[Insight-users] itkDemonsRegistrationFilter

ping chen miw2k at yahoo.com
Wed Jun 2 15:06:45 EDT 2004


Hi Luis,

I am trying to use Demons registration example
DeformableRegistration2.cxx on 3d brain images. i have
changed the demensions from 2 to 3. but the output
warped image is still only one 2d slice. can you tell
me why? Thanks for your help. 

-Ping 

below is the code DeformableRegistration2.cxx code i
am using: 

/*=========================================================================

  Program:   Insight Segmentation & Registration
Toolkit
  Module:    $RCSfile: DeformableRegistration2.cxx,v $
  Language:  C++
  Date:      $Date: 2004/04/20 20:19:47 $
  Version:   $Revision: 1.24 $

  Copyright (c) Insight Software Consortium. All
rights reserved.
  See ITKCopyright.txt or
http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY
WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for
more information.

=========================================================================*/

#include "itkImageFileReader.h" 
#include "itkImageFileWriter.h" 

#include "itkImageRegionIterator.h"

// Software Guide : BeginLatex
//
// This example demostrates how to use the ``demons''
algorithm to deformably
// register two images. The first step is to include
the header files.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkDemonsRegistrationFilter.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkWarpImageFilter.h"
#include "itkLinearInterpolateImageFunction.h"
// Software Guide : EndCodeSnippet





//  The following section of code implements a Command
observer
//  that will monitor the evolution of the
registration process.
//
  class CommandIterationUpdate : public itk::Command 
  {
  public:
    typedef  CommandIterationUpdate   Self;
    typedef  itk::Command             Superclass;
    typedef  itk::SmartPointer<CommandIterationUpdate>
 Pointer;
    itkNewMacro( CommandIterationUpdate );
  protected:
    CommandIterationUpdate() {};

    typedef itk::Image< float, 2 > InternalImageType;
    typedef itk::Vector< float, 2 >   
VectorPixelType;
    typedef itk::Image<  VectorPixelType, 2 >
DeformationFieldType;

    typedef itk::DemonsRegistrationFilter<
                                InternalImageType,
                                InternalImageType,
                                DeformationFieldType> 
 RegistrationFilterType;

  public:

    void Execute(itk::Object *caller, const
itk::EventObject & event)
      {
        Execute( (const itk::Object *)caller, event);
      }

    void Execute(const itk::Object * object, const
itk::EventObject & event)
      {
         const RegistrationFilterType * filter = 
          dynamic_cast< const RegistrationFilterType *
>( object );
        if( typeid( event ) != typeid(
itk::IterationEvent ) )
          {
          return;
          }
        std::cout << filter->GetMetric() << std::endl;
      }
  };






int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile movingImageFile ";
    std::cerr << " outputImageFile " << std::endl;
    std::cerr << " [outputDeformationFieldFile] " <<
std::endl;
    return 1;
    }

  // Software Guide : BeginLatex
  //
  // Second, we declare the types of the images.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int Dimension = 2;
  typedef unsigned short PixelType;

  typedef itk::Image< PixelType, Dimension > 
FixedImageType;
  typedef itk::Image< PixelType, Dimension > 
MovingImageType;
  // Software Guide : EndCodeSnippet

  // Set up the file readers
  typedef itk::ImageFileReader< FixedImageType  >
FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType >
MovingImageReaderType;

  FixedImageReaderType::Pointer fixedImageReader   =
FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader =
MovingImageReaderType::New();

  fixedImageReader->SetFileName( argv[1] );
  movingImageReader->SetFileName( argv[2] );


  // Software Guide : BeginLatex
  //
  // Image file readers are set up in a similar
fashion to previous examples.
  // To support the re-mapping of the moving image
intensity, we declare an
  // internal image type with a floating point pixel
type and cast the input
  // images to the internal image type.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef float InternalPixelType;
  typedef itk::Image< InternalPixelType, Dimension >
InternalImageType;
  typedef itk::CastImageFilter< FixedImageType, 
                                InternalImageType >
FixedImageCasterType;
  typedef itk::CastImageFilter< MovingImageType, 
                                InternalImageType >
MovingImageCasterType;

  FixedImageCasterType::Pointer fixedImageCaster   =
FixedImageCasterType::New();
  MovingImageCasterType::Pointer movingImageCaster =
MovingImageCasterType::New();

  fixedImageCaster->SetInput(
fixedImageReader->GetOutput() );
  movingImageCaster->SetInput(
movingImageReader->GetOutput() ); 
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The demons algorithm relies on the assumption
that pixels representing the
  // same homologous point on an object have the same
intensity on both the
  // fixed and moving images to be registered. In this
example, we will
  // preprocess the moving image to match the
intensity between the images
  // using the \doxygen{HistogramMatchingImageFilter}.

