[Insight-users] Running time for a level set segmentation method

john smith mkitkinsightuser at gmail.com
Tue Apr 12 12:49:03 EDT 2011


I made this change and I reran my program. But is still running without any
result.Could you have a look at the code for any mistakes?

2011/4/12 Sergio Vera <sergio.vera at alma3d.com>

> Hi John
>
> It all comes down to see if this same code is being compiled in Debug mode
> (very slow) or in Release mode (much faster)
> The setting of release/debug is compiler/IDE dependant. You have to select
> one or another. Probably, you are compiling by default in Debug mode.
>
> 1 hour doing a complex task is not strange when using Debug Code on 3D
> images if they are big enough. Check your compiler settings to see how to
> switch to release mode and rerun the example.
>
> Regards
>
> On Tue, Apr 12, 2011 at 1:17 PM, john smith <mkitkinsightuser at gmail.com>wrote:
>
>> Here is the code for "GeodesicActiveContourImageFilter". It is quite
>> similar with the "ShapeDetectionLevelSetFilter". I took it drom the software
>> guide for itk, but I use it for 3D image.
>>
>> ////////// code /////////////////
>>
>> /*=========================================================================
>>
>>   Program:   Insight Segmentation & Registration Toolkit
>>   Module:    $RCSfile: GeodesicActiveContourImageFilter.cxx,v $
>>   Language:  C++
>>   Date:      $Date: 2009-03-17 21:44:42 $
>>   Version:   $Revision: 1.45 $
>>
>>   Copyright (c) Insight Software Consortium. All rights reserved.
>>   See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for
>> details.
>>
>>      This software is distributed WITHOUT ANY WARRANTY; without even
>>      the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
>>      PURPOSE.  See the above copyright notices for more information.
>>
>>
>>  =========================================================================*/
>> #if defined(_MSC_VER)
>> #pragma warning ( disable : 4786 )
>> #endif
>>
>> #ifdef __BORLANDC__
>> #define ITK_LEAN_AND_MEAN
>> #endif
>>
>> //  Software Guide : BeginCommandLineArgs
>> //    INPUTS: {BrainProtonDensitySlice.png}
>> //    OUTPUTS: {GeodesicActiveContourImageFilterOutput5.png}
>> //    81 114 5 1.0  -0.5  3.0   2
>> //  Software Guide : EndCommandLineArgs
>> //  Software Guide : BeginCommandLineArgs
>> //    INPUTS: {BrainProtonDensitySlice.png}
>> //    OUTPUTS: {GeodesicActiveContourImageFilterOutput6.png}
>> //    99 114 5 1.0  -0.5  3.0  2
>> //  Software Guide : EndCommandLineArgs
>> //  Software Guide : BeginCommandLineArgs
>> //    INPUTS: {BrainProtonDensitySlice.png}
>> //    OUTPUTS: {GeodesicActiveContourImageFilterOutput8.png}
>> //    40 90 5 0.5  -0.3  2.0 10
>> //  Software Guide : EndCommandLineArgs
>> //  Software Guide : BeginCommandLineArgs
>> //    INPUTS: {BrainProtonDensitySlice.png}
>> //    OUTPUTS: {GeodesicActiveContourImageFilterOutput7.png}
>> //    OUTPUTS: [GeodesicActiveContourImageFilterOutput1.png]
>> //    OUTPUTS: [GeodesicActiveContourImageFilterOutput2.png]
>> //    OUTPUTS: [GeodesicActiveContourImageFilterOutput3.png]
>> //    56 92 5 1.0  -0.3  2.0 10
>> //  Software Guide : EndCommandLineArgs
>>
>> // Software Guide : BeginLatex
>> //
>> // The use of the \doxygen{GeodesicActiveContourLevelSetImageFilter} is
>> // illustrated in the following example. The implementation of this filter
>> in
>> // ITK is based on the paper by Caselles \cite{Caselles1997}.  This
>> // implementation extends the functionality of the
>> // \doxygen{ShapeDetectionLevelSetImageFilter} by the addition of a third
>> // advection term which attracts the level set to the object boundaries.
