from
*** http://download.qt.io/archive/qt/4.8/
 
=== CMake ===
CMake 3.0 or greater is required.
* The Mac/Windows binaries can be downloaded from http://cmake.org
* The linux installation from source is easiest.  Assuming an older version of cmake is already installed, and you want to install v3.4.1, do the following:
sudo apt-get build-dep cmake
sudo apt-get install libgtkmm-2.4-dev glade-gtk2 libglademm-2.4-dev
git clone http://github.com:/Kitware/CMake.git
cd CMake
git checkout v3.4.1
cd ..
mkdir CMake-Release
cd CMake-Release
cmake ../CMake -DCMAKE_BUILD_TYPE=Release
make -j8
 
=== Boost (optional) ===
 
Download and build Boost:
* http://www.boost.org/
 
<b>Notes:</b>
* Linux: TubeTK creates dynamic libraries that have static links to Boost libraries.  Since Boost static libraries on Linux are not compiled with fPIC, you must compile Boost from source to use it with TubeTK.
** <code> ./bootstrap.sh <br> </code>
** <code> ./bjam -j14 </code>
** <code> ./bjam cxxflags=-fPIC cflags=-fPIC -a link=static -j14 </code>
 
=== Python (optional) ===
 
Versions 2.7.x is supported at this time.
 
Download and install per system instructions at:
* https://www.python.org/downloads/
* Windows
** Pre-compiled version of numpy, scipy, etc are available as wheels at:
http://www.lfd.uci.edu/~gohlke/pythonlibs/
** Using these wheels is recommended over Anaconda and other installation packages, because they also include and expose versions of Qt (for example) that are incompatible with Slicer and TubeTK.
* Linux and Mac
** Python is already included with most Linux and Mac variants.
 
== Download Source ==
 
Download the source via git
* <code> git clone https://github.com/KitwareMedical/TubeTK TubeTK </code>
 
== Configure ==
 
Before starting the configuration, make sure that you have <code>virtualenv</code> installed ('''Linux Only''').
 
If not, just install it with :
* <code> sudo apt-get install pyton-pip </code>
* <code> pip install virtualenv </code>
 
 
Create a directory, outside of the source directory, to hold the compilation
* <code> mkdir TubeTK-Release </code>
* <code> cd TubeTK-Release </code>
 
Within that compilation directory, run cmake and point it to where the source is located. We recommend using a cmake with a GUI configuration editor.  This is the default on Windows and Mac.  On Linux (or from Mac command-line) type:
* <code> cmake-gui ../TubeTK </code>
 
Linux and Mac only, set the CMake variables:
* CMAKE_BUILD_TYPE = <same build type as Slicer installation: Debug or Release>
 
== Build ==
 
=== Windows ===
Load the TubeTK solution file in Visual Studio
* <code> Select File -> Open -> Project/Solution -> open TubeTK-Release/TubeTK.sln </code>
** Perform the initial build using your compiler at the top-level of TubeTK-Release.  This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
* <code> Right click on the "ALL_BUILD" project and select "Build". </code>
** Subsequent builds should be initiated in the subdir TubeTK-Release/TubeTK-build to save time.  This will build TubeTK only.  You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
*** <code> Right click on the "TubeTK" project and select "Build". </code>
 
=== Linux and OS X ===
Perform the initial build using your compiler at the top-level of TubeTK-Release.  This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
* <code> cd $HOME/TubeTK-Release </code>
* <code> make </code>
Subsequent builds should be initiated in the subdir TubeTK-Release/TubeTK-build to save time.  This will build TubeTK only.  You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
* <code> cd $HOME/TubeTK-Release/TubeTK-build </code>
* <code> make </code>
 
 
[[Category:TubeTK|Build Instructions]]

Latest revision as of 12:11, 1 November 2016

There are two ways of building TubeTK:

  • (Option 1) Slicer-Dependent Build
  • (Option 2) Stand-Alone Build

If you are going to use TubeTK as a library for building your own C++ programs or for processing data using the command-line or scripts, it is sufficient to build TubeTK as a (Option 2) Stand-Alone Build.

