[Insight-developers] itk bugfix

Simon Warfield warfield at crl.med.harvard.edu
Mon Jul 31 14:09:58 EDT 2006


The new Intel compiler version 9.1.042 applies scoping rules correctly 
but more strictly than before,
http://www.parashift.com/c++-faq-lite/templates.html#faq-35.18
, that cause it to not be able to compile the itk_hashtable.h code.

Examples of the error messages are here:
http://www.itk.org/Testing/Sites/smyslov.bwh.harvard.edu/Linux-x86_64-releaseopt-icc-9.0/20060731-0100-Nightly/BuildError.html

Attached is a corrected version of the file 
Insight/Code/Common/itk_hashtable.h

I would appreciate it if someone could check it in to the ITK CVS 
repository.

-- 
Simon K. Warfield, Ph.D.        warfield at crl.med.harvard.edu
Phone: 617-732-7090                      FAX:   617-582-6033
Associate Professor of Radiology,     Harvard Medical School
Director, Computational Radiology Laboratory, 
Departments of Radiology at Children's Hospital and
Brigham and Women's Hospital,
Thorn 329, Dept Radiology,  Brigham and Women's Hospital
75 Francis St, Boston, MA, 02115
MA 280, Dept Radiology, Children's Hospital Phone: 617-355-4566

-------------- next part --------------
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itk_hashtable.h,v $
  Language:  C++
  Date:      $Date: 2005/04/28 16:02:42 $
  Version:   $Revision: 1.18 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
/*
 * Copyright (c) 1996
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 * Exception Handling:
 * Copyright (c) 1997
 * Mark of the Unicorn, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Mark of the Unicorn makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 * Adaptation:
 * Copyright (c) 1997
 * Moscow Center for SPARC Technology
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Moscow Center for SPARC Technology makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 */


#ifndef itk_emulation_hashtable_h
#define itk_emulation_hashtable_h

#if !defined(__GNUC__) || !((__GNUC__==3) && (__GNUC_MINOR__>=1) || (__GNUC__>3)) || defined(__INTEL_COMPILER)

/** \brief Hashtable class, used to implement the hashed associative containers
 * itk_hash_set, itk_hash_map, itk_hash_multiset, and itk_hash_multimap.
 */
#include "itkMacro.h"
#include <iostream>
#include "itk_alloc.h"
#include <vector>
#include <utility>
#include <memory>
#include "vcl_compiler.h"
#include <functional>
#include <algorithm>
#include <iterator>


namespace itk
{
template <class Key> struct hash { };

inline size_t hash_string(const char* s)
{
  unsigned long h = 0; 
  for ( ; *s; ++s)
    h = 5*h + *s;
  
  return size_t(h);
}

template<>
struct hash<char*>
{
  size_t operator()(const char* s) const { return hash_string(s); }
};

template<>
struct hash<const char*>
{
  size_t operator()(const char* s) const { return hash_string(s); }
};

template<>
struct hash<char> {
  size_t operator()(char x) const { return x; }
};

template<>
struct hash<unsigned char> {
  size_t operator()(unsigned char x) const { return x; }
};

template<>
struct hash<signed char> {
  size_t operator()(unsigned char x) const { return x; }
};

template<>
struct hash<short> {
  size_t operator()(short x) const { return x; }
};

template<>
struct hash<unsigned short> {
  size_t operator()(unsigned short x) const { return x; }
};

template<>
struct hash<int> {
  size_t operator()(int x) const { return x; }
};

template<>
struct hash<unsigned int> {
  size_t operator()(unsigned int x) const { return x; }
};

template<>
struct hash<long> {
  size_t operator()(long x) const { return x; }
};

template<>
struct hash<unsigned long> {
  size_t operator()(unsigned long x) const { return x; }
};

template <class Value>
struct hashtable_node
{
  typedef hashtable_node<Value> self;
  self* next;
  Value val;
};  

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey ,  VCL_DFL_TYPE_PARAM_STLDECL(Alloc,std::allocator<char>)>
class hashtable;

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
struct hashtable_iterator;

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
struct hashtable_const_iterator;