>> //
>> // GeodesicActiveContourLevelSetImageFilter expects two inputs.  The first
>> is
>> // an initial level set in the form of an \doxygen{Image}. The second
>> input
>> // is a feature image. For this algorithm, the feature image is an edge
>> // potential image that basically follows the same rules used for the
>> // ShapeDetectionLevelSetImageFilter discussed in
>> // Section~\ref{sec:ShapeDetectionLevelSetFilter}.  The configuration of
>> this
>> // example is quite similar to the example on the use of the
>> // ShapeDetectionLevelSetImageFilter. We omit most of the redundant
>> // description. A look at the code will reveal the great degree of
>> similarity
>> // between both examples.
>> //
>> // \begin{figure} \center
>> //
>> \includegraphics[width=\textwidth]{GeodesicActiveContoursCollaborationDiagram1.eps}
>> // \itkcaption[GeodesicActiveContourLevelSetImageFilter collaboration
>> // diagram]{Collaboration diagram for the
>> GeodesicActiveContourLevelSetImageFilter
>> // applied to a segmentation task.}
>> // \label{fig:GeodesicActiveContoursCollaborationDiagram}
>> // \end{figure}
>> //
>> // Figure~\ref{fig:GeodesicActiveContoursCollaborationDiagram} shows the
>> major
>> // components involved in the application of the
>> // GeodesicActiveContourLevelSetImageFilter to a segmentation task.
>> // This pipeline is quite similar to the one used by the
>> // ShapeDetectionLevelSetImageFilter in
>> // section~\ref{sec:ShapeDetectionLevelSetFilter}.
>> //
>> // The pipeline involves a first stage of smoothing using the
>> // \doxygen{CurvatureAnisotropicDiffusionImageFilter}. The smoothed image
>> is
>> // passed as the input to the
>> // \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} and then to the
>> // \doxygen{SigmoidImageFilter} in order to produce the edge potential
>> image.
>> // A set of user-provided seeds is passed to a
>> // \doxygen{FastMarchingImageFilter} in order to compute the distance map.
>> A
>> // constant value is subtracted from this map in order to obtain a level
>> set
>> // in which the \emph{zero set} represents the initial contour. This level
>> // set is also passed as input to the
>> // GeodesicActiveContourLevelSetImageFilter.
>> //
>> // Finally, the level set generated by the
>> // GeodesicActiveContourLevelSetImageFilter is passed to a
>> // \doxygen{BinaryThresholdImageFilter} in order to produce a binary mask
>> // representing the segmented object.
>> //
>> // Let's start by including the headers of the main filters involved in
>> the
>> // preprocessing.
>> //
>> // Software Guide : EndLatex
>>
>>
>> // Software Guide : BeginCodeSnippet
>> #include "itkImage.h"
>> #include "itkGeodesicActiveContourLevelSetImageFilter.h"
>> // Software Guide : EndCodeSnippet
>>
>>
>> #include "itkCurvatureAnisotropicDiffusionImageFilter.h"
>> #include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
>> #include "itkSigmoidImageFilter.h"
>> #include "itkFastMarchingImageFilter.h"
>> #include "itkRescaleIntensityImageFilter.h"
>> #include "itkBinaryThresholdImageFilter.h"
>> #include "itkImageFileReader.h"
>> #include "itkImageFileWriter.h"
>>
>>
>> int main( int argc, char *argv[] )
>> {
>>   if( argc < 11 )
>>     {
>>     std::cerr << "Missing Parameters " << std::endl;
>>     std::cerr << "Usage: " << argv[0];
>>     std::cerr << " inputImage  outputImage";
>>     std::cerr << " seedX seedY seedZ InitialDistance";
>>     std::cerr << " Sigma SigmoidAlpha SigmoidBeta";
>>     std::cerr << " PropagationScaling"  << std::endl;
>>     return 1;
>>     }
>>
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  We now define the image type using a particular pixel type and
>>   //  dimension. In this case the \code{float} type is used for the pixels
>>   //  due to the requirements of the smoothing filter.
