ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/MeanSquaresImageMetric1.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to explore the domain of an image metric. This
// is a useful exercise before starting a registration process, since
// familiarity with the characteristics of the metric is fundamental for
// appropriate selection of the optimizer and its parameters used to drive the
// registration process.
// This process helps identify how noisy a metric may be in a given
// range of parameters, and it will also give an idea of the number of local
// minima or maxima in which an optimizer may get trapped while exploring the
// parametric space.
//
// Software Guide : EndLatex
#include "itkImage.h"
// Software Guide : BeginLatex
//
// We start by including the headers of the basic components: Metric,
// Transform and Interpolator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " fixedImage movingImage" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the dimension and pixel type of the images to be used in the
// evaluation of the Metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int Dimension = 2;
using PixelType = float;
// Software Guide : EndCodeSnippet
using ReaderType = itk::ImageFileReader<ImageType>;
auto fixedReader = ReaderType::New();
auto movingReader = ReaderType::New();
fixedReader->SetFileName(argv[1]);
movingReader->SetFileName(argv[2]);
try
{
fixedReader->Update();
movingReader->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : BeginLatex
//
// The type of the Metric is instantiated and one is constructed. In this
// case we decided to use the same image type for both the fixed and the
// moving images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using MetricType =
auto metric = MetricType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also instantiate the transform and interpolator types, and create
// objects of each class.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto transform = TransformType::New();
using InterpolatorType =
auto interpolator = InterpolatorType::New();
// Software Guide : EndCodeSnippet
transform->SetIdentity();
ImageType::ConstPointer fixedImage = fixedReader->GetOutput();
ImageType::ConstPointer movingImage = movingReader->GetOutput();
// Software Guide : BeginLatex
//
// The classes required by the metric are connected to it. This includes the
// fixed and moving images, the interpolator and the transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetTransform(transform);
metric->SetMovingInterpolator(interpolator);
metric->SetFixedImage(fixedImage);
metric->SetMovingImage(movingImage);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the \code{SetTransform()} method is equivalent to the
// \code{SetMovingTransform()} function. In this example there is
// no need to use the \code{SetFixedTransform()}, since the virtual
// domain is assumed to be the same as the fixed image domain set
// as following.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetVirtualDomainFromImage(fixedImage);
// Software Guide : EndCodeSnippet
try
{
metric->Initialize();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Finally we select a region of the parametric space to explore. In this
// case we are using a translation transform in 2D, so we simply select
// translations from a negative position to a positive position, in both $x$
// and $y$. For each one of those positions we invoke the \code{GetValue()}
// method of the Metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::MovingTransformParametersType displacement(Dimension);
constexpr int rangex = 50;
constexpr int rangey = 50;
for (int dx = -rangex; dx <= rangex; ++dx)
{
for (int dy = -rangey; dy <= rangey; ++dy)
{
displacement[0] = dx;
displacement[1] = dy;
metric->SetParameters(displacement);
const double value = metric->GetValue();
std::cout << dx << " " << dy << " " << value << std::endl;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.33\textwidth]{MeanSquaresMetricPlot1}
// \includegraphics[height=0.33\textwidth]{MeanSquaresMetricPlot2}
// \itkcaption[Mean Squares Metric Plots]{Plots of the Mean Squares Metric
// for an image compared to itself under multiple translations.}
// \label{fig:MeanSquaresMetricPlot}
// \end{figure}
//
// Running this code using the image BrainProtonDensitySlice.png as both the
// fixed and the moving images results in the plot shown in
// Figure~\ref{fig:MeanSquaresMetricPlot}. From this figure, it can be seen
// that a gradient-based optimizer will be appropriate for finding the
// extrema of the Metric. It is also possible to estimate a good value for
// the step length of a gradient-descent optimizer.
//
// This exercise of plotting the Metric is probably the best thing to do
// when a registration process is not converging and when it is unclear how
// to fine tune the different parameters involved in the registration. This
// includes the optimizer parameters, the metric parameters and even options
// such as preprocessing the image data with smoothing filters.
//
// The shell and Gnuplot\footnote{http://www.gnuplot.info} scripts used for
// generating the graphics in Figure~\ref{fig:MeanSquaresMetricPlot} are
// available in the directory
//
// \code{ITKSoftwareGuide/SoftwareGuide/Art}
//
// Of course, this plotting exercise becomes more challenging when the
// transform has more than three parameters, and when those parameters have
// very different value ranges. In those cases it is necessary to select
// only a key subset of parameters from the transform and to study the
// behavior of the metric when those parameters are varied.
//
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
ConstPointer
SmartPointer< const Self > ConstPointer
Definition: itkAddImageFilter.h:94
itkImageFileReader.h
itkImage.h
itkMeanSquaresImageToImageMetricv4.h
itkTranslationTransform.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::TranslationTransform
Translation transformation of a vector space (e.g. space coordinates)
Definition: itkTranslationTransform.h:43
itkNearestNeighborInterpolateImageFunction.h
itkImageFileWriter.h
itk::MeanSquaresImageToImageMetricv4
Class implementing a mean squares metric.
Definition: itkMeanSquaresImageToImageMetricv4.h:46
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
New
static Pointer New()
itk::NearestNeighborInterpolateImageFunction
Nearest neighbor interpolation of a scalar image.
Definition: itkNearestNeighborInterpolateImageFunction.h:39
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44