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
struct hashtable_iterator 
{
  typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
          hash_table;
  typedef hashtable_iterator<Value, Key, HashFcn, 
                               ExtractKey, EqualKey, Alloc>
          iterator;
  typedef hashtable_const_iterator<Value, Key, HashFcn, 
                                     ExtractKey, EqualKey, Alloc>
          const_iterator;
  typedef hashtable_node<Value> node;
  typedef size_t size_type;
  typedef Value& reference;
  typedef const Value& const_reference;

  node* cur;
  hash_table* ht;

  hashtable_iterator(node* n, hash_table* tab) : cur(n), ht(tab) {}
  hashtable_iterator() {}
  reference operator*() const { 
        return cur->val; 
  }
  IUEi_STL_INLINE iterator& operator++();
  IUEi_STL_INLINE iterator operator++(int);
  bool operator==(const iterator& it) const { 
      return cur == it.cur; 
  }
  bool operator!=(const iterator& it) const { 
      return cur != it.cur; 
  }
};


template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
struct hashtable_const_iterator 
{
  typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
          hash_table;
  typedef hashtable_iterator<Value, Key, HashFcn, 
     ExtractKey, EqualKey, Alloc> iterator;
  typedef hashtable_const_iterator<Value, Key, HashFcn, 
     ExtractKey, EqualKey, Alloc> const_iterator;
  typedef hashtable_node<Value> node;
  typedef size_t size_type;
  typedef Value& reference;
  typedef const Value& const_reference;

  const node* cur;
  const hash_table* ht;

  hashtable_const_iterator(const node* n, const hash_table* tab) : cur(n), ht(tab) {}
  hashtable_const_iterator() {}
  hashtable_const_iterator(const iterator& it) : cur(it.cur), ht(it.ht) {}

  const_reference operator*() const { 
      return cur->val; 
  }
  IUEi_STL_INLINE const_iterator& operator++();
  IUEi_STL_INLINE const_iterator operator++(int);
  bool operator==(const const_iterator& it) const { 
      return cur == it.cur; 
  }
  bool operator!=(const const_iterator& it) const { 
      return cur != it.cur; 
  }
};

// Note: assumes long is at least 32 bits.
// fbp: try to avoid intances in every module
enum { num_primes = 28 };

#if ( __STL_STATIC_TEMPLATE_DATA > 0 ) && ! defined (WIN32)
#  define prime_list prime<false>::list_
   template <bool dummy>
   struct prime {
   public:
       static const unsigned long list_[];
   };
      static const unsigned long prime_list_dummy[num_primes] =
#  else
#  if ( __STL_WEAK_ATTRIBUTE > 0 )
      extern const unsigned long prime_list[num_primes] __attribute__((weak)) =
#  else
      // give up
      static const unsigned long prime_list[num_primes] =
#  endif /* __STL_WEAK_ATTRIBUTE */
#endif /* __STL_STATIC_TEMPLATE_DATA */
{
  53,         97,         193,       389,       769,
  1543,       3079,       6151,      12289,     24593,
  49157,      98317,      196613,    393241,    786433,
  1572869,    3145739,    6291469,   12582917,  25165843,
  50331653,   100663319,  201326611, 402653189, 805306457, 
  1610612741, 3221225473U, 4294967291U
};

inline unsigned long next_prime(unsigned long n)
{
  const unsigned long* first = prime_list;
  const unsigned long* last = prime_list;
  last += num_primes;
  const unsigned long* pos = std::lower_bound(first, last, n);
  return pos == last ? *(last - 1) : *pos;
}

template <class Value, class Alloc>
class hashtable_base 
{
private:
    typedef Value value_type;
    typedef size_t size_type;
    typedef hashtable_node<Value> node;
    typedef itk_simple_alloc<node, Alloc> node_allocator;
public: // These are public to get around restriction on protected access
    typedef std::vector<VCL_SUNPRO_ALLOCATOR_HACK(node*) > buckets_type ;
    buckets_type buckets; // awf killed optional allocator
    size_type num_elements;
protected:
    IUEi_STL_INLINE void clear();

    node* new_node(const value_type& obj)
  {
            node* n = node_allocator::allocate();
            try {
        new (&(n->val)) value_type(obj);
            }
            catch (...) {
        node_allocator::deallocate(n);
        throw "";
            }
            n->next = 0;
            return n;
  }
  
    void delete_node(node* n)
  {
#define vcli_destroy(T, p)    ((T*)p)->~T()
            vcli_destroy(Value, &(n->val));
#undef vcli_destroy
            node_allocator::deallocate(n);
  }