>>   //
>>   //  Software Guide : EndLatex
>>
>>   // Software Guide : BeginCodeSnippet
>>   typedef   float           InternalPixelType;
>>   const     unsigned int    Dimension = 3;
>>   typedef itk::Image< InternalPixelType, Dimension >  InternalImageType;
>>   // Software Guide : EndCodeSnippet
>>
>>
>>   //  The following lines instantiate the thresholding filter that will
>>   //  process the final level set at the output of the
>>   //  GeodesicActiveContourLevelSetImageFilter.
>>   //
>>   typedef unsigned char                            OutputPixelType;
>>   typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
>>   typedef itk::BinaryThresholdImageFilter<
>>                         InternalImageType,
>>                         OutputImageType    >       ThresholdingFilterType;
>>
>>   ThresholdingFilterType::Pointer thresholder =
>> ThresholdingFilterType::New();
>>
>>   thresholder->SetLowerThreshold( -1000.0 );
>>   thresholder->SetUpperThreshold(     0.0 );
>>
>>   thresholder->SetOutsideValue(  0  );
>>   thresholder->SetInsideValue(  255 );
>>
>>
>>   // We instantiate reader and writer types in the following lines.
>>   //
>>   typedef  itk::ImageFileReader< InternalImageType > ReaderType;
>>   typedef  itk::ImageFileWriter<  OutputImageType  > WriterType;
>>
>>   ReaderType::Pointer reader = ReaderType::New();
>>   WriterType::Pointer writer = WriterType::New();
>>
>>   reader->SetFileName( argv[1] );
>>   writer->SetFileName( argv[2] );
>>
>>
>>   //  The RescaleIntensityImageFilter type is declared below. This filter
>> will
>>   //  renormalize image before sending them to writers.
>>   //
>>   typedef itk::RescaleIntensityImageFilter<
>>                                InternalImageType,
>>                                OutputImageType >   CastFilterType;
>>
>>
>>   //  The \doxygen{CurvatureAnisotropicDiffusionImageFilter} type is
>>   //  instantiated using the internal image type.
>>   //
>>   typedef   itk::CurvatureAnisotropicDiffusionImageFilter<
>>                                InternalImageType,
>>                                InternalImageType >  SmoothingFilterType;
>>
>>   SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();
>>
>>
>>   //  The types of the
>>   //  GradientMagnitudeRecursiveGaussianImageFilter and
>>   //  SigmoidImageFilter are instantiated using the internal image
>>   //  type.
>>   //
>>   typedef   itk::GradientMagnitudeRecursiveGaussianImageFilter<
>>                                InternalImageType,
>>                                InternalImageType >  GradientFilterType;
>>   typedef   itk::SigmoidImageFilter<
>>                                InternalImageType,
>>                                InternalImageType >  SigmoidFilterType;
>>
>>   GradientFilterType::Pointer  gradientMagnitude =
>> GradientFilterType::New();
>>
>>   SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();
>>
>>
>>   //  The minimum and maximum values of the SigmoidImageFilter output
>>   //  are defined with the methods \code{SetOutputMinimum()} and
>>   //  \code{SetOutputMaximum()}. In our case, we want these two values to
>> be
>>   //  $0.0$ and $1.0$ respectively in order to get a nice speed image to
>> feed
>>   //  the \code{FastMarchingImageFilter}. Additional details on the user
>> of the
>>   //  \doxygen{SigmoidImageFilter} are presented in
>>   //  section~\ref{sec:IntensityNonLinearMapping}.
>>
>>   sigmoid->SetOutputMinimum(  0.0  );
>>   sigmoid->SetOutputMaximum(  1.0  );
>>
>>
>>   //  We declare now the type of the FastMarchingImageFilter that
>>   //  will be used to generate the initial level set in the form of a
>> distance
>>   //  map.
>>   //
>>   typedef  itk::FastMarchingImageFilter<
>>                               InternalImageType,
>>                               InternalImageType >
>> FastMarchingFilterType;
>>
>>
>>   //  Next we construct one filter of this class using the \code{New()}
>>   //  method.
>>   //
>>   FastMarchingFilterType::Pointer  fastMarching =
>> FastMarchingFilterType::New();
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  In the following lines we instantiate the type of the
>>   //  GeodesicActiveContourLevelSetImageFilter and create an object of
>> this
>>   //  type using the \code{New()} method.
