[Insight-developers] itkMahalanobisDistanceMembershipFunction
problem ...
Lagaffe
lagaffe74130 at yahoo.fr
Sat Oct 1 08:44:06 EDT 2005
(Hi, just a copy to the developers of the
itkMahalanobisDistanceMembershipFunction problem I
sent to the Insight Users list)
Hello Karthik,
I did a checkout this morning, for your last update
concerning the SetMean function of the
itkMahalanobisDistanceMembershipFunction filter ...
But there is still a problem ...
error: invalid conversion from 'itk::Array<double>*'
to 'unsigned int'
So, I did a simple program below, that evaluate the
mahalanobis distance so you can easily check if the
filter work with the new convention (itkArray)
Hope it will help you and I to debug the filter ;-)
thanks
arnaud
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkVector.h"
#include "itkListSample.h"
#include "itkMeanCalculator.h"
#include "itkCovarianceCalculator.h"
#include "itkMahalanobisDistanceMembershipFunction.h"
int main()
{
const unsigned int MeasurementVectorLength = 3;
typedef itk::Vector< float, MeasurementVectorLength >
MeasurementVectorType;
typedef itk::Statistics::ListSample<
MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize(
MeasurementVectorLength );
MeasurementVectorType mv;
mv[0] = 1.0;
mv[1] = 2.0;
mv[2] = 4.0;
sample->PushBack( mv );
mv[0] = 2.0;
mv[1] = 4.0;
mv[2] = 5.0;
sample->PushBack( mv );
mv[0] = 3.0;
mv[1] = 8.0;
mv[2] = 6.0;
sample->PushBack( mv );
mv[0] = 2.0;
mv[1] = 7.0;
mv[2] = 4.0;
sample->PushBack( mv );
mv[0] = 3.0;
mv[1] = 2.0;
mv[2] = 7.0;
sample->PushBack( mv );
typedef itk::Statistics::MeanCalculator< SampleType >
MeanAlgorithmType;
MeanAlgorithmType::Pointer meanAlgorithm =
MeanAlgorithmType::New();
meanAlgorithm->SetInputSample( sample );
meanAlgorithm->Update();
std::cout << "Sample mean = " <<
*(meanAlgorithm->GetOutput()) << std::endl;
typedef itk::Statistics::CovarianceCalculator<
SampleType >
CovarianceAlgorithmType;
CovarianceAlgorithmType::Pointer covarianceAlgorithm
=
CovarianceAlgorithmType::New();
covarianceAlgorithm->SetInputSample( sample );
covarianceAlgorithm->SetMean(
meanAlgorithm->GetOutput() );
covarianceAlgorithm->Update();
std::cout << "Sample covariance = " << std::endl ;
std::cout << *(covarianceAlgorithm->GetOutput()) <<
std::endl;
typedef
itk::Statistics::MahalanobisDistanceMembershipFunction<
MeasurementVectorType >
MahalanobisDistanceMembershipFunctionType;
MahalanobisDistanceMembershipFunctionType::Pointer
MahalanobisDistance =
MahalanobisDistanceMembershipFunctionType::New();
MahalanobisDistance->SetMean(meanAlgorithm->GetOutput());
MahalanobisDistance->SetCovariance(covarianceAlgorithm->GetOutput()->GetVnlMatrix());
std::cout << "Mahalanobis distance=" <<
MahalanobisDistance->Evaluate(mv) << std::endl;
return 0;
}
___________________________________________________________________________
Appel audio GRATUIT partout dans le monde avec le nouveau Yahoo! Messenger
Téléchargez cette version sur http://fr.messenger.yahoo.com
More information about the Insight-developers
mailing list