[Insight-users] Image Symilarity Metrics suggestion

Fabio Interlenghi f.interlenghi@diapasonsrl.it
Wed, 22 Jan 2003 17:26:36 +0100


This is a multi-part message in MIME format.

------=_NextPart_000_0016_01C2C23B.6A7C3860
Content-Type: multipart/alternative;
	boundary="----=_NextPart_001_0017_01C2C23B.6A80CC40"


------=_NextPart_001_0017_01C2C23B.6A80CC40
Content-Type: text/plain;
	charset="iso-8859-1"
Content-Transfer-Encoding: 7bit

Hi All,

I'm novice in ITK programming and trying to understand the best way to do
Image comparison.
The objective is to build a keyframe grabbing for video contents and the
problem to solve for me is to compare two images and then get a measurement
of the difference between them.
The analysis will be done between two images in memory  and not read from a
file so in which way can i convert a DIB image in to itk::Image?
Can you help me indicating a tutorial or an example or what ever you think
could help?
Many thanks in advance.
Regards.

      Fabio Interlenghi
      Direzione Tecnica

      Media Businness Unit
      http://www.diapasonsrl.it
      Via Torre Pellice, 17
      10156 Torino
      Tel.: 0112743095
      Fax : 0112735640
      Mob.: 3357887348



------=_NextPart_001_0017_01C2C23B.6A80CC40
Content-Type: text/html;
	charset="iso-8859-1"
Content-Transfer-Encoding: quoted-printable

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=3DContent-Type content=3D"text/html; =
charset=3Diso-8859-1">
<META content=3D"MSHTML 6.00.2600.0" name=3DGENERATOR></HEAD>
<BODY>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D367230316-22012003>Hi=20
All,</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D367230316-22012003></SPAN></FONT>&nbsp;</DIV>
<DIV><FONT face=3DArial size=3D2><SPAN =
class=3D367230316-22012003>I'm&nbsp;novice in=20
ITK programming and trying to understand the best way to do Image=20
comparison.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D367230316-22012003>The =
objective is to=20
build a keyframe grabbing for video contents and the problem to solve =
for me is=20
to compare two images and&nbsp;then get a measurement of the difference=20
between&nbsp;them.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D367230316-22012003>The =