>>   //
>>   //  Software Guide : EndLatex
>>
>>   // Software Guide : BeginCodeSnippet
>>   typedef  itk::GeodesicActiveContourLevelSetImageFilter<
>> InternalImageType,
>>                 InternalImageType >    GeodesicActiveContourFilterType;
>>   GeodesicActiveContourFilterType::Pointer geodesicActiveContour =
>>
>> GeodesicActiveContourFilterType::New();
>>   // Software Guide : EndCodeSnippet
>>
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  For the GeodesicActiveContourLevelSetImageFilter, scaling parameters
>>   //  are used to trade off between the propagation (inflation), the
>>   //  curvature (smoothing) and the advection terms. These parameters are
>> set
>>   //  using methods \code{SetPropagationScaling()},
>>   //  \code{SetCurvatureScaling()} and \code{SetAdvectionScaling()}. In
>> this
>>   //  example, we will set the curvature and advection scales to one and
>> let
>>   //  the propagation scale be a command-line argument.
>>   //
>>   //
>> \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetPropagationScaling()}
>>   //
>> \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
>>   //
>> \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetCurvatureScaling()}
>>   //
>> \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
>>   //
>> \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetAdvectionScaling()}
>>   //
>> \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetAdvectionScaling()}
>>   //
>>   //  Software Guide : EndLatex
>>
>>   const double propagationScaling = atof( argv[10] );
>>
>>   //  Software Guide : BeginCodeSnippet
>>   geodesicActiveContour->SetPropagationScaling( propagationScaling );
>>   geodesicActiveContour->SetCurvatureScaling( 1.0 );
>>   geodesicActiveContour->SetAdvectionScaling( 1.0 );
>>   //  Software Guide : EndCodeSnippet
>>
>>   //  Once activiated the level set evolution will stop if the convergence
>>   //  criteria or if the maximum number of iterations is reached.  The
>>   //  convergence criteria is defined in terms of the root mean squared
>> (RMS)
>>   //  change in the level set function. The evolution is said to have
>>   //  converged if the RMS change is below a user specified threshold.  In
>> a
>>   //  real application is desirable to couple the evolution of the zero
>> set
>>   //  to a visualization module allowing the user to follow the evolution
>> of
>>   //  the zero set. With this feedback, the user may decide when to stop
>> the
>>   //  algorithm before the zero set leaks through the regions of low
>> gradient
>>   //  in the contour of the anatomical structure to be segmented.
>>
>>   geodesicActiveContour->SetMaximumRMSError( 0.02 );
>>   geodesicActiveContour->SetNumberOfIterations( 800 );
>>
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  The filters are now connected in a pipeline indicated in
>>   //  Figure~\ref{fig:GeodesicActiveContoursCollaborationDiagram} using
>> the
>>   //  following lines:
>>   //
>>   //  Software Guide : EndLatex
>>
>>   // Software Guide : BeginCodeSnippet
>>   smoothing->SetInput( reader->GetOutput() );
>>   gradientMagnitude->SetInput( smoothing->GetOutput() );
>>   sigmoid->SetInput( gradientMagnitude->GetOutput() );
>>
>>   geodesicActiveContour->SetInput(  fastMarching->GetOutput() );
>>   geodesicActiveContour->SetFeatureImage( sigmoid->GetOutput() );
>>
>>   thresholder->SetInput( geodesicActiveContour->GetOutput() );
>>   writer->SetInput( thresholder->GetOutput() );
>>   // Software Guide : EndCodeSnippet
>>
>>
>>   //  The CurvatureAnisotropicDiffusionImageFilter requires a couple of
>>   //  parameter to be defined. The following are typical values for $2D$
>>   //  images. However they may have to be adjusted depending on the amount
>> of
>>   //  noise present in the input image. This filter has been discussed in
>>   //  section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
>>
>>   smoothing->SetTimeStep( 0.0625 );
>>   smoothing->SetNumberOfIterations(  5 );
>>   smoothing->SetConductanceParameter( 9.0 );
>>
>>
>>   //  The GradientMagnitudeRecursiveGaussianImageFilter performs the
>>   //  equivalent of a convolution with a Gaussian kernel, followed by a
>>   //  derivative operator. The sigma of this Gaussian can be used to
>> control
>>   //  the range of influence of the image edges. This filter has been
>> discussed
>>   //  in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}
>>
>>   const double sigma = atof( argv[7] );
>>   gradientMagnitude->SetSigma(  sigma  );
>>
>>
>>   //  The SigmoidImageFilter requires two parameters that define the
>> linear
>>   //  transformation to be applied to the sigmoid argument. This
>> parameters
>>   //  have been discussed in Sections~\ref{sec:IntensityNonLinearMapping}
>> and
>>   //  \ref{sec:FastMarchingImageFilter}.
