ITK  6.0.0
Insight Toolkit
Examples/Iterators/NeighborhoodIterators2.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// In this example, the Sobel edge-detection routine is rewritten using
// convolution filtering. Convolution filtering is a standard image
// processing technique that can be implemented numerically as the inner
// product of all image neighborhoods with a convolution kernel
// \cite{Gonzalez1993} \cite{Castleman1996}. In ITK, we use a class of
// objects called \emph{neighborhood operators} as convolution kernels and a
// special function object called \doxygen{NeighborhoodInnerProduct} to
// calculate inner products.
//
// The basic ITK convolution filtering routine is to step through the image
// with a neighborhood iterator and use NeighborhoodInnerProduct to
// find the inner product of each neighborhood with the desired kernel. The
// resulting values are written to an output image. This example uses a
// neighborhood operator called the \doxygen{SobelOperator}, but all
// neighborhood operators can be convolved with images using this basic
// routine. Other examples of neighborhood operators include derivative
// kernels, Gaussian kernels, and morphological
// operators. \doxygen{NeighborhoodOperatorImageFilter} is a generalization of
// the code in this section to ND images and arbitrary convolution kernels.
//
// We start writing this example by including the header files for the Sobel
// kernel and the inner product function.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char ** argv)
{
if (argc < 4)
{
std::cerr << "Missing parameters. " << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile direction"
<< std::endl;
return EXIT_FAILURE;
}
using PixelType = float;
using ImageType = itk::Image<PixelType, 2>;
using ReaderType = itk::ImageFileReader<ImageType>;
using NeighborhoodIteratorType = itk::ConstNeighborhoodIterator<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
auto output = ImageType::New();
output->SetRegions(reader->GetOutput()->GetRequestedRegion());
output->Allocate();
IteratorType out(output, reader->GetOutput()->GetRequestedRegion());
// Software Guide : BeginLatex
//
// \index{convolution!kernels}
// \index{convolution!operators}
// \index{iterators!neighborhood!and convolution}
//
// Refer to the previous example for a description of reading the input
// image and setting up the output image and iterator.
//
// The following code creates a Sobel operator. The Sobel operator requires
// a direction for its partial derivatives. This direction is read from the
// command line. Changing the direction of the derivatives changes the bias
// of the edge detection, i.e. maximally vertical or maximally horizontal.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
sobelOperator.SetDirection(std::stoi(argv[3]));
sobelOperator.CreateDirectional();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The neighborhood iterator is initialized as before, except that now it
// takes its radius directly from the radius of the Sobel operator. The
// inner product function object is templated over image type and requires
// no initialization.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NeighborhoodIteratorType::RadiusType radius = sobelOperator.GetRadius();
NeighborhoodIteratorType it(
radius, reader->GetOutput(), reader->GetOutput()->GetRequestedRegion());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Using the Sobel operator, inner product, and neighborhood iterator
// objects, we can now write a very simple \code{for} loop for performing
// convolution filtering. As before, out-of-bounds pixel values are
// supplied automatically by the iterator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
for (it.GoToBegin(), out.GoToBegin(); !it.IsAtEnd(); ++it, ++out)
{
out.Set(innerProduct(it, sobelOperator));
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output is rescaled and written as in the previous example. Applying
// this example in the $x$ and $y$ directions produces the images at the
// center and right of Figure~\ref{fig:NeighborhoodExamples1}. Note that
// x-direction operator produces the same output image as in the previous
// example.
//
// Software Guide : EndLatex
using WritePixelType = unsigned char;
using WriteImageType = itk::Image<WritePixelType, 2>;
using RescaleFilterType =
auto rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(output);
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(rescaler->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
itk::NeighborhoodOperator::SetDirection
void SetDirection(const unsigned long direction)
Definition: itkNeighborhoodOperator.h:94
itk::SobelOperator
A NeighborhoodOperator for performing a directional Sobel edge-detection operation at a pixel locatio...
Definition: itkSobelOperator.h:97
itkConstNeighborhoodIterator.h
itkImageFileReader.h
itkImageRegionIterator.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::ImageRegionIterator
A multi-dimensional iterator templated over image type that walks a region of pixels.
Definition: itkImageRegionIterator.h:80
itk::ImageFileWriter
Writes image data to a single file.
Definition: itkImageFileWriter.h:90
itkSobelOperator.h
itkRescaleIntensityImageFilter.h
itkImageFileWriter.h
itkNeighborhoodInnerProduct.h
itk::ConstNeighborhoodIterator
Const version of NeighborhoodIterator, defining iteration of a local N-dimensional neighborhood of pi...
Definition: itkConstNeighborhoodIterator.h:51
itk::RescaleIntensityImageFilter
Applies a linear transformation to the intensity levels of the input Image.
Definition: itkRescaleIntensityImageFilter.h:133
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
itk::NeighborhoodInnerProduct< ImageType >
New
static Pointer New()