    IUEi_STL_INLINE void copy_from(const hashtable_base<Value,Alloc>& ht);
  
public: // These are public to get around restriction on protected access
    hashtable_base() : num_elements(0) { }
//    hashtable_base(size_type n) : num_elements(0) {}
    ~hashtable_base() { clear(); }
};


// forward declarations
template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc> class hashtable;
template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
  bool operator== (hashtable<Value,Key,HashFcn,ExtractKey,EqualKey,Alloc>const&,hashtable<Value,Key,HashFcn,ExtractKey,EqualKey,Alloc>const&);

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
class hashtable : protected hashtable_base<Value, Alloc> 
{
  typedef hashtable_base<Value, Alloc> super;
  typedef hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> self;
public:
  typedef Key key_type;
  typedef Value value_type;
  typedef HashFcn hasher;
  typedef EqualKey key_equal;

  typedef size_t            size_type;
  typedef ptrdiff_t         difference_type;
  typedef value_type*       pointer;
  typedef const value_type* const_pointer;
  typedef value_type&       reference;
  typedef const value_type& const_reference;

  hasher hash_funct() const { return hashfun; }
  key_equal key_eq() const { return equals; }

private:
  hasher hashfun;
  key_equal equals;
  ExtractKey get_key;

  typedef hashtable_node<Value> node;
  typedef itk_simple_alloc<node, Alloc> node_allocator;

public:
  typedef hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> iterator;
  typedef hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey,Alloc> const_iterator;
  friend struct
  hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;
  friend struct
  hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>;

public:
  hashtable(size_type n,
            const HashFcn&    hf,
            const EqualKey&   eql,
            const ExtractKey& ext)
      : hashfun(hf), equals(eql), get_key(ext) {
        initialize_buckets(n);
    }

  hashtable(size_type n,
            const HashFcn&    hf,
            const EqualKey&   eql)
      : hashfun(hf), equals(eql), get_key(ExtractKey()) {
        initialize_buckets(n);
    }

  hashtable(const self& ht)
    : hashfun(ht.hashfun), equals(ht.equals), get_key(ht.get_key) {
        copy_from(ht);
  }

  self& operator= (const self& ht)
  {
    if (&ht != this) {
      hashfun = ht.hashfun;
      equals = ht.equals;
      get_key = ht.get_key;
      clear();
      this->buckets.clear();
      copy_from(ht);
    }
    return *this;
  }

  ~hashtable() {}

  size_type size() const { return this->num_elements; }
  size_type max_size() const { return size_type(-1); }
  bool empty() const { return size() == 0; }

  void swap(self& ht)
  {
    std::swap(hashfun, ht.hashfun);
    std::swap(equals, ht.equals);
    std::swap(get_key, ht.get_key);
    this->buckets.swap(ht.buckets);
    std::swap(this->num_elements, ht.num_elements);
  }

  iterator begin()
  { 
    for (size_type n = 0; n < this->buckets.size(); ++n)
      if (this->buckets[n])
        return iterator(this->buckets[n], this);
    return end();
  }

  iterator end() { return iterator((node*)0, this); }

  const_iterator begin() const
  {
    for (size_type n = 0; n < this->buckets.size(); ++n)
      if (this->buckets[n])
        return const_iterator(this->buckets[n], this);
    return end();
  }

  const_iterator end() const { return const_iterator((node*)0, this); }

  //  friend IUEi_STL_INLINE bool operator== VCL_NULL_TMPL_ARGS (const
  //  self&,const self&);
  friend bool operator== VCL_NULL_TMPL_ARGS (const self&,const self&);
public:

  size_type bucket_count() const { return this->buckets.size(); }

  size_type max_bucket_count() const
    { return prime_list[num_primes - 1]; } 

  size_type elems_in_bucket(size_type bucket) const
  {
    size_type result = 0;
    for (node* cur = this->buckets[bucket]; cur; cur = cur->next)
      result += 1;
    return result;
  }

  std::pair<iterator, bool> insert_unique(const value_type& obj)
  {
    resize(this->num_elements + 1);
    return insert_unique_noresize(obj);
  }

  iterator insert_equal(const value_type& obj)
  {
    resize(this->num_elements + 1);
    return insert_equal_noresize(obj);
  }

  IUEi_STL_INLINE std::pair<iterator, bool> insert_unique_noresize(const value_type& obj);
  IUEi_STL_INLINE iterator insert_equal_noresize(const value_type& obj);
 
  void insert_unique(const value_type* f, const value_type* l)
  {
    size_type n = l - f;
    resize(this->num_elements + n);
    for ( ; n > 0; --n)
      insert_unique_noresize(*f++);
  }

  void insert_equal(const value_type* f, const value_type* l)
  {
    size_type n = l - f;
    resize(this->num_elements + n);
    for ( ; n > 0; --n)
      insert_equal_noresize(*f++);
  }

 void insert_unique(const_iterator f, const_iterator l)
  {
    size_type n = 0;
    std::distance(f, l, n);
    resize(this->num_elements + n);
    for ( ; n > 0; --n)
      insert_unique_noresize(*f++);
  }

  void insert_equal(const_iterator f, const_iterator l)
  {
    size_type n = 0;
    std::distance(f, l, n);
    resize(this->num_elements + n);
    for ( ; n > 0; --n)
      insert_equal_noresize(*f++);
  }

  IUEi_STL_INLINE reference find_or_insert(const value_type& obj);

  iterator find(const key_type& key) 
  {
    size_type n = bkt_num_key(key);
    node* first;
    for ( first = this->buckets[n];
          first && !equals(get_key(first->val), key);
          first = first->next)
      {}
    return iterator(first, this);
  } 

  const_iterator find(const key_type& key) const
  {
    size_type n = bkt_num_key(key);
    const node* first;
    for ( first = this->buckets[n];
          first && !equals(get_key(first->val), key);
          first = first->next)
      {}
    return const_iterator(first, this);
  } 

  size_type count(const key_type& key) const
  {
    const size_type n = bkt_num_key(key);
    size_type result = 0;

    for (const node* cur = this->buckets[n]; cur; cur = cur->next)
      if (equals(get_key(cur->val), key))
        ++result;
    return result;
  }

  IUEi_STL_INLINE std::pair<iterator, iterator> equal_range(const key_type& key);
  IUEi_STL_INLINE std::pair<const_iterator, const_iterator> equal_range(const key_type& key) const;

  IUEi_STL_INLINE size_type erase(const key_type& key);
  IUEi_STL_INLINE void erase(const iterator& it);
  IUEi_STL_INLINE void erase(iterator first, iterator last);

  IUEi_STL_INLINE void erase(const const_iterator& it);
  IUEi_STL_INLINE void erase(const_iterator first, const_iterator last);

  IUEi_STL_INLINE void resize(size_type num_elements_hint);
  void clear() { super::clear(); }
private:
    size_type next_size(size_type n) const { 
       return static_cast<size_type>( 
          next_prime( static_cast<unsigned long>(n) ) ); }

    void initialize_buckets(size_type n)
    {
        const size_type n_buckets = next_size(n);
        this->buckets.reserve(n_buckets);
        this->buckets.insert(this->buckets.end(), n_buckets, (node*) 0);
        this->num_elements = 0;
    }
    size_type bkt_num_key(const key_type& key) const{
        return bkt_num_key(key, this->buckets.size());
    }

    size_type bkt_num(const value_type& obj) const {
        return bkt_num_key(get_key(obj));
    }

    size_type bkt_num_key(const key_type& key, size_t n) const {
        return hashfun(key) % n;
    }

    size_type bkt_num(const value_type& obj, size_t n) const {
        return bkt_num_key(get_key(obj), n);
    }
    IUEi_STL_INLINE void erase_bucket(const size_type n, node* first, node* last);
    IUEi_STL_INLINE void erase_bucket(const size_type n, node* last);
};

// fbp: these defines are for outline methods definitions.
// needed to definitions to be portable. Should not be used in method bodies.

