Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

vnl_symmetric_eigensystem< T > Class Template Reference

#include <vnl_symmetric_eigensystem.h>

Collaboration diagram for vnl_symmetric_eigensystem< T >:

Collaboration graph
[legend]
List of all members.

Public Methods

 vnl_symmetric_eigensystem (vnl_matrix< T > const &M)
vnl_vector< T > get_eigenvector (int i) const
get_eigenvalue (int i) const
vnl_vector< T > nullvector () const
vnl_matrix< T > recompose () const
vnl_matrix< T > pinverse () const
vnl_matrix< T > square_root () const
vnl_matrix< T > inverse_square_root () const
vnl_vector< T > solve (vnl_vector< T > const &b)
void solve (vnl_vector< T > const &b, vnl_vector< T > *x)

Public Attributes

vnl_matrix< T > V
vnl_diag_matrix< T > D

Protected Attributes

int n_

Detailed Description

template<class T>
class vnl_symmetric_eigensystem< T >

Computes and stores the eigensystem decomposition. of a symmetric matrix.

Definition at line 74 of file vnl_symmetric_eigensystem.h.


Constructor & Destructor Documentation

template<class T>
vnl_symmetric_eigensystem< T >::vnl_symmetric_eigensystem vnl_matrix< T > const &    M
 

Solve real symmetric eigensystem .


Member Function Documentation

template<class T>
T vnl_symmetric_eigensystem< T >::get_eigenvalue int    i const
 

Recover specified eigenvalue after computation.

template<class T>
vnl_vector<T> vnl_symmetric_eigensystem< T >::get_eigenvector int    i const
 

Recover specified eigenvector after computation.

template<class T>
vnl_matrix<T> vnl_symmetric_eigensystem< T >::inverse_square_root   const
 

return the inverse of the square root, if positive semi-definite.

template<class T>
vnl_vector<T> vnl_symmetric_eigensystem< T >::nullvector   const [inline]
 

Convenience method to get least-squares nullvector. It is deliberate that the signature is the same as on vnl_svd<T>.

Definition at line 109 of file vnl_symmetric_eigensystem.h.

References vnl_matrix< T >::transpose().

template<class T>
vnl_matrix<T> vnl_symmetric_eigensystem< T >::pinverse   const
 

return the pseudoinverse.

template<class T>
vnl_matrix<T> vnl_symmetric_eigensystem< T >::recompose   const [inline]
 

Return the matrix .\ This can be useful if you've. modified . So an inverse is obtained using

     vnl_symmetric_eigensystem} eig(A);
     eig.D.invert_in_place}();
     vnl_matrix<double> Ainverse = eig.recompose();
   

Definition at line 120 of file vnl_symmetric_eigensystem.h.

template<class T>
void vnl_symmetric_eigensystem< T >::solve vnl_vector< T > const &    b,
vnl_vector< T > *    x
 

Solve LS problem M x = b.

template<class T>
vnl_vector<T> vnl_symmetric_eigensystem< T >::solve vnl_vector< T > const &    b
 

Solve LS problem M x = b.

template<class T>
vnl_matrix<T> vnl_symmetric_eigensystem< T >::square_root   const
 

return the square root, if positive semi-definite.


Member Data Documentation

template<class T>
vnl_diag_matrix<T> vnl_symmetric_eigensystem< T >::D
 

Public eigenvalues.\ After construction, D contains the. eigenvalues, sorted as described above. Note that D is a vnl_diag_matrix, and is therefore stored as a vcl_vector while behaving as a matrix.

Definition at line 96 of file vnl_symmetric_eigensystem.h.

template<class T>
int vnl_symmetric_eigensystem< T >::n_ [protected]
 

Definition at line 83 of file vnl_symmetric_eigensystem.h.

template<class T>
vnl_matrix<T> vnl_symmetric_eigensystem< T >::V
 

Public eigenvectors.\ After construction, the columns of V are the. eigenvectors, sorted by increasing eigenvalue, from most negative to most positive.

Definition at line 90 of file vnl_symmetric_eigensystem.h.


The documentation for this class was generated from the following file:
Generated at Wed Mar 12 01:13:41 2003 for ITK by doxygen 1.2.15 written by Dimitri van Heesch, © 1997-2000