  //
  // \index{itk::HistogramMatchingImageFilter}
  //
  // The basic idea is to match the histograms of the
two images at a user-specified number of quantile
values. For robustness, the histograms are
  // matched so that the background pixels are
excluded from both histograms.
  // For MR images, a simple procedure is to exclude
all gray values that are
  // smaller than the mean gray value of the image.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::HistogramMatchingImageFilter<
                                    InternalImageType,
                                    InternalImageType
>   MatchingFilterType;
  MatchingFilterType::Pointer matcher =
MatchingFilterType::New();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  // 
  // For this example, we set the moving image as the
source or input image and
  // the fixed image as the reference image.
  //
  //
\index{itk::HistogramMatchingImageFilter!SetInput()}
  //
\index{itk::HistogramMatchingImageFilter!SetSourceImage()}
  //
\index{itk::HistogramMatchingImageFilter!SetReferenceImage()}
  //
  // Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet 
  matcher->SetInput( movingImageCaster->GetOutput() );
  matcher->SetReferenceImage(
fixedImageCaster->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // We then select the number of bins to represent
the histograms and the
  // number of points or quantile values where the
histogram is to be
  // matched.
  //
  //
\index{itk::HistogramMatchingImageFilter!SetNumberOfHistogramLevels()}
  //
\index{itk::HistogramMatchingImageFilter!SetNumberOfMatchPoints()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  matcher->SetNumberOfHistogramLevels( 1024 );
  matcher->SetNumberOfMatchPoints( 7 );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Simple background extraction is done by
thresholding at the mean
  // intensity.
  //
  //
\index{itk::HistogramMatchingImageFilter!ThresholdAtMeanIntensityOn()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  matcher->ThresholdAtMeanIntensityOn();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // In the \doxygen{DemonsRegistrationFilter}, the
deformation field is
  // represented as an image whose pixels are floating
point vectors.
  //
  // \index{itk::DemonsRegistrationFilter}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Vector< float, Dimension >   
VectorPixelType;
  typedef itk::Image<  VectorPixelType, Dimension >
DeformationFieldType;
  typedef itk::DemonsRegistrationFilter<
                                InternalImageType,
                                InternalImageType,
                                DeformationFieldType> 
 RegistrationFilterType;
  RegistrationFilterType::Pointer filter =
RegistrationFilterType::New();
  // Software Guide : EndCodeSnippet





  // Create the Command observer and register it with
the registration filter.
  //
  CommandIterationUpdate::Pointer observer =
CommandIterationUpdate::New();
  filter->AddObserver( itk::IterationEvent(), observer
);




  // Software Guide : BeginLatex
  //
  // The input fixed image is simply the output of the
fixed image casting
  // filter.  The input moving image is the output of
the histogram matching
  // filter.
  //
  //
\index{itk::DemonsRegistrationFilter!SetFixedImage()}
  //
\index{itk::DemonsRegistrationFilter!SetMovingImage()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetFixedImage( fixedImageCaster->GetOutput()
);
  filter->SetMovingImage( matcher->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The demons registration filter has two
parameters: the number of
  // iterations to be performed and the standard
deviation of the Gaussian
  // smoothing kernel to be applied to the deformation
field after each
  // iteration.
  //
\index{itk::DemonsRegistrationFilter!SetNumberOfIterations()}
  //
\index{itk::DemonsRegistrationFilter!SetStandardDeviations()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->SetNumberOfIterations( 150 );
  filter->SetStandardDeviations( 1.0 );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  // 
  // The registration algorithm is triggered by
updating the filter. The
  // filter output is the computed deformation field.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  filter->Update();
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // The \doxygen{WarpImageFilter} can be used to warp
the moving image with
  // the output deformation field. Like the
\doxygen{ResampleImageFilter},
  // the WarpImageFilter requires the specification of
the input image to be
  // resampled, an input image interpolator, and the
output image spacing and
  // origin.
  //
  // \index{itk::WarpImageFilter}
  // \index{itk::WarpImageFilter!SetInput()}
  // \index{itk::WarpImageFilter!SetInterpolator()}
  // \index{itk::WarpImageFilter!SetOutputSpacing()}
  // \index{itk::WarpImageFilter!SetOutputOrigin()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::WarpImageFilter<
                          MovingImageType, 
                          MovingImageType,
                          DeformationFieldType  >    
WarperType;
  typedef itk::LinearInterpolateImageFunction<
                                   MovingImageType,
                                   double          > 
InterpolatorType;
  WarperType::Pointer warper = WarperType::New();
  InterpolatorType::Pointer interpolator =
InterpolatorType::New();
  FixedImageType::Pointer fixedImage =
fixedImageReader->GetOutput();

  warper->SetInput( movingImageReader->GetOutput() );
  warper->SetInterpolator( interpolator );
  warper->SetOutputSpacing( fixedImage->GetSpacing()
);
  warper->SetOutputOrigin( fixedImage->GetOrigin() );
  // Software Guide : EndCodeSnippet


