No subject


Wed Oct 7 22:37:18 EDT 2009


trying to achieve (I don't know what a tomogram is, or carbon
support), but if I've guessed correctly, the attached image may be
fairly close to your desired output. It was generated as follows:
    1. binary threshold (lower =3D 67, upper =3D 255)
    2. morphological close (structuring element =3D circle, radius =3D 30)
    3. voting binary iterative hole filling (radius =3D 12, majority
threshold =3D 25)

Of course you can tweak the cleaning operations as required. Some of
the new label filters in the Review folder may also be useful for
cleaning the segmentation.

Anyway, just an idea.

Cheers, Dan

2009/10/28 Kishore Mosaliganti <kishoreraom at gmail.com>:
> Hi Roman,
>
> From what I see, there is a fair amount of texture in the carbon
> support. The background is flat.
>
> Perhaps, if you were to run a gradient magnitude filter with an large
> sigma, and then apply a threshold on gradient magnitude, you will be
> able to see the foreground.
>
> However, there is a caveat. This will not give you precise boundaries
> of the carbon support.
>
> Kishore
>
> On Wed, Oct 28, 2009 at 11:08 AM, Roman Grothausmann
> <roman.grothausmann at helmholtz-berlin.de> wrote:
>> Hello Kishore,
>>
>> Kishore Mosaliganti wrote:
>>>
>>> Hi,
>>>
>>> Your link needs a password.
>>
>> user: pubu; pass: pp09
>>
>>> Are you interested in separating the foreground from the background or
>>> delineating each componet from the other.
>>
>> I would like to get a binary representation of the carbon support (as th=
e
>> foreground) for further analysis.
>>
>> Is there any way to get a better representation than the one from the gl=
obal
>> threshold?
>>
>> Thanks for looking into this.
>> Roman
>>
>>> On Wed, Oct 28, 2009 at 7:30 AM, Roman Grothausmann
>>> <roman.grothausmann at helmholtz-berlin.de> wrote:
>>>>
>>>> Dear mailing list members,
>>>>
>>>>
>>>> I've read about FC, MRF and all those fancy hybrid segmentation filter=
s
>>>> described in "Insight into Images" but still I've hard times seeing
>>>> which segmentation filter would be best for my tomogram problem.
>>>> Here's a slice (user: pubu; pas: pp09):
>>>> http://www.helmholtz-berlin.de/files/roman.grothausmann/pub/
>>>> zs_1350x950x660_xz_272_03.png shows an overall threshold that is givin=
g
>>>> a clue of what part I want. It's the carbon support for the small whit=
e
>>>> particles. I think for humans its much easier to see
>>>> (zs_1350x950x660_xz_272_01.png) because we can recognise the pattern
>>>> that makes up the carbon support. Is there some segmentation technique
>>>> based on pattern recognition available in ITK? Granulometry sounds
>>>> promising but I couldn't find a filter doing that.
>>>>
>>>> Any help is very much appreciated
>>>> Roman
>>>>
>>>>
>>>> --
>>>> Roman Grothausmann
>>>>
>>>> Helmholtz-Zentrum Berlin f=FCr Materialien und Energie GmbH
>>>> Bereich Funktionale Materialien
>>>> Institut f=FCr angewandte Materialforschung
>>>> Hahn-Meitner-Platz 1
>>>> D-14109 Berlin
>>>>
>>>> Tel.: +49-(0)30-8062-2816
>>>> Fax.: +49-(0)30-8062-3059
>>>>
>>>> Mitglied der Hermann von Helmholtz-Gemeinschaft Deutscher
>>>> Forschungszentren e.V.