analysis will be=20
done between two images in memory&nbsp; and not read from a file so in =
which way=20
can i convert a DIB image in to itk::Image?</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D367230316-22012003>Can =
you help me=20
indicating a tutorial or an example or what ever you think could=20
help?&nbsp;&nbsp;</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN class=3D367230316-22012003>Many =
thanks in=20
advance.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D367230316-22012003>Regards.</SPAN></FONT></DIV>
<DIV><FONT face=3DArial size=3D2><SPAN=20
class=3D367230316-22012003></SPAN></FONT>&nbsp;</DIV>
<DIV align=3Dcenter>
<TABLE width=3D"75%" border=3D0>
  <TBODY>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D2>Fabio Interlenghi </FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Direzione Tecnica </FONT></DIV></TD></TR>
  <TR>
    <TD height=3D69>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1><IMG height=3D54 src=3D"cid:367230316@22012003-0aac"=20
      width=3D266></FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Media Businness Unit</FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1><A=20
      =
href=3D"http://www.diapasonsrl.it/">http://www.diapasonsrl.it</A></FONT><=
/DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Via Torre Pellice, 17</FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>10156 Torino</FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Tel.: 0112743095</FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Fax : 0112735640</FONT></DIV></TD></TR>
  <TR>
    <TD height=3D14>
      <DIV align=3Dcenter><FONT face=3D"Verdana, Arial, Helvetica, =
sans-serif"=20
      size=3D1>Mob.: =
3357887348</FONT></DIV></TD></TR></TBODY></TABLE><FONT=20
face=3D"Verdana, Arial, Helvetica, sans-serif" size=3D1></FONT></DIV>
<DIV>&nbsp;</DIV></BODY></HTML>

------=_NextPart_001_0017_01C2C23B.6A80CC40--

------=_NextPart_000_0016_01C2C23B.6A7C3860
Content-Type: image/jpeg;
	name="DiaLogo_conNome_Beveled_Alabarde.jpg"
Content-Transfer-Encoding: base64
Content-ID: <367230316@22012003-0aac>

/9j/4AAQSkZJRgABAgEASABIAAD/7QdmUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAAR/+0AAIA
