ITK  6.0.0
Insight Toolkit
Examples/Statistics/BayesianClassifier.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// This example demonstrates usage of the itk::BayesianClassifierImageFilter
// The input to this example is an itk::VectorImage that represents pixel
// memberships to 'n' classes.
//
// This image is conveniently generated by the
// BayesianClassifierInitializer.cxx example.
//
// The output of the filter is a label map (an image of unsigned char's) with
// pixel values indicating the classes they correspond to. Pixels with
// intensity 0 belong to the 0th class, 1 belong to the 1st class etc. The
// classification is done by applying a Maximum decision rule to the posterior
// image.
//
// The filter allows you to specify a prior image as well, (although this is
// not done in this example). The prior image, if specified will be a
// itk::VectorImage with as many components as the number of classes. The
// posterior image is then generated by multiplying the prior image with the
// membership image. If the prior image is not specified, the posterior image
// is the same as the membership image.
//
// The filter optionally accepts a smoothingIterations argument. See the
// itk::BayesianClassifierImageFilter for details on how this affects the
// classification. The philosophy is that the filter allows you to iteratively
// smooth the posteriors prior to applying the decision rule. It is hoped
// that this would yield a better classification. The user will need to plug
// in his own smoothing filter. In this case, we specify a
// GradientAnisotropicDiffusionImageFilter.
//
// Example args:
// Memberships.mhd Labelmap.png 3
#include "itkImage.h"
int
main(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile [smoothingIterations]"
<< std::endl;
return EXIT_FAILURE;
}
// input parameters
const char * membershipImageFileName = argv[1];
const char * labelMapImageFileName = argv[2];
// setup reader
constexpr unsigned int Dimension = 2;
using InputPixelType = float;
auto reader = ReaderType::New();
reader->SetFileName(membershipImageFileName);
using LabelType = unsigned char;
using PriorType = float;
using PosteriorType = float;
using ClassifierFilterType =
LabelType,
PosteriorType,
PriorType>;
auto filter = ClassifierFilterType::New();
filter->SetInput(reader->GetOutput());
if (argv[3])
{
filter->SetNumberOfSmoothingIterations(std::stoi(argv[3]));
using ExtractedComponentImageType =
ClassifierFilterType::ExtractedComponentImageType;
using SmoothingFilterType = itk::GradientAnisotropicDiffusionImageFilter<
ExtractedComponentImageType,
ExtractedComponentImageType>;
auto smoother = SmoothingFilterType::New();
smoother->SetNumberOfIterations(1);
smoother->SetTimeStep(0.125);
smoother->SetConductanceParameter(3);
filter->SetSmoothingFilter(smoother);
}
// SET FILTER'S PRIOR PARAMETERS
// do nothing here to default to uniform priors
// otherwise set the priors to some user provided values
//
// Setup writer.. Rescale the label map to the dynamic range of the
// datatype and write it
//
using ClassifierOutputImageType = ClassifierFilterType::OutputImageType;
using OutputImageType = itk::Image<unsigned char, Dimension>;
using RescalerType =
itk::RescaleIntensityImageFilter<ClassifierOutputImageType,
OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(filter->GetOutput());
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
auto writer = WriterType::New();
writer->SetFileName(labelMapImageFileName);
//
// Write labelmap to file
//
writer->SetInput(rescaler->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Testing print
filter->Print(std::cout);
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
itkGradientAnisotropicDiffusionImageFilter.h
itk::VectorImage
Templated n-dimensional vector image class.
Definition: itkImageAlgorithm.h:29
itkImageFileReader.h
itkImage.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::ImageFileWriter
Writes image data to a single file.
Definition: itkImageFileWriter.h:90
itkRescaleIntensityImageFilter.h
itkImageFileWriter.h
itk::BayesianClassifierImageFilter
Performs Bayesian Classification on an image.
Definition: itkBayesianClassifierImageFilter.h:84
itkBayesianClassifierImageFilter.h
itk::RescaleIntensityImageFilter
Applies a linear transformation to the intensity levels of the input Image.
Definition: itkRescaleIntensityImageFilter.h:133
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
itk::GradientAnisotropicDiffusionImageFilter
This filter performs anisotropic diffusion on a scalar itk::Image using the classic Perona-Malik,...
Definition: itkGradientAnisotropicDiffusionImageFilter.h:51
New
static Pointer New()
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44