>>>> Vorsitzende des Aufsichtsrates: Dr. Beatrix Vierkorn-Rudolph,
>>>> Stellvertretende Vorsitzende: Dr. Jutta Koch-Unterseher,
>>>> Gesch=E4ftsf=FChrer: Prof. Dr. Anke Kaysser-Pyzalla, Prof. Dr. h.c. Wo=
lfgang
>>>> Eberhardt, Dr. Ulrich Breuer =A0Sitz Berlin, AG Charlottenburg, 89 HRB=
 5583
>>>>
>>>>
>>>>
>>>>
>>>>
>>>> _____________________________________
>>>> Powered by www.kitware.com
>>>>
>>>> Visit other Kitware open-source projects at
>>>> http://www.kitware.com/opensource/opensource.html
>>>>
>>>> Kitware offers ITK Training Courses, for more information visit:
>>>> http://www.kitware.com/products/protraining.html
>>>>
>>>> Please keep messages on-topic and check the ITK FAQ at:
>>>> http://www.itk.org/Wiki/ITK_FAQ
>>>>
>>>> Follow this link to subscribe/unsubscribe:
>>>> http://www.itk.org/mailman/listinfo/insight-users
>>>>
>>>>
>> _____________________________________
>> Powered by www.kitware.com
>>
>> Visit other Kitware open-source projects at
>> http://www.kitware.com/opensource/opensource.html
>>
>> Kitware offers ITK Training Courses, for more information visit:
>> http://www.kitware.com/products/protraining.html
>>
>> Please keep messages on-topic and check the ITK FAQ at:
>> http://www.itk.org/Wiki/ITK_FAQ
>>
>> Follow this link to subscribe/unsubscribe:
>> http://www.itk.org/mailman/listinfo/insight-users
>>
> _____________________________________
> Powered by www.kitware.com
>
> Visit other Kitware open-source projects at
> http://www.kitware.com/opensource/opensource.html
>
> Kitware offers ITK Training Courses, for more information visit:
> http://www.kitware.com/products/protraining.html
>
> Please keep messages on-topic and check the ITK FAQ at:
> http://www.itk.org/Wiki/ITK_FAQ
>
> Follow this link to subscribe/unsubscribe:
> http://www.itk.org/mailman/listinfo/insight-users
>

--000325554fda84883f04774a666d
Content-Type: image/jpeg; name="carbon01.jpg"
Content-Disposition: attachment; filename="carbon01.jpg"
Content-Transfer-Encoding: base64
X-Attachment-Id: f_g1hhu8km0