AgBH/7QAAgACOEJJTQQNAAAAAAAEAAAAeDhCSU0D8wAAAAAACAAAAAAAAAAAOEJJTQQKAAAAAAAB
AAA4QklNJxAAAAAAAAoAAQAAAAAAAAACOEJJTQP1AAAAAABIAC9mZgABAGxmZgAGAAAAAAABAC9m
ZgABAKGZmgAGAAAAAAABADIAAAABAFoAAAAGAAAAAAABADUAAAABAC0AAAAGAAAAAAABOEJJTQP4
AAAAAABwAAD/////////////////////////////A+gAAAAA////////////////////////////
/wPoAAAAAP////////////////////////////8D6AAAAAD/////////////////////////////
A+gAADhCSU0ECAAAAAAAEAAAAAEAAAJAAAACQAAAAAA4QklNBBQAAAAAAAQAAAAGOEJJTQQMAAAA
AAXVAAAAAQAAAHAAAAAZAAABUAAAINAAAAW5ABgAAf/Y/+AAEEpGSUYAAQIBAEgASAAA//4AJkZp
bGUgd3JpdHRlbiBieSBBZG9iZSBQaG90b3Nob3CoIDUuMP/uAA5BZG9iZQBkgAAAAAH/2wCEAAwI
CAgJCAwJCQwRCwoLERUPDAwPFRgTExUTExgRDAwMDAwMEQwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM
DAwMDAwBDQsLDQ4NEA4OEBQODg4UFA4ODg4UEQwMDAwMEREMDAwMDAwRDAwMDAwMDAwMDAwMDAwM
DAwMDAwMDAwMDAwMDP/AABEIABkAcAMBIgACEQEDEQH/3QAEAAf/xAE/AAABBQEBAQEBAQAAAAAA
AAADAAECBAUGBwgJCgsBAAEFAQEBAQEBAAAAAAAAAAEAAgMEBQYHCAkKCxAAAQQBAwIEAgUHBggF
AwwzAQACEQMEIRIxBUFRYRMicYEyBhSRobFCIyQVUsFiMzRygtFDByWSU/Dh8WNzNRaisoMmRJNU
ZEXCo3Q2F9JV4mXys4TD03Xj80YnlKSFtJXE1OT0pbXF1eX1VmZ2hpamtsbW5vY3R1dnd4eXp7fH
1+f3EQACAgECBAQDBAUGBwcGBTUBAAIRAyExEgRBUWFxIhMFMoGRFKGxQiPBUtHwMyRi4XKCkkNT
FWNzNPElBhaisoMHJjXC0kSTVKMXZEVVNnRl4vKzhMPTdePzRpSkhbSVxNTk9KW1xdXl9VZmdoaW
prbG1ub2JzdHV2d3h5ent8f/2gAMAwEAAhEDEQA/APVVnZ3XenYV32Vz3X5pG4YeO03XR2c6qrd6
LHf6W/0qf+EVrOGWcK8YRDco1uFDnagWQfTcZ/lKt07B6f0eiuiv22Xu/SXWGbLrSNzn33O91t1n
8pySkNWX9YsvVmDV0+qdHZdnq2x4nGw/0Lf/AGPVmvDzzrkZznT+bVWytv8A0xfb/wCCq6qv2l73
+2GVtcGknVxP7v8AJSQSAlbQxv5z3fF7j/FT2MHb715/R1O1nS5q6pdf1C+jMdfSL3WeixlVz6Hu
1c/GyK8mvH2fQ/nLFqU9Wss6nbeHW/YGudgNvc5v2bc1m+rJZ7t32t+Yy+r1W/o/Rtx/0ieYV17/
AIJp6z2jTQJFlbuQCuDx+odQZ03H3/ag3qIroqc3IdfkWEzbk5WObtn2V9NLfQq2+n/P+pb/ADCJ
m9VccWqzIzPs91FFjcij7Q7FecitzmXW49tTbqcjN9rHMwcmmyr07Mf0/wBDZYlweKntXY+O7UiP
MEj/AKkoT+n1PHtturPiy5//AFLnPZ/0Vy13UK2ZN2Vbn2V5j8ilmB01ri1hoe6r05xHfzleTS53
2m3b+h/Sf4Wpmwf7UyWZmLjjJfYy7qeQ2mwO5racqqzAvf8Ansqe7Huxd3+C/R/9pUuDxUXpHdO6
sxwdjdUeWj8zJprtb99Aw7f/AAVQdl/WHFg3YVWcyfc/Es2WR4/ZsvbX/wCzquUnIc9kTsaPe92g
P9Rp939tWHvYxjnvcGsaCXOJgADlzimIBtp4fWMLLs9BrnU5UScW9pqtgfSIrsj1Gt/0lPqVq8sr
Avx+vYTsmyoeh6z/ALFcNHOraYqy6XfTr9T/AAbvz6/661AIAEzHcpJf/9D1VDvopyKnU3sFlTxD