  // Software Guide : BeginLatex
  //
  // Unlike the ResampleImageFilter, the
WarpImageFilter
  // warps or transform the input image with respect
to the deformation field
  // represented by an image of vectors.  The
resulting warped or resampled
  // image is written to file as per previous
examples.
  //
  //
\index{itk::WarpImageFilter!SetDeformationField()}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  warper->SetDeformationField( filter->GetOutput() );
  // Software Guide : EndCodeSnippet


  // Write warped image out to file
  typedef  unsigned char  OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension >
OutputImageType;
  typedef itk::CastImageFilter< 
                        MovingImageType,
                        OutputImageType >
CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType > 
WriterType;

  WriterType::Pointer      writer = 
WriterType::New();
  CastFilterType::Pointer  caster = 
CastFilterType::New();

  writer->SetFileName( argv[3] );
  
  caster->SetInput( warper->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  writer->Update();


  // Software Guide : BeginLatex
  //
  // Let's execute this example using the rat lung
data from the previous example.
  // The associated data files can be found in
\code{Examples/Data}:
  //
  // \begin{itemize}
  // \item \code{RatLungSlice1.mha}
  // \item \code{RatLungSlice2.mha}
  // \end{itemize}
  //
  // \begin{figure} \center
  //
\includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardBefore.eps}
  //
\includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardAfter.eps}
  // \itkcaption[Demon's deformable registration
output]{Checkerboard comparisons
  // before and after demons-based deformable
registration.}
  // \label{fig:DeformableRegistration2Output}
  // \end{figure}
  // 
  // The result of the demons-based deformable
registration is presented in
  // Figure \ref{fig:DeformableRegistration2Output}.
The checkerboard
  // comparision shows that the algorithm was able to
recover the misalignment
  // due to expiration.
  //
  // Software Guide : EndLatex



  // Software Guide : BeginLatex
  //
  // It may be also desirable to write the deformation
field as an image of
  // vectors.  This can be done with the following
code.
  //
  // Software Guide : EndLatex

  if( argc > 4 ) // if a fourth line argument has been
provided...
    {

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageFileWriter< DeformationFieldType >
FieldWriterType;
  FieldWriterType::Pointer fieldWriter =
FieldWriterType::New();
  fieldWriter->SetFileName( argv[4] );
  fieldWriter->SetInput( filter->GetOutput() );

  fieldWriter->Update();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // Note that the file format used for writing the
deformation field must be
  // capable of representing multiple components per
pixel. This is the case
  // for the MetaImage and VTK fileformats for
example.
  //
  // Software Guide : EndLatex

    }


  if( argc > 5 ) // if a fifth line argument has been
provided...
    {

  typedef DeformationFieldType  VectorImage2DType;
  typedef DeformationFieldType::PixelType
Vector2DType;

  VectorImage2DType::ConstPointer vectorImage2D =
filter->GetOutput();

  VectorImage2DType::RegionType  region2D =
vectorImage2D->GetBufferedRegion();
  VectorImage2DType::IndexType   index2D  =
region2D.GetIndex();
  VectorImage2DType::SizeType    size2D   =
region2D.GetSize(); 


  typedef itk::Vector< float,       3 >  Vector3DType;
  typedef itk::Image< Vector3DType, 3 > 
VectorImage3DType;

  typedef itk::ImageFileWriter< VectorImage3DType >
WriterType;

  WriterType::Pointer writer3D = WriterType::New();

  VectorImage3DType::Pointer vectorImage3D =
VectorImage3DType::New();
  
  VectorImage3DType::RegionType  region3D;
  VectorImage3DType::IndexType   index3D;
  VectorImage3DType::SizeType    size3D;

  index3D[0] = index2D[0];
  index3D[1] = index2D[1];
  index3D[2] = 0;
  
  size3D[0]  = size2D[0];
  size3D[1]  = size2D[1];
  size3D[2]  = 1;

  region3D.SetSize( size3D );
  region3D.SetIndex( index3D );

  vectorImage3D->SetRegions( region3D );
  vectorImage3D->Allocate();
  
  typedef itk::ImageRegionConstIterator<
VectorImage2DType > Iterator2DType;

  typedef itk::ImageRegionIterator< VectorImage3DType
> Iterator3DType;

  Iterator2DType  it2( vectorImage2D, region2D );
  Iterator3DType  it3( vectorImage3D, region3D );

  it2.GoToBegin();
  it3.GoToBegin();

  Vector2DType vector2D;
  Vector3DType vector3D;

  vector3D[2] = 0; // set Z component to zero.

  while( !it2.IsAtEnd() )
    {
    vector2D = it2.Get();
    vector3D[0] = vector2D[0];  
    vector3D[1] = vector2D[1];  
    it3.Set( vector3D );
    ++it2;
    ++it3;
    }


  writer3D->SetInput( vectorImage3D );

  writer3D->SetFileName( argv[5] );

  try
    {
    writer3D->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return -1;
    }


  }



  return 0;
}




	
		
__________________________________
Do you Yahoo!?
Friends.  Fun.  Try the all-new Yahoo! Messenger.
http://messenger.yahoo.com/ 


More information about the Insight-users mailing list