ITK  6.0.0
Insight Toolkit
Examples/Statistics/ScalarImageKmeansModelEstimator.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example shows how to compute the KMeans model of a Scalar Image.
//
// The \subdoxygen{Statistics}{KdTreeBasedKmeansEstimator} is used for taking
// a scalar image and applying the K-Means algorithm in order to define
// classes that represents statistical distributions of intensity values in
// the pixels. In the context of Medical Imaging, each class is typically
// associated to a particular type of tissue and can therefore be used as a
// form of image segmentation. One of the drawbacks of this technique is that
// the spatial distribution of the pixels is not considered at all. It is
// common therefore to combine the classification resulting from K-Means with
// other segmentation techniques that will use the classification as a prior
// and add spatial information to it in order to produce a better
// segmentation.
//
// Software Guide : EndLatex
#include "itkKdTree.h"
#include "itkImage.h"
int
main(int argc, char * argv[])
{
if (argc < 2)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << argv[0] << " inputImageFileName" << std::endl;
return EXIT_FAILURE;
}
using PixelType = unsigned char;
constexpr unsigned int Dimension = 2;
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while reading image file : " << argv[1]
<< std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginCodeSnippet
// Create a List from the scalar image
auto adaptor = AdaptorType::New();
adaptor->SetImage(reader->GetOutput());
// Create the K-d tree structure
using TreeGeneratorType =
auto treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample(adaptor);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();
using TreeType = TreeGeneratorType::KdTreeType;
auto estimator = EstimatorType::New();
constexpr unsigned int numberOfClasses = 3;
EstimatorType::ParametersType initialMeans(numberOfClasses);
initialMeans[0] = 25.0;
initialMeans[1] = 125.0;
initialMeans[2] = 250.0;
estimator->SetParameters(initialMeans);
estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{BrainT1Slice}
// \itkcaption[Output of the ScalarImageKmeansModelEstimator]{Test image for
// the KMeans model estimator.}
// \label{fig:ScalarImageKmeansModelEstimatorTestImage}
// \end{figure}
//
// The example produces means of 14.8, 91.6, 134.9 on
// Figure \ref{fig:ScalarImageKmeansModelEstimatorTestImage}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
itk::Statistics::WeightedCentroidKdTreeGenerator
This class generates a KdTree object with centroid information.
Definition: itkWeightedCentroidKdTreeGenerator.h:67
itk::Statistics::ImageToListSampleAdaptor
This class provides ListSample interface to ITK Image.
Definition: itkImageToListSampleAdaptor.h:54
itkImageFileReader.h
itkImage.h
itkKdTreeBasedKmeansEstimator.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::Statistics::KdTreeBasedKmeansEstimator
fast k-means algorithm implementation using k-d tree structure
Definition: itkKdTreeBasedKmeansEstimator.h:74
itkKdTree.h
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
New
static Pointer New()
itkImageToListSampleAdaptor.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44
itkWeightedCentroidKdTreeGenerator.h