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a
HBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAEIAhwDASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDziiii
gAooooAAdvQ0pYscmkopWW5XNK3LfQKKKKZIUoYqeKSigabTugoopM80CDvSMeKQPmnBCxAFDdhx
i5Oy3G+/WrEORG2eppFjAJz2p9c9WomrI9jA4SUJe0mKBhaUCjPpRWB6YDg1KCpAGOaiPWnLxznm
gCOaMn5vSq+MVopsZPm696r30SRzgRtvQqCfY1vRn9lnlZjh1b2q+ZXoooroPICiiigAooooAKKK
KACiiigAOT9aBRRQAUUUUAFFFFABRRRQAUUUUAFFFBFABQKQnHB/OjHegA9aXoKBkj3ooAB0ooo7
UAIRmlHA4oo/nQAUUUUAFIc0tITzigAznmojIu7BJB9qeSGYJyCe4pRZmN9xO4dqmU1Hc3o4epWf
uouWcGY3kYjBHBNXI7q3bSp7SezR3Jyko6rVMNwB0FKnU+9ccpczufQ0aSpQUF0EtfMguEkifnoQ
eRU1xuE0hkQKW+bjpVdkKyLLGSGBwcVuaeRdjZKisrqVPt70jQwmIUfyqEnJJNOlI851HRGKimfS
uunDlR4GNxDqzstkI3IpF560YJPPSnYrQ4gooo60AFFFFABRRRQAUUUUAFFFFACE4oBpDg8UuMUA
HrUTNgE+9OYnacDNNWIyHGOO9A0m3ZElqolcO4OwN271bbG87RgdqRFEcYUelKRgZNcdSfMz6HCY
f2MNd3uJQaBQe2Kg6gFKOmaTtijPGKAFA4yaCeOO3Skpe1AD4gXcLmkni2Fs8qDihDjB96nu5IRp
pQf62R8/QVUVdozryUacm+xmnk8UUijHXrRmu0+XFooooAKKKKACiiigAooooAKKKKACiiigAooo
oAKKKKACiiigApM44o4A5pCjPjb0Pehuw4xcnZDoxvfaw49alaDHRuPpTlUIAB6c07PIrmlVd/dP
boYCCp/vVdi2/lox3AkU+6iWbDwjaw6j1qNWCuOn0p6nBJXj1FZqTTudcqFOUPZ20KfPcYNGavKE
JbzELRsD06g+tU0hAfGTit41k9zyamW1E/cdxpopWG1iKStjz2mnZhSHIoHrRmgQE8U05I/CnGo3
3g5XBFAD7UZkYE5A5zV3AJG01TtpFLFCMOBn6ire3Iyp5rkqv3j38vilRuuogOHwRmnKpDZXkdaj
YkYYj2zU0OGdT2PFZnaIf9afQntWvpbRnzD5gUhT1+lRDS5jGZFAZeuVqvJbtBExJKswxgjFAGRK
HjnlDZyXJ5pAOhqSUlpAGySB1NMxXbB3ij5nER5asl5i5oooqjEKKKKACiiigAooooAKKKYzY4oA
fSUvamnJXjrQAHjmmBizgVKyMoAKnJqSKLBBx83YVEpxSudNLC1KkrWsT2tijwPJLKE4yBmmKAvH
arrWcotWmYYQDPPGTVKuWU3Lc92jh6dJe6te4fSg+9FIe1SbC0UUUAHbNFHf2o70AFFOH8zgGpJo
Ggt0lcYDdKAbSV2EI3PgkAAZOap3kpubxX+4EG0KvTFDOX+lM6n3rqp0+XVnh4zGe1XJHb8wBzS0
UVqeeFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAhGaQnFOpjMB1oAbuLZAq5ESsAT3z
mq9uqvuNWOg+lYVpfZPVy6g7+1YoGTQaKK5z1xCM4+tKW+bFL2prDLhweR196AJVlK8eoxUsFus9
ykRO0ucAiq7Hd1FPjJDqcnIPFACarZyWF35LEMCMhhVMDir93I805aQs/wAoGW5qkcZIBzXTSldW
PDzChyT51sxD04pBS5pjttwT0rY88VjgUx2CrmnnDoCD16UeQ2f3gIX1Pek5JasunSnUfLFXEtwX
