int
main(int argc, char * argv[])
{
if (argc < 5)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0];
std::cerr << " inputScalarImage outputLabeledImage contiguousLabels";
std::cerr << " numberOfClasses mean1 mean2... meanN " << std::endl;
return EXIT_FAILURE;
}
const char * inputImageFileName = argv[1];
const char * outputImageFileName = argv[2];
const unsigned int useNonContiguousLabels = std::stoi(argv[3]);
const unsigned int numberOfInitialClasses = std::stoi(argv[4]);
constexpr unsigned int argoffset = 5;
if (static_cast<unsigned int>(argc) < numberOfInitialClasses + argoffset)
{
std::cerr << "Error: " << std::endl;
std::cerr << numberOfInitialClasses << " classes has been specified ";
std::cerr << "but no enough means have been provided in the command ";
std::cerr << "line arguments " << std::endl;
return EXIT_FAILURE;
}
std::vector<double> userMeans;
for (unsigned k = 0; k < numberOfInitialClasses; ++k)
{
const double userProvidedInitialMean = std::stod(argv[k + argoffset]);
userMeans.push_back(userProvidedInitialMean);
}
using PixelType = signed short;
const auto input = itk::ReadImage<ImageType>(inputImageFileName);
kmeansFilter->SetInput(input);
kmeansFilter->SetUseNonContiguousLabels(useNonContiguousLabels);
for (unsigned k = 0; k < numberOfInitialClasses; ++k)
{
kmeansFilter->AddClassWithInitialMean(userMeans[k]);
}
try
{
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << outputImageFileName << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
KMeansFilterType::ParametersType estimatedMeans = kmeansFilter->GetFinalMeans();
const unsigned int numberOfClasses = estimatedMeans.Size();
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
std::cout << "cluster[" << i << "] ";
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
return EXIT_SUCCESS;
}