mOEgoiSSmlVgX4wDcXKf6Y+jVf8ApgB4NtcWZP8A25fajtFrm7b62GedpkH+y8BGSSU1mdPway41
0NrL/p7Rtn+ttUjhYpZ6ZrHp/uSdv+b9FHSSRp4IDhYpaxvpgCudgGkTzt2pn4GHZ/OVNfB3Ddrr
+9r+crCSStPBrnDwzYLn0tfa36L3Dc4fBztzknekwNFeMX7DLA1rRBPdvqGvarCSSXNvt6/Z7cTH
x8cTrZk2OeQPH7PjsDX/APsXWgu+rxzS13WsuzqDWncMUAU4sgy3di1e+/8AqZmRlMWwkkpZrWta
GtADQIAGgACdJJJT/9kAOEJJTQQGAAAAAAAHAAMAAQABAQD/4gxYSUNDX1BST0ZJTEUAAQEAAAxI
TGlubwIQAABtbnRyUkdCIFhZWiAHzgACAAkABgAxAABhY3NwTVNGVAAAAABJRUMgc1JHQgAAAAAA
AAAAAAAAAAAA9tYAAQAAAADTLUhQICAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAABFjcHJ0AAABUAAAADNkZXNjAAABhAAAAGx3dHB0AAAB8AAAABRia3B0AAAC
BAAAABRyWFlaAAACGAAAABRnWFlaAAACLAAAABRiWFlaAAACQAAAABRkbW5kAAACVAAAAHBkbWRk
AAACxAAAAIh2dWVkAAADTAAAAIZ2aWV3AAAD1AAAACRsdW1pAAAD+AAAABRtZWFzAAAEDAAAACR0
ZWNoAAAEMAAAAAxyVFJDAAAEPAAACAxnVFJDAAAEPAAACAxiVFJDAAAEPAAACAx0ZXh0AAAAAENv
cHlyaWdodCAoYykgMTk5OCBIZXdsZXR0LVBhY2thcmQgQ29tcGFueQAAZGVzYwAAAAAAAAASc1JH
QiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAABJzUkdCIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWFlaIAAAAAAAAPNRAAEAAAABFsxY
WVogAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAABvogAAOPUAAAOQWFlaIAAAAAAAAGKZAAC3hQAA
GNpYWVogAAAAAAAAJKAAAA+EAAC2z2Rlc2MAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAA
AAAAAAAAAAAAFklFQyBodHRwOi8vd3d3LmllYy5jaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAABkZXNjAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdC
IGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAC5JRUMgNjE5NjYtMi4xIERlZmF1bHQgUkdC
IGNvbG91ciBzcGFjZSAtIHNSR0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAsUmVm
ZXJlbmNlIFZpZXdpbmcgQ29uZGl0aW9uIGluIElFQzYxOTY2LTIuMQAAAAAAAAAAAAAALFJlZmVy
ZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAHZpZXcAAAAAABOk/gAUXy4AEM8UAAPtzAAEEwsAA1yeAAAAAVhZWiAAAAAAAEwJVgBQ
AAAAVx/nbWVhcwAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAo8AAAACc2lnIAAAAABDUlQgY3Vy
dgAAAAAAAAQAAAAABQAKAA8AFAAZAB4AIwAoAC0AMgA3ADsAQABFAEoATwBUAFkAXgBjAGgAbQBy
AHcAfACBAIYAiwCQAJUAmgCfAKQAqQCuALIAtwC8AMEAxgDLANAA1QDbAOAA5QDrAPAA9gD7AQEB
BwENARMBGQEfASUBKwEyATgBPgFFAUwBUgFZAWABZwFuAXUBfAGDAYsBkgGaAaEBqQGxAbkBwQHJ
AdEB2QHhAekB8gH6AgMCDAIUAh0CJgIvAjgCQQJLAlQCXQJnAnECegKEAo4CmAKiAqwCtgLBAssC