cvmrgODQsPlRglSFYcUDjr+Fcc5czufR4ej7GmoDuoI696WNRg4OGI4B71FnByTjA5pYGE0yKTty
wAJ6VJsdbZC70u0gmjXzGI+ZGGQaydW1RtVvFLxJERgEKMDdW9d3N3p9pHDKsc8ZwPMTnaPr2rl9
VWO3uQ28HzWzle2fWgCvdxDaWAGVPP0qjmrcz4icNydvBqmDuAP6V1UX7p4eYxiqt11QtKKQcDFL
Wp54UUUUAFFFFAB3opD1xQaAAtUbKZGCKOc0F1UgU+1DPcO38KDOfxpSdlculB1JqK6l2azWGJMv
856ioVjValJyfmOaTGTmuR1JPqfQxwlGLuoidafDJ5MgkABI6AjIplKBnPtUHQX9Qv3vIIl3Yx1U
dKz6VSOc8+lGcAk9xQAlFBGPqaQ8UAGOc0p68dKKOucUAAo6GigdaALFsUMyeb9xTux60zVZQ8wE
ZzGBwKZGcPyM1Hd481QOCB81aUviOPHtqg7EHakXODn1pxorrPnwooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigBCM+xqJuOWxxUjEjpUTFDw5xmgCxagAbgODmrHc8daDAbfEfXgHNN
IyMdK45y5pXPpcLSdKkovcXt70Dn60EkL/SlAzjNQbid8ClPzHgYpCBk+tPKOm3cpBI3D3HrQAw5
DAdu9SnG5SD+dRnmpM+ZyB/DigC1C0ckF55g+byiUOOhFYqkFeOtah3R2DlT2OSO4IrKU8fyroob
M8fM/jiOYHbx1qAysnyshZe9S555pWIcbScZrc8svNY239m215FcBnckGP8Au1MlzutTBLEjjGAx
HIqskXlwxgDAK5FKCSdpH/1q4pNtn09CChTVlYfncixhjhegqPnfhhS9+KUEbcdKk1Iz6Hoae0QR
RkdalhhV5Bv6DmmTE+ZgdKAL8Gs3UNtLbtIWWVCvzc4rNuZCyjfyfeiT76/So5+WGPSrpx5pWOfF
VXSpOS3ImcsRnvQFC5xTV9z0pSD1Fdh84227sdRSZpaBBRRRQAUUUUAFI2AMmlUFpAo6GnNEwJGK
TkluaQo1Jq8Vcz55GVsgH2HrWutu1tBGH++wyRUEUCrMrEZYHNXLmYzyBiAMDGBXPUqc2iPYwWEd
L357/kQ0pOQOMUnagnisT0BcY4pM9cUduaBwKAAd6Dyc0fxgdqG70AJ3paQdB645p2aAE6Ud6TGR
1oJAxQAtA6Yozj8aBgc96AJIioYk/hVa5z9oLHqRU6YzzTJl3jkduDV05csrnNjKLq0uVb7lf60Y
pWUpgMMEjI+lJnnFdm58604uzFooooEJS0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaWmSE
Ac0ABOaatsl3MsWPmJpjFgMj0qSwRxKZST04FTJ2TZrRhz1IxfVl+QFWMZ5KnGaYORzwc1ICCuTU
fB4riPpxSPmGaRge1GGV9rcjswp7YC+2aAF83faIjIA6sTu9RUw8v7CreYRNu27T/dpbmz+zwQzB
0ZZB0B5FVH4XB4JoAcy7afCuckGozIYwSTkYwfpXRQaVbz6PFNBOGlPJSgDn5XKh0PTHaqJAB56d
Kt3S+VdvEx5BK1XI5IrooNWaPIzOL5oy6DG4HtVWZTgHdtycZqyfmUgjAqJGLTqm3K5Gea2bsrs8
yMXKSit2alndyjT1tpQHVT8rHqKUR7mZlPTqM0ksXlTKoOVpOSzEdAa4m7u59PTi4wUX0QnGT6Zo
YZB5ww7etITwT6U+DZIwL/d9PWkWS28oVPnB3Hoabs3uVPDDJz61EeH56Zp9u48xgw+8vf1oAiI5
BxTJvvD6VdgjEhYHGM4GaoSjDuD2JFa0V71zz8ylako92MwM5pRSAfKKWuo8MKKKKACigUUAFQT+
aExGuWY4AqelU7XB9DmgaSb1NFbY6fEsxKs+0DHXmo0ImUsQC7NVZ59/U8+npUkDFGVl9c1wyvfU
+npcnIvZ7GpHpjWpM9yuI8ZBrIbLTSOOFZiR9K07y/lvYUjZvkj6AdzWeR6jmkaDe3NLRRjFAAea