# if defined ( __STL_NESTED_TYPE_PARAM_BUG )
#  define __difference_type__ ptrdiff_t
#  define __size_type__       size_t
#  define __value_type__      Value
#  define __key_type__        Key
#  define __node__            hashtable_node<Value>
#  define __reference__       Value&
# else
#  define __difference_type__  typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::difference_type
#  define __size_type__        typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::size_type
#  define __value_type__       typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::value_type
#  define __key_type__         typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::key_type
#  define __node__             typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::node
#  define __reference__        typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::reference
# endif

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&
hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++()
{
  const node* old = cur;
  cur = cur->next;
  if (!cur) {
    size_type bucket = ht->bkt_num(old->val);
    while (!cur && ++bucket < ht->buckets.size())
      cur = ht->buckets[bucket];
  }
  return *this;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++(int)
{
  iterator tmp = *this;
  ++*this;
  return tmp;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&
hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++()
{
  const node* old = cur;
  cur = cur->next;
  if (!cur) {
    size_type bucket = ht->bkt_num(old->val);
    while (!cur && ++bucket < ht->buckets.size())
      cur = ht->buckets[bucket];
  }
  return *this;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>
hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::operator++(int)
{
  const_iterator tmp = *this;
  ++*this;
  return tmp;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline std::forward_iterator_tag
iterator_category (const hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return std::forward_iterator_tag();
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline Value* 
value_type(const hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return (Value*) 0;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline ptrdiff_t*
distance_type(const hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return (ptrdiff_t*) 0;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline std::forward_iterator_tag
iterator_category (const hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return std::forward_iterator_tag();
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline Value* 
value_type(const hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return (Value*) 0;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline ptrdiff_t*
distance_type(const hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>&)
{
  return (ptrdiff_t*) 0;
}



template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
IUEi_STL_INLINE 
bool operator==(const hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& ht1,
                const hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& ht2)
{
  typedef typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::node node;
  if (ht1.buckets.size() != ht2.buckets.size())
    return false;
  for (int n = 0; n < ht1.buckets.size(); ++n) {
    node* cur1 = ht1.buckets[n];
    node* cur2 = ht2.buckets[n];
    for ( ; cur1 && cur2 && cur1->val == cur2->val;
          cur1 = cur1->next, cur2 = cur2->next)
      {}
    if (cur1 || cur2)
      return false;
  }
  return true;
}  

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
std::pair<hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>, bool> 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::insert_unique_noresize(const __value_type__& obj)
{
  const size_type n = bkt_num(obj);
  node* first = this->buckets[n];

  for (node* cur = first; cur; cur = cur->next) 
    if (equals(get_key(cur->val), get_key(obj)))
      return std::pair<iterator, bool>(iterator(cur, this), false);

  node* tmp = new_node(obj);
  tmp->next = first;
  this->buckets[n] = tmp;
  ++this->num_elements;
  return std::pair<iterator, bool>(iterator(tmp, this), true);
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::insert_equal_noresize(const __value_type__& obj)
{
  const size_type n = bkt_num(obj);
  node* first = buckets[n];

  for (node* cur = first; cur; cur = cur->next) 
    if (equals(get_key(cur->val), get_key(obj))) {
      node* tmp = new_node(obj);
      tmp->next = cur->next;
      cur->next = tmp;
      ++num_elements;
      return iterator(tmp, this);
    }

  node* tmp = new_node(obj);
  tmp->next = first;
  buckets[n] = tmp;
  ++num_elements;
  return iterator(tmp, this);
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
__reference__ 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::find_or_insert(const __value_type__& obj)
{
  resize(this->num_elements + 1);

  size_type n = bkt_num(obj);
  node* first = this->buckets[n];