1QLgAusC9QMAAwsDFgMhAy0DOANDA08DWgNmA3IDfgOKA5YDogOuA7oDxwPTA+AD7AP5BAYEEwQg
BC0EOwRIBFUEYwRxBH4EjASaBKgEtgTEBNME4QTwBP4FDQUcBSsFOgVJBVgFZwV3BYYFlgWmBbUF
xQXVBeUF9gYGBhYGJwY3BkgGWQZqBnsGjAadBq8GwAbRBuMG9QcHBxkHKwc9B08HYQd0B4YHmQes
B78H0gflB/gICwgfCDIIRghaCG4IggiWCKoIvgjSCOcI+wkQCSUJOglPCWQJeQmPCaQJugnPCeUJ
+woRCicKPQpUCmoKgQqYCq4KxQrcCvMLCwsiCzkLUQtpC4ALmAuwC8gL4Qv5DBIMKgxDDFwMdQyO
DKcMwAzZDPMNDQ0mDUANWg10DY4NqQ3DDd4N+A4TDi4OSQ5kDn8Omw62DtIO7g8JDyUPQQ9eD3oP
lg+zD88P7BAJECYQQxBhEH4QmxC5ENcQ9RETETERTxFtEYwRqhHJEegSBxImEkUSZBKEEqMSwxLj
EwMTIxNDE2MTgxOkE8UT5RQGFCcUSRRqFIsUrRTOFPAVEhU0FVYVeBWbFb0V4BYDFiYWSRZsFo8W
shbWFvoXHRdBF2UXiReuF9IX9xgbGEAYZRiKGK8Y1Rj6GSAZRRlrGZEZtxndGgQaKhpRGncanhrF
GuwbFBs7G2MbihuyG9ocAhwqHFIcexyjHMwc9R0eHUcdcB2ZHcMd7B4WHkAeah6UHr4e6R8THz4f
aR+UH78f6iAVIEEgbCCYIMQg8CEcIUghdSGhIc4h+yInIlUigiKvIt0jCiM4I2YjlCPCI/AkHyRN
JHwkqyTaJQklOCVoJZclxyX3JicmVyaHJrcm6CcYJ0kneierJ9woDSg/KHEooijUKQYpOClrKZ0p
0CoCKjUqaCqbKs8rAis2K2krnSvRLAUsOSxuLKIs1y0MLUEtdi2rLeEuFi5MLoIuty7uLyQvWi+R
L8cv/jA1MGwwpDDbMRIxSjGCMbox8jIqMmMymzLUMw0zRjN/M7gz8TQrNGU0njTYNRM1TTWHNcI1
/TY3NnI2rjbpNyQ3YDecN9c4FDhQOIw4yDkFOUI5fzm8Ofk6Njp0OrI67zstO2s7qjvoPCc8ZTyk
POM9Ij1hPaE94D4gPmA+oD7gPyE/YT+iP+JAI0BkQKZA50EpQWpBrEHuQjBCckK1QvdDOkN9Q8BE
A0RHRIpEzkUSRVVFmkXeRiJGZ0arRvBHNUd7R8BIBUhLSJFI10kdSWNJqUnwSjdKfUrESwxLU0ua
S+JMKkxyTLpNAk1KTZNN3E4lTm5Ot08AT0lPk0/dUCdQcVC7UQZRUFGbUeZSMVJ8UsdTE1NfU6pT
9lRCVI9U21UoVXVVwlYPVlxWqVb3V0RXklfgWC9YfVjLWRpZaVm4WgdaVlqmWvVbRVuVW+VcNVyG
XNZdJ114XcleGl5sXr1fD19hX7NgBWBXYKpg/GFPYaJh9WJJYpxi8GNDY5dj62RAZJRk6WU9ZZJl
52Y9ZpJm6Gc9Z5Nn6Wg/aJZo7GlDaZpp8WpIap9q92tPa6dr/2xXbK9tCG1gbbluEm5rbsRvHm94
b9FwK3CGcOBxOnGVcfByS3KmcwFzXXO4dBR0cHTMdSh1hXXhdj52m3b4d1Z3s3gReG54zHkqeYl5
53pGeqV7BHtje8J8IXyBfOF9QX2hfgF+Yn7CfyN/hH/lgEeAqIEKgWuBzYIwgpKC9INXg7qEHYSA
hOOFR4Wrhg6GcobXhzuHn4gEiGmIzokziZmJ/opkisqLMIuWi/yMY4zKjTGNmI3/jmaOzo82j56Q
BpBukNaRP5GokhGSepLjk02TtpQglIqU9JVflcmWNJaflwqXdZfgmEyYuJkkmZCZ/JpomtWbQpuv
nByciZz3nWSd0p5Anq6fHZ+Ln/qgaaDYoUehtqImopajBqN2o+akVqTHpTilqaYapoum/adup+Co
UqjEqTepqaocqo+rAqt1q+msXKzQrUStuK4trqGvFq+LsACwdbDqsWCx1rJLssKzOLOutCW0nLUT
tYq2AbZ5tvC3aLfguFm40blKucK6O7q1uy67p7whvJu9Fb2Pvgq+hL7/v3q/9cBwwOzBZ8Hjwl/C