BwaQcDmlGSaAD+IGlY5NNz8wFOuAY+vfgU0ruyJqTVOLk+hG744HWou/NIDyaXPOK7IwUVofOV8R
OtK8hVkwSueO4qbjgn8KrhQCSO9SxcsazqwVuZHZgMVJSVKWz28iQZ69qKD7UdsVzHsh0qZCCCGq
IDoKlQHJ+lAFS8f7TdtLgAgBQB7VGBgUBtxJx3NLXdFWVj5apPnm5dxM0vWkzzijvTIFooooAMc0
UUUAFFFGPyoAKKKKACiiigAooooAKKKKACo3ORg1JUMiZySfwoAVIjLgLyAMmrUQ2qQPpTbaPyow
w4yKk6kjvXNVnd8p7eAwyjFVXux4U7d3pTcjOOtAJxtJwaKxPRHYLcr2qzC0RuojKNo3Ln0xVXnG
alFwPs/lFAf9rvQAt/PHcanMYsCNThQO/vTI3UlvMG4bSB7Gq6I3mM4Hy9zUgINAEZOwBQCcnvVu
Kdo9mG+U8Y9Kq4y+akYYxjuKAEYeZOSTwTzUk9sFQsp3KOnrTO+e9Lk/hQm1sKUYyVpK6Kuzcp3H
A+lSW9uskiogxz+tTPGDEXB59KdZSi3uFZhlW4J9B61UpyluZUsPSpO8FYa7nIVuobrSZO8beBng
UkwUTsituXJw3rSHhRUmwsgBDY4J6ikUHaBjB9KjaQpMg2kq/p2NWoXQFwVyWXapz0NADYmVgyyE
ZUFh/hSIu92ycEDNIE2qxON3QmmQv5jlSDv7CgC3btm3KuucH1qlcKI5SAc5q5GfLUr/ABZGTTdY
iz5LoRnglgOvXitKTtI48fT56LfbUoZ7UtNU9j+dOrrPnwooFFABRRRQAUUUhoAqv5guFPYnmtUY
wO/HFZpI85R1Ga0IzvjGOo4rCstLnqZZUfM4P1HKcZFBY4xSLgNzSDqa5z2BfSgdaTqfencDjvQA
3rUkKlpducDHWo6kjl2Ruu0Fm7+lAD1hVrxY92ELDLU/xDHErpJbtuVQFxjrUwuYyqIsaq4XBaqE
gJypOaqDtJMyxFP2lJwRnqzr1HvUiuD7U90wSrCo9nGO1du58y04uzJAQRxUkQOSarKCMYOPUVOs
hX6VM03GyNsNOEKqlPZE1GM0iurHpg+lKDzxXG007M+jhUjUXNF3Q5iAQFHApRIQjEH5jx+FRtnH
FLGhKnqcUiisBgY70ZO72p8zBTg0zqM12xbauz5ivBQqOMegAAUtIaWqMhKWiigAooooAKM0UUAF
FFGPegAooooAKKKKACiiigAqKQPzjpUtBoAdbyK8ezPzA8ip+rADtVVV2NkdaXeWf+tYypXd7npU
Mw9nTUHG9ixMyq5I5PpUHnFmIXjHakJ96KqNKKMa2Nq1Ho7LyJRcFYmBHJGM1X2ncGDHOKcR60dB
zVKEV0MpYmrJJOTJrWby0ZJjuzyGAojYlWU4yWyPpVdyfL9M062kL3CxYyT0xWVSmrXR34PGyclT
qa+ZYwRTscZxgZxn3qR18p/cdjUbnfjPY5Fc56wh5PpgfrUiHLDPFLJtIUgYOPm+tMJVY+f/ANVA
NpK7JpIGFq0q8qDg1S3Y5qT7XJ9naHPyZyKpuz4bnA7cVqqMmcM8woxdld+hdUq0eehppz9aigly
Njfex1qwF2/Ss2mnZnXTqRqR5ovQFj34K8uO1P2CB1353Z3MPQU1X2SLtOCDkGppt0k7zytkNjca
RZWlJkywO2i3mMFwky8PH91vejIJB6KeKmihKMztHvRVzx2z0oAsxQNNP+8bE0uZCCOx5zUMzO8E
ijnjO2mxPI1y86uW2JsH+yPSku5NqqNu18Z/CnFNvQzrSjGm3LYz1I28cU7oKOvLdaWu4+XCikzz
S0AFFFFABSEUtFAEJAVuOvWrEDZYc9etQP3JpYiCpxSkrqxdObpzU10Ly8ufpSHkg9sYpiNlf0p/
J49K4mrOx9PCanFSXUB14oxxmgcUg9O1IoXOBigY4Pp+tJ94DFBPzbaAHBsZPek5PNKOVA7U08E0
