Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

vnl_rnpoly_solve Class Reference

#include <vnl_rnpoly_solve.h>

List of all members.

Public Methods

 vnl_rnpoly_solve (vcl_vector< vnl_real_npolynomial * > const &ps)
 ~vnl_rnpoly_solve ()
vcl_vector< vnl_vector< double > * > real ()
vcl_vector< vnl_vector< double > * > imag ()
vcl_vector< vnl_vector< double > * > realroots (double tol=1e-12)

Static Public Attributes

const unsigned int M = 11
const unsigned int T = 2500


Detailed Description

Solves for roots of system of real polynomials.

Definition at line 36 of file vnl_rnpoly_solve.h.


Constructor & Destructor Documentation

vnl_rnpoly_solve::vnl_rnpoly_solve vcl_vector< vnl_real_npolynomial * > const &    ps [inline]
 

The constructor already does all the calculations.

Definition at line 50 of file vnl_rnpoly_solve.h.

vnl_rnpoly_solve::~vnl_rnpoly_solve  
 


Member Function Documentation

vcl_vector<vnl_vector<double>*> vnl_rnpoly_solve::imag   [inline]
 

Array of imaginary parts of roots.

Definition at line 62 of file vnl_rnpoly_solve.h.

References M, and T.

vcl_vector<vnl_vector<double>*> vnl_rnpoly_solve::real   [inline]
 

Array of real parts of roots.

Definition at line 58 of file vnl_rnpoly_solve.h.

vcl_vector<vnl_vector<double>*> vnl_rnpoly_solve::realroots double    tol = 1e-12
 

Return real roots only.\ Roots are real if the absolute value. of their imaginary part is less than the optional argument tol, which defaults to 1e-12 [untested]


Member Data Documentation

const unsigned int vnl_rnpoly_solve::M = 11 [static]
 

Definition at line 39 of file vnl_rnpoly_solve.h.

Referenced by imag().

const unsigned int vnl_rnpoly_solve::T = 2500 [static]
 

Definition at line 40 of file vnl_rnpoly_solve.h.

Referenced by imag().


The documentation for this class was generated from the following file:
Generated at Wed Mar 12 01:13:38 2003 for ITK by doxygen 1.2.15 written by Dimitri van Heesch, © 1997-2000