28NYw9TEUcTOxUvFyMZGxsPHQce/yD3IvMk6ybnKOMq3yzbLtsw1zLXNNc21zjbOts83z7jQOdC6
0TzRvtI/0sHTRNPG1EnUy9VO1dHWVdbY11zX4Nhk2OjZbNnx2nba+9uA3AXcit0Q3ZbeHN6i3ynf
r+A24L3hROHM4lPi2+Nj4+vkc+T85YTmDeaW5x/nqegy6LzpRunQ6lvq5etw6/vshu0R7ZzuKO60
70DvzPBY8OXxcvH/8ozzGfOn9DT0wvVQ9d72bfb794r4Gfio+Tj5x/pX+uf7d/wH/Jj9Kf26/kv+
3P9t/////gAmRmlsZSB3cml0dGVuIGJ5IEFkb2JlIFBob3Rvc2hvcKggNS4w/+4ADkFkb2JlAGQA
AAAAAf/bAIQACgcHBwgHCggICg8KCAoPEg0KCg0SFBAQEhAQFBEMDAwMDAwRDAwMDAwMDAwMDAwM
DAwMDAwMDAwMDAwMDAwMDAELDAwVExUiGBgiFA4ODhQUDg4ODhQRDAwMDAwREQwMDAwMDBEMDAwM
DAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgAWgGQAwERAAIRAQMRAf/dAAQAMv/EAJQAAQAB
BQEAAAAAAAAAAAAAAAAFAQIDBAYHAQEBAQEBAAAAAAAAAAAAAAAAAQIDBBAAAQMDAgMECAIIBgID
AAAAAQACAxEEBRIGITFBUSIyE2FxkaFCUhQHgTOxYnKCkqKyI8HR4cLS4vBzk1QWEQEBAAICAQME
AgMBAAAAAAAAARECEgMhMUETUTJCM1JDImKCI//aAAwDAQACEQMRAD8A9mQEBAQEBAQEBAQEFpc1
viIHrQYJMhZR+OZo/FBruzmPHhfqPoCCw5uI+CMn1oKjJzP8Ef8AigytnvHfAR+6gvAuzzqPxCC7
ypzzPvQXNhkHN3vKC4xE9UFPI/W9yC4RU6oLg2iCqC0tJ6oLDAT8SCw2hPx+7/VBT6M/P7v9UGN1
nN8Lx7wgxOsr34ZB/Ef8kGN0GXb4CT6nD/FBhdLno+UbnfgD+hBhfmsvD+ZbEgdrHBBj/wD15jNJ
rcg9aH/NBlj3pjD+YHMQbkO5sNN4bhoPYeCDeiv7OX8uZjvUQgzhzTyIKCqAgICAgICAgICAg//Q
9mQEBAQEBAQY5JoohWR4aO0miCHv934KxB825aSOgNUHPXH3OtXv8rH2755DyABPuCBHlt7ZPjb2
ToI3fE8aP66INuLbW47nvX161lebQS4+7SgkbfaNsyhmuJJD1pRv6dSCRhweNi5RaiOriSg22Wtt
H4ImD1AIMlAOSCqAgICAgICAgICAgICAgICAgILHxRPFHsa4ekAoNOfB4ievm2cRJ6hoB9yCMudj
YGfi2N8Lu1jz+goIuf7ePYS6wycsR6B4Dh/LoQaT8FvzH8bW6jumjoSWn/cgsG6t3440v8bI9reb
mAPH8lUG/Z/cvGvcI7pjoZOocC0+xyDorPcmIvADFO2p6EoJJkkbxVjg4ehBegICAgICAg//0fZk
BAQEFCQOJQROV3NicWwuuZ2gj4a8UHF3v3FyV+90ODs3ydPMI4IMMO2t6Z12vIXht4Xc2sry939S
Cdx32xwVuRJel95L11uNK+oUQdRZ4nG2LAy0tY4Wj5GgINxAQEBAQEBAQEBAQEBAQEBAQEBAQEBA
QEBAQEBAQWvjY8Ue0OHpFUEbfbcxN60ia3Ya8OIBHscg5q++3FmCZLFz4HdDE4j+R2piCM+g3diH
VtrgXMbfgfVjqe9iCRsd/TQPbBlrZ9u/lVwoD6neEoOsscxY3zA6CUGvSqDeQVQEBAQf/9L2ZAQE
GveXkFnC6adwaxoqSUHnWX3rlMvcPscBGSwcH3B4NA/aQMRsJ93KLnJSOvJjxc55IjH4eJ6Du8fg
rCxY1rI2kt5cAGj9lg7qCRQVQEBAQEBBQkDmUCo7UCoHVBa6VjeZRMsX1kR4NNUTkOugBwCGWL6x
5NAw+xDNZBNJ1FEPKhml6D9CHlYbi4r4Ch5X+fJSruB7CrhLtYxuvtPiKvFn5Ge3nMrS4ig6FZdI
o67hDywPbrHNtRVXCWsLr6hoOPqROVXsuZHCukhRc0+rGssDgZBzbUVRfKhuZQfAUTyr9TJSpFEM
1aL7jQiiqcqyi5HWiYOS5lzE7qmFm0Za1UaEFUBAQEFj4o5BR7Q4elBG3uCtLlha5gc082uAI96D