>>
>>   const double alpha =  atof( argv[8] );
>>   const double beta  =  atof( argv[9] );
>>
>>   sigmoid->SetAlpha( alpha );
>>   sigmoid->SetBeta(  beta  );
>>
>>
>>   //  The FastMarchingImageFilter requires the user to provide a seed
>>   //  point from which the level set will be generated. The user can
>> actually
>>   //  pass not only one seed point but a set of them. Note the the
>>   //  FastMarchingImageFilter is used here only as a helper in the
>>   //  determination of an initial level set. We could have used the
>>   //  \doxygen{DanielssonDistanceMapImageFilter} in the same way.
>>   //
>>   //  The seeds are passed stored in a container. The type of this
>>   //  container is defined as \code{NodeContainer} among the
>>   //  FastMarchingImageFilter traits.
>>   //
>>   typedef FastMarchingFilterType::NodeContainer  NodeContainer;
>>   typedef FastMarchingFilterType::NodeType       NodeType;
>>
>>   NodeContainer::Pointer seeds = NodeContainer::New();
>>
>>   InternalImageType::IndexType  seedPosition;
>>
>>   seedPosition[0] = atoi( argv[3] );
>>   seedPosition[1] = atoi( argv[4] );
>>   seedPosition[2] = atoi( argv[5] );
>>
>>   //  Nodes are created as stack variables and initialized with a value
>> and an
>>   //  \doxygen{Index} position. Note that here we assign the value of
>> minus the
>>   //  user-provided distance to the unique node of the seeds passed to the
>>   //  FastMarchingImageFilter. In this way, the value will increment
>>   //  as the front is propagated, until it reaches the zero value
>> corresponding
>>   //  to the contour. After this, the front will continue propagating
>> until it
>>   //  fills up the entire image. The initial distance is taken here from
>> the
>>   //  command line arguments. The rule of thumb for the user is to select
>> this
>>   //  value as the distance from the seed points at which she want the
>> initial
>>   //  contour to be.
>>   const double initialDistance = atof( argv[6] );
>>
>>   NodeType node;
>>
>>   const double seedValue = - initialDistance;
>>
>>   node.SetValue( seedValue );
>>   node.SetIndex( seedPosition );
>>
>>
>>   //  The list of nodes is initialized and then every node is inserted
>> using
>>   //  the \code{InsertElement()}.
>>
>>   seeds->Initialize();
>>   seeds->InsertElement( 0, node );
>>
>>
>>   //  The set of seed nodes is passed now to the
>>   //  FastMarchingImageFilter with the method
>>   //  \code{SetTrialPoints()}.
>>   //
>>   fastMarching->SetTrialPoints(  seeds  );
>>
>>
>>   //  Since the FastMarchingImageFilter is used here just as a
>>   //  Distance Map generator. It does not require a speed image as input.
>>   //  Instead the constant value $1.0$ is passed using the
>>   //  \code{SetSpeedConstant()} method.
>>   //
>>   fastMarching->SetSpeedConstant( 1.0 );
>>
>>
>>   //  Here we configure all the writers required to see the intermediate
>>   //  outputs of the pipeline. This is added here only for
>>   //  pedagogical/debugging purposes. These intermediate output are
>> normaly not
>>   //  required. Only the output of the final thresholding filter should be
>>   //  relevant.  Observing intermediate output is helpful in the process
>> of
>>   //  fine tuning the parameters of filters in the pipeline.
