#include <vnl_complex_eigensystem.h>
Collaboration diagram for vnl_complex_eigensystem:
Public Methods | |
vnl_complex_eigensystem (const vnl_matrix< double > &A_real, const vnl_matrix< double > &A_imag, bool right=true, bool left=false) | |
vnl_complex_eigensystem (const vnl_matrix< vcl_complex< double > > &A, bool right=true, bool left=false) | |
~vnl_complex_eigensystem () | |
vcl_complex< double > | eigen_value (unsigned i) const |
vnl_vector< vcl_complex< double > > | left_eigen_vector (unsigned i) const |
vnl_vector< vcl_complex< double > > | right_eigen_vector (unsigned i) const |
Public Attributes | |
int const | N |
vnl_matrix< vcl_complex< double > > | L |
vnl_matrix< vcl_complex< double > > | R |
vnl_vector< vcl_complex< double > > | W |
Class to compute and hold the eigenvalues and (optionally) eigenvectors of a square complex matrix, using the LAPACK routine zgeev.
Default behaviour is to compute the eigenvalues and the right eigenvectors.
The input NxN matrix A is passed into the constructor. The flags right,left request the calculation of right and left eigenvectors respectively. The compute eigenvalues are stored in the member 'W'.
Computed right eigenvectors are stored in the **ROWS** of the member 'R' and computed left eigenvectors are stored in the **ROWS** of the member 'L'. When eigenvectors are not requested, the corre- sponding matrices L and R will be empty.
The ith right eigenvector v satisfies A*v = W[i]*v The ith left eigenvector u satisfies u*A = W[i]*u (no conjugation)
Definition at line 43 of file vnl_complex_eigensystem.h.
|
|
|
|
|
|
|
Definition at line 62 of file vnl_complex_eigensystem.h. References vnl_matrix< T >::get_row(). |
|
Definition at line 63 of file vnl_complex_eigensystem.h. References vnl_matrix< T >::get_row(). |
|
Definition at line 65 of file vnl_complex_eigensystem.h. |
|
Definition at line 57 of file vnl_complex_eigensystem.h. |
|
Definition at line 56 of file vnl_complex_eigensystem.h. |
|
Definition at line 58 of file vnl_complex_eigensystem.h. |
|
Definition at line 59 of file vnl_complex_eigensystem.h. |