mLraM1lJ5+LldbPHHy6kxn8ObEG7idyXcErbTKRmOTk1/wALv2XIOsjlZIwOaagoL0BAQf/T9mQE
FHGjSTyAqg8v3LfXm4s0cRbPMdlDxuXjs+X95B1mA21a2luxrYwyJvJnU/rPPxOQdG1jWNDWijRy
AQXICAgICAgxvmY3mUS1rPvxq0sFT6FWeWfRwW/mNm3BjGXAcY3W7tbWkg/mO7F6OrazS10nohrD
FWs81Gsmj40a9rnVCxO/b3Z5On25ksraZc7eyErpg5nmWc7/ABFtNWgk/qK7yXXlFsy1MzI6Dfuq
pqLVn9Lwr/UuPDsrYwWuJ+tmHBkZleT6BqXCTKPNrW6urW6tt0PeSby5e2ZnTyn92I+7+Reu4udP
46tPU7GUSxk8+RB9B4heNl5nnbFt9vHKxOjfKWhrmMYSDXy4+xerndeuWNJHHbDfJavuHGWyuQ0m
GQPJII48W1WJ37e6ZTmxs5dZLFyMvXa7m0f5TpDxLviq71Kd2sl8JfDkdyXM2Xy1/kIZC1mL0x21
ORcx1Zf+a7aY1kl/My67AXRykMN1IaMkbWnpHiavLvLLhiaSNDemSuvrcfhLWY2sF3V08reDiAQ3
Q0rt1ayS7fxalRtvsQylzmskY0eGTWdVfm0lZ+fZZamNlXGVbPc4vJse/wCmJ8md4NS2vIuPiU7e
N8xai927iu7zIT4yzmdb4+07ty+PxSP+RpHwrck015X7hFYvb8F4Q7yZ4i7iyYOcSD81Fid+xl1O
2MvkbPLybcy8hne1uuzuXc3NHwuPVa7NZZyhUP8AcT6obkx7rOv1EduHx6TQ1bI88F06ccblY63a
+ahz2PFw5oE7KNnYOj/+LvEvP2acbhmuVy07rXft2+OoIt2AfjGuv9abTMdPjZnSWrXk8SsR5b4S
tjMZA5p5DkudejS+Fkkr2SGhVkyxttZWe3uRL3T4gpY6a7ZbCjQgICDC+5jZN5TjRxFQgyENeOPE
FBG5DD29ywtcwEH2g9oQWYiG5tXG2kJcweBx7EEugICD/9T2ZAQY7gEwSgcyx1PYg4na+K8u9vZJ
B/cfPU1+UNbp/wB6DuWgAADkEFUBAQEBBRxDRUoNKe6PEDktSOO27Tb51y/S3w9Slprrn1bTWRW/
BvF3UqSNXbDh97F0m5cUBxJgIH/yOXfX7NmtbmOm2vj2MtDLIzvE8KhedrCH3C9rN94cx8HtjOun
Olev7q9Gn66rUzcZn+4LY28ddtHT2PT+o9kj9wsi2zw8GKjfoddkNfTmImU1u/i0KdGubn+JGhkM
9tK527JiYi5rvJDI3eWa628W970uWtdNptkTGw8q7IYyPzDWaFoil9bPCf4SufbrjYrmshk7zF74
ytzaRMmfpa1zZDQAGOLiuvj45lV1/vjcVxbOhjjhtzKC0ysJc4A8O58rlifHP9k8NvG125tK5uz3
biUUirzL3d1iS89nPPKtXbOa21YYwQXxc+d+p01WE1Lui32de222XSxXZuSYya4xkLy6CKUyWrnc
CY3Hjz9PeU7tfSsdkqczuCts0BG+Zrb2IaomBw80DnwZXXpXLXe6+Z6GkwgrOTetjJ5FjdG5bHwb
DO2vL4W8v61056bes4tuq2vuU5WS4s723FrlbbhNF8w5ah7Vjs6+PmfaWOMwVi68vsm2QapW3J8w
HnQufo9y33/iV6daW0cMDGNYBQAcl50cXueRse+8K9hpI1jTJT5NUnNejT9dX2Yt4PpvHEvH/wBe
vte9Nf10jTtbh+181FkGimIyB0XDRyY7t/drqV1vya4/PUW5+Rjt7XUjXBzH28Ra4cQQYxQhS/r/
AOkvo6bEl8lmxkYr2lccuE0zU3EG2sVK988yo6WyNOafU7hxK1nDji7NzH272Vkfzd0WXfWYbyjQ
gICDjt0ZYWuXsYWO78krGkDscdLv5UHU2TzJA1xQbCClBzogqgICD//V9mQEFCKiiDVjsI4pzNHw
1eIINtBG5O7ntKTMBLG+No7O1BlsMlb3kYdG4E9Qg3EFUBBiuA4xHTzRLMxEvNatPAreXn42VIQt
bHa1ZzpxWHovo0y6rqldY8trjt130FnunE3krXSQW8RMrWCp/MJouvXM62PT13MSh+5WHbHSC0uH