>>   //
>>   CastFilterType::Pointer caster1 = CastFilterType::New();
>>   CastFilterType::Pointer caster2 = CastFilterType::New();
>>   CastFilterType::Pointer caster3 = CastFilterType::New();
>>   CastFilterType::Pointer caster4 = CastFilterType::New();
>>
>>   WriterType::Pointer writer1 = WriterType::New();
>>   WriterType::Pointer writer2 = WriterType::New();
>>   WriterType::Pointer writer3 = WriterType::New();
>>   WriterType::Pointer writer4 = WriterType::New();
>>
>>   caster1->SetInput( smoothing->GetOutput() );
>>   writer1->SetInput( caster1->GetOutput() );
>>   writer1->SetFileName("GeodesicActiveContourImageFilterOutput1.hdr");
>>   caster1->SetOutputMinimum(   0 );
>>   caster1->SetOutputMaximum( 255 );
>>   writer1->Update();
>>
>>   caster2->SetInput( gradientMagnitude->GetOutput() );
>>   writer2->SetInput( caster2->GetOutput() );
>>   writer2->SetFileName("GeodesicActiveContourImageFilterOutput2.hdr");
>>   caster2->SetOutputMinimum(   0 );
>>   caster2->SetOutputMaximum( 255 );
>>   writer2->Update();
>>
>>   caster3->SetInput( sigmoid->GetOutput() );
>>   writer3->SetInput( caster3->GetOutput() );
>>   writer3->SetFileName("GeodesicActiveContourImageFilterOutput3.hdr");
>>   caster3->SetOutputMinimum(   0 );
>>   caster3->SetOutputMaximum( 255 );
>>   writer3->Update();
>>
>>   caster4->SetInput( fastMarching->GetOutput() );
>>   writer4->SetInput( caster4->GetOutput() );
>>   writer4->SetFileName("GeodesicActiveContourImageFilterOutput4.hdr");
>>   caster4->SetOutputMinimum(   0 );
>>   caster4->SetOutputMaximum( 255 );
>>
>>
>>   //  The FastMarchingImageFilter requires the user to specify the
>>   //  size of the image to be produced as output. This is done using the
>>   //  \code{SetOutputSize()}. Note that the size is obtained here from the
>>   //  output image of the smoothing filter. The size of this image is
>> valid
>>   //  only after the \code{Update()} methods of this filter has been
>> called
>>   //  directly or indirectly.
>>   //
>>   fastMarching->SetOutputSize(
>>            reader->GetOutput()->GetBufferedRegion().GetSize() );
>>
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  The invocation of the \code{Update()} method on the writer triggers
>> the
>>   //  execution of the pipeline.  As usual, the call is placed in a
>>   //  \code{try/catch} block should any errors occur or exceptions be
>> thrown.
>>   //
>>   //  Software Guide : EndLatex
>>
>>   // Software Guide : BeginCodeSnippet
>>   try
>>     {
>>     writer->Update();
>>     }
>>   catch( itk::ExceptionObject & excep )
>>     {
>>     std::cerr << "Exception caught !" << std::endl;
>>     std::cerr << excep << std::endl;
>>     }
>>   // Software Guide : EndCodeSnippet
>>
>>   // Print out some useful information
>>   std::cout << std::endl;
>>   std::cout << "Max. no. iterations: " <<
>> geodesicActiveContour->GetNumberOfIterations() << std::endl;
>>   std::cout << "Max. RMS error: " <<
>> geodesicActiveContour->GetMaximumRMSError() << std::endl;
>>   std::cout << std::endl;
>>   std::cout << "No. elpased iterations: " <<
>> geodesicActiveContour->GetElapsedIterations() << std::endl;
>>   std::cout << "RMS change: " << geodesicActiveContour->GetRMSChange() <<
>> std::endl;
>>
>>   writer4->Update();
>>
>>
>>   // The following writer type is used to save the output of the
>> time-crossing
>>   // map in a file with apropiate pixel representation. The advantage of
>> saving
>>   // this image in native format is that it can be used with a viewer to
>> help
>>   // determine an appropriate threshold to be used on the output of the
>>   // fastmarching filter.