If you want a graphical user interface (albeit to a limited subset of TubeTK's methods), you should follow the (Option 1) Slicer-Dependent Build instructions.

(Option 1) Slicer-Dependent Build

It uses a compiled version of Slicer to provide its dependencies.

In this build format,

  1. TubeTK produces a set of libraries and command-line programs that can be used to process images from the command line and to build other applications.
  2. TubeTK methods are available from within the Slicer application against which it is built.

This build format is tested nightly on Windows, OS X, and Linux machines.

This build format has the following steps:

  • Install requirements and options
  • Download source
  • Configure using CMake
  • Build

Install Requirements and Options

CMake

CMake 3.4 or greater is required.

  • The Mac/Windows binaries can be downloaded from http://cmake.org
  • The linux installation from source is easiest. Assuming an older version of cmake is already installed, and you want to install v3.4.1, do the following:
sudo apt-get build-dep cmake
sudo apt-get install libgtkmm-2.4-dev glade-gtk2 libglademm-2.4-dev
git clone http://github.com:/Kitware/CMake.git
cd CMake
git checkout v3.4.1
cd ..
mkdir CMake-Release
cd CMake-Release
cmake ../CMake -DCMAKE_BUILD_TYPE=Release
make -j8

Slicer

  • If you are building the Stand-Alone version of TubeTK, you do not need to build Slicer.

Notes:

  • To address the multiple dependencies required (and optional) for VTK, we recommend installing the build dependencies of ParaView prior to building Slicer:
sudo apt-get build-dep paraview


Boost (optional)

Download and build Boost:

Notes:

  • Linux: TubeTK creates dynamic libraries that have static links to Boost libraries. Since Boost static libraries on Linux are not compiled with fPIC, you must compile Boost from source to use it with TubeTK.
    • ./bootstrap.sh
    • ./bjam -j14
    • ./bjam cxxflags=-fPIC cflags=-fPIC -a link=static -j14
  • Mac: if compiling for compatibility with older versions of MacOS, you may need to build boost using the following command:
    • ./b2 toolset=clang cxxflags="-stdlib=libstdc++" linkflags="-stdlib=libstdc++" link=static install -a
    • Slicer and TubeTK matches its build environment with the environment used to build qmake. This means that all code build using Slicer and TubeTK must also build using that environment. So, on some systems you will need to specify stdlib=libstdc++ (for 10.8) or stdlib-libc++ (for 10.9 and beyond). See the comments starting in line 103 of https://github.com/Slicer/Slicer/blob/master/CMake/SlicerBlockSetCMakeOSXVariables.cmake

Download Source

Download the source via git

Configure

Create a directory, outside of the source directory, to hold the compilation

  • mkdir TubeTK-Release
  • cd TubeTK-Release

Within that compilation directory, run cmake and point it to where the source is located. We recommend using a cmake with a GUI configuration editor. This is the default on Windows and Mac. On Linux (or from Mac command-line) type:

  • cmake-gui ../TubeTK

Set the following CMake variables

  • TubeTK_USE_SLICER = On
  • Slicer_DIR = <Path to your Slicer build directory>
  • Linux and Mac only, also set:
    • CMAKE_BUILD_TYPE = <same build type as Slicer installation: Debug or Release>

Build

Windows

Load the TubeTK solution file in Visual Studio

  • Select File -> Open -> Project/Solution -> open TubeTK-Release/TubeTK.sln
    • INITIAL BUILD: Perform the initial build using the TubeTK.sln file at the top-level of TubeTK-Release. This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
    • SUBSEQUENT BUILDS: Subsequent builds MUST be initiated using the TubeTK.sln file in the subdir TubeTK-Release/TubeTK-build. This will build TubeTK only. You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
  • Choose your build type: Release, Debug, etc. It MUST match the build type chosen for Slicer.
  • Right click on the "ALL_BUILD" project and select "Build".