OA7jNIaD+9xosfDfrq3hzWOvrzL7nOSnZSV9Axg5MYOAb/Cp2bTHHUS17dxwfcKK5f8AlNt42l1O
FdL+v4q5/wDI9kLn8i/MbimnhBMUIENsHDh6X0PzVTa8dMe+46DCbTvI4mTy6DXvUIBXn8o1cPdt
2/u66tX1FleDU2g4B3MfzeYvTt/lpL76qiszNFcbtyL21MU2kNd20ZGFN/PXC3w6bG4PHMjilLNc
nMA9q5Yw4W21D77vDLd2eMaD5cX92YU4VPhZ/D3l267jW7OusxGviMFe3JN0/SGk1AIC4SVz23XZ
Rr8NmLDJNbRo/tzho5j1D9Rd+u8tbq66+jdzl08Zaz3Li49c8DdFxF1cymngf2C5qnXvLONWJNv3
Jwgi1OtLhtzT8vy+Fezzf+qfBfrqYcvjcje3m4p8m1pjmujTQ34WcO7/ACqdu0xNZ+JUtePvsHnH
Zqzi86K4A+ttuRJ6varrtNteNEm/7mYgQ1jtrh1zThE5mltezzP+qfBfrqYcrYXV7l9yC/uB/ekc
O6OTGDgGqdm8xx1Kkt7XLG7mx0rDURW4a49Adb+Cuv66Z8N57I8jg5LaZtWPHOnFrh4Xt9S5abcb
ljNy4i3fcRZEMuHF0jAIQTx7rRoYB+qGr091l08N30ep4eUR4+NsTKuI4leRzuW4LS5nNXnSFcpN
G3BYxRcebu0qOmG0gICAgic7n7HD2r5p5ACB3W9SUHnuEivdw5s5q6aWwNJFpGevTX+6g9StovKh
azsCDMgICAgIP//W9mQEBAQEFksTJWFrxUFByuS29kLOU3mIfx5ug5A+r5UFMfvERyC2ycTreccD
rFEHTW19a3LQ6GQOB7CgzoKoMMltFJ4m8e1BeyNrWaByQac9gSS6I09CuWLpK57K7curs1rRKk0w
jW7RnHdkkOnsCmIvlM4rE2uOFWRkv+aiGard4yO6l8xw49lEwuasgwlvHMJXM1EcuCYM1Ni7LWBj
WGgFOSpmoW8xjbiUyaTVTwma1W7eMkwfp4jlVVONrorXH/TxanCrwOAUakwhMhiheTiSUEgGtFZh
i5bdvEyGMRhpDQraxNape2UF2BqFKehZw7Zqx2LtjB5QFPSAmDKHm2q+R9fN7vqTBmpXE4a0x/Fr
NT/mohmtm/shetIDC09Ch5QUmzLyZ9S+jTzTC+UtjNqiy4toHdqJxZbnakVzKJJn6qGtEWRKwYy3
htvIY0UpSqKh37Nsn3f1DqE1rRMCft7aK3jEbGgAIMyAgICDWushZ2jC+eVrGjnUoOJzf3IhDzaY
eM3Vw7g0tFRVBD4/bOXzt228zTnSGuptqD3R/wCwhB6LjMRDZRtFBqAoABQAdgQSSAgICAgIP//X
9mQEBAQEBAQad9isffs0XcDZB2kcR6iggZdnS2zvMxV26LqInmo/ByC6O73HYd26h81g+NveHtCC
QttwwyUErCw9UEhFe20o7rx+KDOHA8jVBVAQU0jsQU0M7AgaGdgQNLewIGlvYgaG9gQVAA5BBVBa
WMPMBBTy4/lCB5cfyhA8uP5QgroZ8oQNLewIK0HYgqgICAgICChcBxJog1LjK4+2BM07G09IQc9k
vuJg7MEMeZXjo1Bz029tz5gmPDWDwx3ASkGnH9Y91At9h7iyzxNnLxzWE1MLT7v/ABqDrsRszD4x
gEcYLup7f2neNyCdjjjjaGxtDWjoBRBegICAgICAg//Q9mQEBAQEBAQEBAQYZbS2l/Mia49tOPtQ
YDi7YcWVZ6K1HvQVbZvZ4X19yDK1s7efFBeHPHMILtSCtUCqAgqgICAgICAgICAgogVAQUL2jqgs
dcMCDDJfsZyaSg05cvNyiiqenMoNSW63BPwhic0HrTT/AFUQakmD3HeH+9dCJp51cSfYxBYz7fW0
h1X15LMerW90e/UUEpZbO25ZEOismOePjk77va5BMsijjFI2Bg7GgBBegICAgICAgICAg//R9mQE
BAQEBAQEBAQEBAQEBBRAQEBAQEFUBAQEBAQEFEABBQtqgp5baUQU8iLsqgeTCPgb7EF4AHIUQVQE
BAQEBAQEBAQEBAQEBB//0vZkBAQEBAQEBAQEBAQEBAQEBBRBVBRAQVQEBAQEBAQUQVQEBAQEBAQE
BAQEBAQEBAQEBAQEBB//2Q==

------=_NextPart_000_0016_01C2C23B.6A7C3860--