>>   //
>>  // typedef itk::ImageFileWriter< InternalImageType > InternalWriterType;
>>
>>  // InternalWriterType::Pointer mapWriter = InternalWriterType::New();
>>  // mapWriter->SetInput( fastMarching->GetOutput() );
>>  // mapWriter->SetFileName("GeodesicActiveContourImageFilterOutput4.mha");
>>  // mapWriter->Update();
>>
>>  // InternalWriterType::Pointer speedWriter = InternalWriterType::New();
>>  // speedWriter->SetInput( sigmoid->GetOutput() );
>>  //
>> speedWriter->SetFileName("GeodesicActiveContourImageFilterOutput3.mha");
>>  // speedWriter->Update();
>>
>>  // InternalWriterType::Pointer gradientWriter =
>> InternalWriterType::New();
>> //  gradientWriter->SetInput( gradientMagnitude->GetOutput() );
>>  //
>> gradientWriter->SetFileName("GeodesicActiveContourImageFilterOutput2.mha");
>> //  gradientWriter->Update();
>>
>>
>>   //  Software Guide : BeginLatex
>>   //
>>   //  Let's now run this example using as input the image
>>   //  \code{BrainProtonDensitySlice.png} provided in the directory
>>   //  \code{Examples/Data}. We can easily segment the major anatomical
>>   //  structures by providing seeds in the appropriate locations.
>>   //  Table~\ref{tab:GeodesicActiveContourImageFilterOutput2} presents the
>>   //  parameters used for some structures.
>>   //
>>   //  \begin{table}
>>   //  \begin{center}
>>   //  \begin{tabular}{|l|c|c|c|c|c|c|c|c|}
>>   //  \hline
>>   //  Structure    & Seed Index &  Distance   &   $\sigma$  &
>>   //  $\alpha$     &  $\beta$   & Propag. & Output Image \\  \hline
>>   //  Left Ventricle  & $(81,114)$ & 5.0 & 1.0 & -0.5 & 3.0  &  2.0 &
>> First   \\  \hline
>>   //  Right Ventricle & $(99,114)$ & 5.0 & 1.0 & -0.5 & 3.0  &  2.0 &
>> Second  \\  \hline
>>   //  White matter    & $(56, 92)$ & 5.0 & 1.0 & -0.3 & 2.0  & 10.0 &
>> Third   \\  \hline
>>   //  Gray matter     & $(40, 90)$ & 5.0 & 0.5 & -0.3 & 2.0  & 10.0 &
>> Fourth  \\  \hline
>>   //  \end{tabular}
>>   //  \end{center}
>>   //  \itkcaption[GeodesicActiveContour segmentation example
>> parameters]{Parameters used
>>   //  for segmenting some brain structures shown in
>>   //  Figure~\ref{fig:GeodesicActiveContourImageFilterOutput2} using the
>> filter
>>   //  GeodesicActiveContourLevelSetImageFilter.
>>   //  \label{tab:GeodesicActiveContourImageFilterOutput2}}
>>   //  \end{table}
>>   //
>>   //  Figure~\ref{fig:GeodesicActiveContourImageFilterOutput} presents the
>>   //  intermediate outputs of the pipeline illustrated in
>>   //  Figure~\ref{fig:GeodesicActiveContoursCollaborationDiagram}. They
>> are
>>   //  from left to right: the output of the anisotropic diffusion filter,
>> the
>>   //  gradient magnitude of the smoothed image and the sigmoid of the
>> gradient
>>   //  magnitude which is finally used as the edge potential for the
>>   //  GeodesicActiveContourLevelSetImageFilter.
>>   //
>>   // \begin{figure} \center
>>   // \includegraphics[height=0.40\textheight]{BrainProtonDensitySlice.eps}
>>   //
>> \includegraphics[height=0.40\textheight]{GeodesicActiveContourImageFilterOutput1.eps}
>>   //
>> \includegraphics[height=0.40\textheight]{GeodesicActiveContourImageFilterOutput2.eps}
>>   //
>> \includegraphics[height=0.40\textheight]{GeodesicActiveContourImageFilterOutput3.eps}
>>   // \itkcaption[GeodesicActiveContourLevelSetImageFilter intermediate
>>   // output]{Images generated by the segmentation process based on the
>>   // GeodesicActiveContourLevelSetImageFilter. From left to right and top
>> to
>>   // bottom: input image to be segmented, image smoothed with an
>>   // edge-preserving smoothing filter, gradient magnitude of the smoothed
>>   // image, sigmoid of the gradient magnitude. This last image, the
>> sigmoid, is
>>   // used to compute the speed term for the front propagation.}
>>   // \label{fig:GeodesicActiveContourImageFilterOutput} \end{figure}
>>   //
>>   //  Segmentations of the main brain structures are presented in
>>   //  Figure~\ref{fig:GeodesicActiveContourImageFilterOutput2}. The
>> results
>>   //  are quite similar to those obtained with the
>>   //  ShapeDetectionLevelSetImageFilter in
>>   //  Section~\ref{sec:ShapeDetectionLevelSetFilter}.