  for (node* cur = first; cur; cur = cur->next)
    if (equals(get_key(cur->val), get_key(obj)))
      return cur->val;

  node* tmp = new_node(obj);
  tmp->next = first;
  this->buckets[n] = tmp;
  ++this->num_elements;
  return tmp->val;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
std::pair<hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>,
     hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> > 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::equal_range(const __key_type__& key)
{
  typedef std::pair<iterator, iterator> pii;
  const size_type n = bkt_num_key(key);

  for (node* first = buckets[n]; first; first = first->next) {
    if (equals(get_key(first->val), key)) {
      for (node* cur = first->next; cur; cur = cur->next)
        if (!equals(get_key(cur->val), key))
          return pii(iterator(first, this), iterator(cur, this));
      for (size_type m = n + 1; m < buckets.size(); ++m)
        if (buckets[m])
          return pii(iterator(first, this),
                     iterator(buckets[m], this));
      return pii(iterator(first, this), end());
    }
  }
  return pii(end(), end());
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
std::pair<hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>, 
     hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> > 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::equal_range(const __key_type__& key) const
{
  typedef std::pair<const_iterator, const_iterator> pii;
  const size_type n = bkt_num_key(key);

  for (const node* first = buckets[n] ; first; first = first->next) {
    if (equals(get_key(first->val), key)) {
      for (const node* cur = first->next; cur; cur = cur->next)
        if (!equals(get_key(cur->val), key))
          return pii(const_iterator(first, this),
                     const_iterator(cur, this));
      for (size_type m = n + 1; m < buckets.size(); ++m)
        if (buckets[m])
          return pii(const_iterator(first, this),
                     const_iterator(buckets[m], this));
      return pii(const_iterator(first, this), end());
    }
  }
  return pii(end(), end());
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
__size_type__ 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const __key_type__& key)
{
  const size_type n = bkt_num_key(key);
  node* first = this->buckets[n];
  size_type erased = 0;

  if (first) {
    node* cur = first;
    node* next = cur->next;
    while (next) {
      if (equals(get_key(next->val), key)) {
        cur->next = next->next;
        delete_node(next);
        next = cur->next;
        ++erased;
      }
      else {
        cur = next;
        next = cur->next;
      }
    }
    if (equals(get_key(first->val), key)) {
      this->buckets[n] = first->next;
      delete_node(first);
      ++erased;
    }
  }
  this->num_elements -= erased;
  return erased;
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
void 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& it)
{
  node* const p = it.cur;
  if (p) {
    const size_type n = bkt_num(p->val);
    node* cur = this->buckets[n];

    if (cur == p) {
      this->buckets[n] = cur->next;
      delete_node(cur);
      --this->num_elements;
    }
    else {
      node* next = cur->next;
      while (next) {
        if (next == p) {
          cur->next = next->next;
          delete_node(next);
          --this->num_elements;
          break;
        }
        else {
          cur = next;
          next = cur->next;
        }
      }
    }
  }
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
void 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> first, 
                                        hashtable_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> last)
{
  size_type f_bucket = first.cur ? bkt_num(first.cur->val) : buckets.size();
  size_type l_bucket = last.cur ? bkt_num(last.cur->val) : buckets.size();
  if (first.cur == last.cur)
    return;
  else if (f_bucket == l_bucket)
    erase_bucket(f_bucket, first.cur, last.cur);
  else {
    erase_bucket(f_bucket, first.cur, 0);
    for (size_type n = f_bucket + 1; n < l_bucket; ++n)
      erase_bucket(n, 0);
    if (l_bucket != buckets.size())
      erase_bucket(l_bucket, last.cur);
  }
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> first, 
                                        hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc> last)
{
  erase(iterator(const_cast<node*>(first.cur),
                 const_cast<self*>(first.ht)),
        iterator(const_cast<node*>(last.cur),
                 const_cast<self*>(last.ht)));
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
inline void
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase(const hashtable_const_iterator<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>& it)
{
  erase(iterator(const_cast<node*>(it.cur),
                 const_cast<self*>(it.ht)));
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
void 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::resize(__size_type__ num_elements_hint)
{
    const size_type old_n = this->buckets.size();
    if (num_elements_hint > old_n) {
        const size_type n = next_size(num_elements_hint);
        if (n > old_n) {
      typename hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::buckets_type tmp(n, (node*)0);
            for (size_type bucket = 0; bucket < old_n; ++bucket) {
                node* first = this->buckets[bucket];
                while (first) {
                    size_type new_bucket = bkt_num(first->val, n);
                    this->buckets[bucket] = first->next;
                    first->next = tmp[new_bucket];
                    tmp[new_bucket] = first;
                    first = this->buckets[bucket];          
                }
            }
            this->buckets.clear();
            this->buckets.swap(tmp);
        }
    }
}


