ITK  6.0.0
Insight Toolkit
Examples/Statistics/SampleSorting.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{Statistics!Order statistics}
// \index{Statistics!Sorting}
// \index{Statistics!Insert sort}
// \index{Statistics!Heap sort}
// \index{Statistics!Introspective sort}
// \index{Statistics!Quick select}
//
// \index{itk::Statistics::Subsample}
// \index{itk::Statistics::InsertSort}
// \index{itk::Statistics::HeapSort}
// \index{itk::Statistics::IntrospectiveSort}
// \index{itk::Statistics::QuickSelect}
//
// Sometimes we want to sort the measurement vectors in a sample. The sorted
// vectors may reveal some characteristics of the sample. The \emph{insert
// sort}, the \emph{heap sort}, and the \emph{introspective sort} algorithms
// \cite{Musser1997} for samples are implemented in ITK. To learn pros and
// cons of each algorithm, please refer to \cite{Duda2000}. ITK also
// offers the \emph{quick select} algorithm.
//
// Among the subclasses of the \subdoxygen{Statistics}{Sample}, only the
// class \subdoxygen{Statistics}{Subsample} allows users to change the order
// of the measurement vector. Therefore, we must create a Subsample to do any
// sorting or selecting.
//
// We include the header files for the \subdoxygen{Statistics}{ListSample}
// and the \code{Subsample} classes.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkListSample.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The sorting and selecting related functions are in the include file
// \code{itkStatisticsAlgorithm.h}. Note that all functions in this file
// are in the \code{itk::Statistics::Algorithm} namespace.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We need another header for measurement vectors. We are going to use
// the \doxygen{Vector} class which is a subclass of the \doxygen{FixedArray}
// in this example.
//
// We define the types of the measurement vectors, the sample, and the
// subsample.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVector.h"
// Software Guide : EndCodeSnippet
using MeasurementType = int;
using MeasurementVectorType = itk::Vector<MeasurementType, 2>;
// Software Guide : BeginLatex
//
// We define two functions for convenience. The first one clears the content
// of the subsample and fill it with the measurement vectors from the
// sample.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
initializeSubsample(SubsampleType * subsample, SampleType * sample)
{
subsample->Clear();
subsample->SetSample(sample);
subsample->InitializeWithAllInstances();
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The second one prints out the content of the subsample using the
// Subsample's iterator interface.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
printSubsample(SubsampleType * subsample, const char * header)
{
std::cout << std::endl;
std::cout << header << std::endl;
SubsampleType::Iterator iter = subsample->Begin();
while (iter != subsample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()
<< " \t measurement vector = " << iter.GetMeasurementVector()
<< std::endl;
++iter;
}
}
// Software Guide : EndCodeSnippet
int
main()
{
// Software Guide : BeginLatex
//
// The following code snippet will create a ListSample object
// with two-component int measurement vectors and put the measurement
// vectors: [5,5] - 5 times, [4,4] - 4 times, [3,3] - 3 times, [2,2] -
// 2 times,[1,1] - 1 time into the \code{sample}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto sample = SampleType::New();
MeasurementVectorType mv;
for (unsigned int i = 5; i > 0; --i)
{
for (unsigned int j = 0; j < 2; ++j)
{
mv[j] = (MeasurementType)i;
}
for (unsigned int j = 0; j < i; ++j)
{
sample->PushBack(mv);
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create a Subsample object and plug-in the \code{sample}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto subsample = SubsampleType::New();
subsample->SetSample(sample);
initializeSubsample(subsample, sample);
printSubsample(subsample, "Unsorted");
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The common parameters to all the algorithms are the
// Subsample object (\code{subsample}), the dimension
// (\code{activeDimension}) that will be considered for the sorting or
// selecting (only the component belonging to the dimension of the
// measurement vectors will be considered), the beginning index, and
// the ending index of the measurement vectors in the
// \code{subsample}. The sorting or selecting algorithms are applied
// only to the range specified by the beginning index and the ending
// index. The ending index should be the actual last index plus one.
//
// The \doxygen{InsertSort} function does not require any other optional
// arguments. The following function call will sort the all measurement
// vectors in the \code{subsample}. The beginning index is \code{0}, and
// the ending index is the number of the measurement vectors in the
// \code{subsample}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
int activeDimension = 0;
itk::Statistics::Algorithm::InsertSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size());
printSubsample(subsample, "InsertSort");
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We sort the \code{subsample} using the heap sort algorithm. The
// arguments are identical to those of the insert sort.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializeSubsample(subsample, sample);
itk::Statistics::Algorithm::HeapSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size());
printSubsample(subsample, "HeapSort");
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The introspective sort algorithm needs an additional argument that
// specifies when to stop the introspective sort loop and sort the fragment
// of the sample using the heap sort algorithm. Since we set the threshold
// value as \code{16}, when the sort loop reach the point where the number
// of measurement vectors in a sort loop is not greater than \code{16}, it
// will sort that fragment using the insert sort algorithm.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializeSubsample(subsample, sample);
itk::Statistics::Algorithm::IntrospectiveSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size(), 16);
printSubsample(subsample, "IntrospectiveSort");
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We query the median of the measurements along the
// \code{activeDimension}. The last argument tells the algorithm that we
// want to get the \code{subsample->Size()/2}-th element along the
// \code{activeDimension}. The quick select algorithm changes the order of
// the measurement vectors.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializeSubsample(subsample, sample);
SubsampleType::MeasurementType median =
itk::Statistics::Algorithm::QuickSelect<SubsampleType>(subsample,
activeDimension,
0,
subsample->Size(),
subsample->Size() /
2);
std::cout << std::endl;
std::cout << "Quick Select: median = " << median << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
itk::Vector
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:62
itk::Statistics::ListSample
This class is the native implementation of the a Sample with an STL container.
Definition: itkListSample.h:51
itkStatisticsAlgorithm.h
itk::Statistics::Subsample::Clear
void Clear()
itk::Statistics::Subsample
This class stores a subset of instance identifiers from another sample object. You can create a subsa...
Definition: itkSubsample.h:42
itkListSample.h
itkVector.h
New
static Pointer New()