>>   //
>>   //  Note that a relatively larger propagation scaling value was required
>> to
>>   //  segment the white matter. This is due to two factors: the lower
>>   //  contrast at the border of the white matter and the complex shape of
>> the
>>   //  structure. Unfortunately the optimal value of these scaling
>> parameters
>>   //  can only be determined by experimentation. In a real application we
>>   //  could imagine an interactive mechanism by which a user supervises
>> the
>>   //  contour evolution and adjusts these parameters accordingly.
>>   //
>>   // \begin{figure} \center
>>   //
>> \includegraphics[width=0.24\textwidth]{GeodesicActiveContourImageFilterOutput5.eps}
>>   //
>> \includegraphics[width=0.24\textwidth]{GeodesicActiveContourImageFilterOutput6.eps}
>>   //
>> \includegraphics[width=0.24\textwidth]{GeodesicActiveContourImageFilterOutput7.eps}
>>   //
>> \includegraphics[width=0.24\textwidth]{GeodesicActiveContourImageFilterOutput8.eps}
>>   // \itkcaption[GeodesicActiveContourImageFilter segmentations]{Images
>> generated by the
>>   // segmentation process based on the GeodesicActiveContourImageFilter.
>> From left to
>>   // right: segmentation of the left ventricle, segmentation of the right
>>   // ventricle, segmentation of the white matter, attempt of segmentation
>> of
>>   // the gray matter.}
>>   // \label{fig:GeodesicActiveContourImageFilterOutput2}
>>   // \end{figure}
>>   //
>>   //  Software Guide : EndLatex
>>
>>   return 0;
>>
>> }
>>
>>
>>
>>
>>
>>
>>
>>
>> 2011/4/12 Sergio Vera <sergio.vera at alma3d.com>
>>
>>> Hi John
>>> Debug or Release Code?
>>>
>>> On Tue, Apr 12, 2011 at 11:54 AM, john smith <mkitkinsightuser at gmail.com
>>> > wrote:
>>>
>>>> Hello to everyone,
>>>>
>>>> I am running the "ShapeDetectionLevelSetFilter", but for 3D images. The
>>>> runnung time has overcome the 1 hour and it is still running. Is it normal?
>>>> How is the average time for running a level set segmentation method for a 3D
>>>> image?
>>>>
>>>> Thnaks
>>>>
>>>> _____________________________________
>>>> Powered by www.kitware.com
>>>>
>>>> Visit other Kitware open-source projects at
>>>> http://www.kitware.com/opensource/opensource.html
>>>>
>>>> Kitware offers ITK Training Courses, for more information visit:
>>>> http://www.kitware.com/products/protraining.html
>>>>
>>>> Please keep messages on-topic and check the ITK FAQ at:
>>>> http://www.itk.org/Wiki/ITK_FAQ
>>>>
>>>> Follow this link to subscribe/unsubscribe:
>>>> http://www.itk.org/mailman/listinfo/insight-users
>>>>
>>>>
>>>
>>>
>>> --
>>> Sergio Vera
>>>
>>>  Alma IT Systems
>>>  C/ Vilana, 4B, 4º 1ª
>>>  08022 Barcelona
>>>  T. (+34) 932 380 592
>>>  www.alma3d.com
>>>
>>
>>
>
>
> --
> Sergio Vera
>
>  Alma IT Systems
>  C/ Vilana, 4B, 4º 1ª
>  08022 Barcelona
>  T. (+34) 932 380 592
>  www.alma3d.com
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20110412/6cc2260d/attachment.htm>


More information about the Insight-users mailing list