AL8r8MPxqAxEHg5qwAMZzSooLZPAFXGbjsc9bC062slqQPC8KBpVwW6VHmp7u7a52xs2UjGFFVv4
eO1dUL2uzwsR7NT5aeyEYkY579qnjcHvVGS45CrV+0hVgpkO1Sck+tZ1kuW51ZbKSquK2sSKASM9
K2bS4toYJIioKkHBPUmsYkEnHTPFPQkNj2rmPbKcgb7Q4I+TPFJ7VblRZF3KMEVVPBweDXXTkpI+
exlB0qjfRhSc0Z60ZrQ5BaKQnFHegAyDS0AAdKKACiiigAooooAXjtSUA4OaU4J4GKBiUUUUCCii
igAooooATpn1oFLRQAUUh6cdaWgBCMkUtFITigBrjdx270sSmKZZVOCvIpcU9VLEAUna2pUebmXL
uTz3ZnkV2XkDFMEy8ZHSoT1NIKz9lE61mFdO7ZZdgvQ5BqFmLH29KaTn8KKcKaiTiMXOtpsuwUhA
PWlorQ5CIxlW3g8irZuTtyB1FQ0VMoqW5tSr1KV+R2uOgmVpfmGD1q4vyMNwDKTkr6is4LwT3NSr
K6YC8j0rKdH+U78PmLWlX7yxIVMrGNdq5+76CrEFw0MTqp4dSGUiq6spi8wdCcEVKFVgoB49a52r
HrRkpK62JoFQQFR3GSfes+9kaW8Ys2do28VPI5hTGcnPFUzyST1Jya3ox1ueZmVZcqprfcTtQOlG
cUtdB44lLRRQAUUUUAFHaiigCOQHbjrmmRfu1IPGTUxFMaLPQ4oAtqu1cU7PeoPMYKB196d5uR0r
mlSle57lHHUFFR2siSimGVeOuacDnPNZOLW52QrU6nwu4oNIRzmlA3Mo6D1qS68iMBYnLPj5iaST
excpRirydhgPGKcvy5JGc9KagDRk55HpTXnG0Keo9KaTeiFKpCK5pPQccZ4pSxEZxxioUmjaRUDf
MTgA1r/YYvschllCydVXrkUWaeolONSL5Gc+oy5IGM96cehFOuitkgaT5VY4U+pqq06lcg/U12pp
q6PmJwlCTjLdBGkUl3GhGTvGT6Ctq4CCQeWMIoxg/wA6oafbKoeTeS5Pyirf+99K5q0rux7WXUnC
nzPqR5yKkUYAIPOKZwEZj36UrdFUdSM1kegKDhjnmmTIWw459qX2p4PGQcECnGTi7ozrUo1YOEin
/EajBy9TTKRIWHGRUOAPqTXandXPmqkHTm4PoI8m3gDJqRM7QTSBPXmp2jI27e45zScktyqdGdS/
Ir2I6XinNGVGQc+tMpqSexNSlOm7TVgooopkBRRRQAUUUUAFFFFABRRRQAUUGigAooooATvS0UUA
IPSlooB45FACjrSs5Y5ptFKyvcpTkouKejEHvS0UUyQooooAKKKKACiiigAo7UUUACswXbmpBKw4
JyPSo+9FS4p7o1hXqQ+GTJJGyF+majpSMYz6UlEVZWQVqjqTc5bsKKKKoyCiiigAooooAKKKKACi
iigANFFFABSo21s9aSihq+g4ycWpLcd5jetQnLNwehqSkxzSSS2HKcp6ydxyMU5BwaQ4NFFOwrtq
wwRIshkAw+MZqVZXRgQT+NNopNJ7jjOUfhdia4uFvgI5wML0471V+xMZVAAKGnjgn1qSOVo2DKel
S4tL3TojWjUmnX18/wDP+rlqaEW9mrAHOelQq25QfWtmxtxq0JTfyvPI6GsqeJoJ3hPDI2DXG/M+
hi00uXYYSDx26UN13e1JjmlPTNAw6Uo64o5OTSY5FAEsdq1wkjAgKgzn3qkIyXG7AHrV15PJjAX/
ACapMxJJPJ71vRUreR5WYSpKSury/rccAqPwwI71Oo3EAc1RjDbiQeD1yK17eJPJJ3bSgJNTVTT1
N8DUpyptRVrbla6G3GOhqtT55DOylui9KZW9OPLGzPKxdVVarlHYKKKKs5gooooAKKKKACiiigAH
vRTkUMSCe1SFBjFZyqKLszqo4OpVg5ohpO9KeDg0VoczTTswoopdp27u1FwUW9hKKKKBC8bfekoo
oG3cKKKKBBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAGOc0UUUAFFFFABRRRQA1xlcUqjApaKAJre7ltW3RsQevFL5/nyF3J3uc59TUFAGBUSpx