Linux and OS X

  • INITIAL BUILD: Perform the initial build using your compiler at the top-level of TubeTK-Release. This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
    • cd TubeTK-Release
    • make -j8
  • SUBSEQUENT BUILDS: Subsequent builds MUST be initiated in the subdir TubeTK-Release/TubeTK-build. This will build TubeTK only. You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
    • cd TubeTK-Release/TubeTK-build
    • make -j8

(Option 2) Stand-Alone Build

In this build format, TubeTK produces a set of libraries and command-line programs that can be used to process images from the command line and to build other applications.

This build format is tested nightly on Windows, OS X, and Linux machines.

This build format has the following steps:

  • Install requirements and options
  • Download source
  • Configure using CMake
  • Build

Install Requirements and Options

GIT

Install the latest stable release.

Qt

QT version 4.8.6 or 4.8.7 is REQUIRED.

  • Windows
    • You will want the 64-bit version of Qt, with WebKIT support. See details at:

http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/Developers/Build_Instructions/Prerequisites/Qt#Windows_3

CMake

CMake 3.0 or greater is required.

  • The Mac/Windows binaries can be downloaded from http://cmake.org
  • The linux installation from source is easiest. Assuming an older version of cmake is already installed, and you want to install v3.4.1, do the following:
sudo apt-get build-dep cmake
sudo apt-get install libgtkmm-2.4-dev glade-gtk2 libglademm-2.4-dev
git clone http://github.com:/Kitware/CMake.git
cd CMake
git checkout v3.4.1
cd ..
mkdir CMake-Release
cd CMake-Release
cmake ../CMake -DCMAKE_BUILD_TYPE=Release
make -j8

Boost (optional)

Download and build Boost:

Notes:

  • Linux: TubeTK creates dynamic libraries that have static links to Boost libraries. Since Boost static libraries on Linux are not compiled with fPIC, you must compile Boost from source to use it with TubeTK.
    • ./bootstrap.sh
    • ./bjam -j14
    • ./bjam cxxflags=-fPIC cflags=-fPIC -a link=static -j14

Python (optional)

Versions 2.7.x is supported at this time.

Download and install per system instructions at:

http://www.lfd.uci.edu/~gohlke/pythonlibs/

    • Using these wheels is recommended over Anaconda and other installation packages, because they also include and expose versions of Qt (for example) that are incompatible with Slicer and TubeTK.
  • Linux and Mac
    • Python is already included with most Linux and Mac variants.

Download Source

Download the source via git

Configure

Before starting the configuration, make sure that you have virtualenv installed (Linux Only).

If not, just install it with :

  • sudo apt-get install pyton-pip
  • pip install virtualenv


Create a directory, outside of the source directory, to hold the compilation

  • mkdir TubeTK-Release
  • cd TubeTK-Release

Within that compilation directory, run cmake and point it to where the source is located. We recommend using a cmake with a GUI configuration editor. This is the default on Windows and Mac. On Linux (or from Mac command-line) type:

  • cmake-gui ../TubeTK

Linux and Mac only, set the CMake variables:

  • CMAKE_BUILD_TYPE = <same build type as Slicer installation: Debug or Release>

Build

Windows

Load the TubeTK solution file in Visual Studio

  • Select File -> Open -> Project/Solution -> open TubeTK-Release/TubeTK.sln
    • Perform the initial build using your compiler at the top-level of TubeTK-Release. This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.
  • Right click on the "ALL_BUILD" project and select "Build".
    • Subsequent builds should be initiated in the subdir TubeTK-Release/TubeTK-build to save time. This will build TubeTK only. You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.
      • Right click on the "TubeTK" project and select "Build".

Linux and OS X

Perform the initial build using your compiler at the top-level of TubeTK-Release. This will update and build the libraries that TubeTK depends on (ex. VTK, ITK), and then build TubeTK.

  • cd $HOME/TubeTK-Release
  • make

Subsequent builds should be initiated in the subdir TubeTK-Release/TubeTK-build to save time. This will build TubeTK only. You may have to periodically build from the top-level of TubeTK-Release to get updates to the libraries that TubeTK depends on.

  • cd $HOME/TubeTK-Release/TubeTK-build
  • make