template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
void 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase_bucket(const size_t n, 
                                             hashtable_node<Value>* first, 
                                             hashtable_node<Value>* last)
{
  node* cur = buckets[n];
  if (cur == first)
    erase_bucket(n, last);
  else {
    node* next;
    for (next = cur->next; next != first; cur = next, next = cur->next)
      ;
    while (next) {
      cur->next = next->next;
      delete_node(next);
      next = cur->next;
      --num_elements;
    }
  }
}

template <class Value, class Key, class HashFcn, class ExtractKey, class EqualKey, class Alloc>
void 
hashtable<Value, Key, HashFcn, ExtractKey, EqualKey, Alloc>::erase_bucket(const size_t n,
                                                            hashtable_node<Value>* last)
{
  node* cur = buckets[n];
  while (cur != last) {
    node* next = cur->next;
    delete_node(cur);
    cur = next;
    buckets[n] = cur;
    --num_elements;
  }
}

template <class Value, class Alloc>
void hashtable_base<Value, Alloc>::clear()
{
  for (size_type i = 0; i < buckets.size(); ++i) {
    node* cur = buckets[i];
    while (cur != 0) {
      node* next = cur->next;
      delete_node(cur);
      cur = next;
    }
    buckets[i] = 0;
  }
  num_elements = 0;
}
  
  
template <class Value, class Alloc>
void hashtable_base<Value, Alloc>::copy_from(const hashtable_base<Value, Alloc>& ht)
{
  buckets.reserve(ht.buckets.size());
  buckets.insert(buckets.end(), ht.buckets.size(), (node*) 0);
  for (size_type i = 0; i < ht.buckets.size(); ++i) {
    const node* cur = ht.buckets[i];
    if (cur) {
      node* copy = new_node(cur->val);
      buckets[i] = copy;
      ++num_elements;
      
      for (node* next = cur->next; next; cur = next, next = cur->next) {
        copy->next = new_node(next->val);
        ++num_elements;
        copy = copy->next;
      }
    }
  }
}

}// end namespace itk


# undef __difference_type__ 
# undef __size_type__       
# undef __value_type__      
# undef __key_type__        
# undef __node__            

// the following is added for itk compatability:

// --

// A few compatability fixes.  Placed here for automatic include in
// both the hash_set and the hash_map sources.
# if defined(VCL_SUNPRO_CC) || defined (_MSC_VER) || defined(__BORLANDC__) || ((defined(__ICC)||defined(__ECC)) && defined(linux))
namespace std 
{
template <class T>
struct identity : public std::unary_function<T, T> {
public:
  const T& operator()(const T& x) const { return x; }
};
}

template <class _Pair>
struct itk_Select1st : public std::unary_function<_Pair, typename _Pair::first_type> {
  typename _Pair::first_type const & operator()(_Pair const & __x) const {
    return __x.first;
  }
};
 
template <class _Pair>
struct itk_Select2nd : public std::unary_function<_Pair, typename _Pair::second_type> {
  typename _Pair::second_type const & operator()(_Pair const & __x) const {
    return __x.second;
  }
};

// Add select* to std.
namespace std {
  template <class _Pair>
  struct select1st : public itk_Select1st<_Pair> { };
  template <class _Pair> struct select2nd : public itk_Select2nd<_Pair> { };
};

#endif

#endif

#endif // itk_emulation_hashtable_h


More information about the Insight-developers mailing list