kdVHGVaVknp2LJBHWioBIV68ir84thAhiky5wSK5pwcT2aGKhWWmjIBk8DnNBQqob1NTW1u0iMyj
oDVd32/e5x2qUm9EdEpxguaT0EvlkjaJSDh1D1XAAJPrU1xcSXMm+Q5wMAegqHHOa7IK0bHzeJqK
pVclsLSkkrtycUlFUYptbBRRRQIKKKKACiiigAoxmiigA70UUUASQjc/4VKilnwKj0eaNtRuIp1K
oqZV/erBXyr9pYycdh2rlrfEe/l6Soadyu65Jz9KBAWxg9TjpT5BvkL/AHSTk05HKgL2zmoU5LRM
2qYWjUfNKOpJcWRsym8A7xkc1DjNW5rhryTc/YAAfSoXXJwMDHYUm29zSFOEFaKsVZAFOAKZTrom
O4QY4ZMn60zPGa66fwo+exVlWkkrWFoooqznCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo
ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAJY7i
WNSquQD1FRsdzE+tJRSUUndFyqzlHlbugooopkBRRRQAUUUUAFFFFABRRRQAUUUUAJnnFNI5znv0
pSwBwajMbySoEbowOaBpNuyLVovlyyOw5YcVZzuyOlXLuKDcu75G2cAVQVmT6kYrhlLmdz6ejSVK
CghQMjPtQg+bB6d6nhj3q5A528e1RJ5bWryK4MivtK0jQZtPJXtz+FSId7Db97rzUROTzUsRWIpK
4+UMM0AQXrCRlbGMcGq2Pet3XbCGSNb3Tm3RlfnQdfrWEpyo4xxXVRd42PBzCDjW5u46iiitThCi
iigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACjpRRQBASW
kAUgDvV2yXypNxHfoe9VQgM6lRgirjHkYrGtKysell1FSk5voWJWMzknscYqNR+73MOAcU3duf5f
vDk1Ih3MEf8A1ecge9cx7RZ0tgt4obhJAVPt71VuoltbuVUOEJ496lLGPCIMZPeon3SyeXnccYFA
EYx/Fyc0twzXHlLIflj+6KR08o7OrqcmhshkZupGRQBNBcPFHsJyOmKmuNJe4t/tlvGcRDEqD+E9
c1WgTMojU4MmSauWl3PDHceU3VCrg91pxk4u6Iq0o1I8skY9FKyBCVXoOlJXandXPmJRcZOL6BRR
RTJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooo
oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEBw1W
AysxUHkDNQUi5Vt3fp+FZ1IcyOvCYp0HZ7MtwRM85EaneR19qvfZlhtPOLBnUhsenNUreV48vGce
tWTexLYtAVHmsSWbNctnex76nFx5r6EE7mVw/I5zUeemOCD1qxK8R0yPaB52fmb6dqqFwAD1z6UJ
N7BKpCKvJ6CzMW+YCnLgQhfTpUQlx/D1qxbyRjdvBIbj6U5QlHczp4mlVdoMbgLcK6nGCCDU5ZAz
hRhSTzVaVkR2AOQOlJ5wCgrkNjGKFCT2Qp4mlC6lLYgP3jzkZ60UUV2o+bbu7hRRRQIKKKKACiii
gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA
CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAHb22bc8VEqHe
WJ5p9JSSSKlKUrXewuTjHaiiimSFAOO9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAB
RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFAH/9k=
--000325554fda84883f04774a666d--


More information about the Insight-users mailing list