Main Page
Groups
Namespace List
Class Hierarchy
Alphabetical List
Compound List
File
List
Namespace Members
Compound Members
File Members
Concepts
itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample > Class Template Reference
Integration point for MembershipCalculator, DecisionRule, and target sample data.
More...
#include <itkExpectationMaximizationMixtureModelEstimator.h>
Inheritance diagram for itk::Statistics::ExpectationMaximizationMixtureModelEstimator:
[legend]Collaboration diagram for itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >:
[legend]List of all members.
Detailed Description
template<class TSample>
class itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >
Integration point for MembershipCalculator, DecisionRule, and target sample data.
The first template argument is the type of the target sample data that this classifier will assign a class label for each measurement vector. The second one is the type of a membership value calculator for each. A membership calculator represents a specific knowledge about a class. In other words, it should tell us how "likely" is that a measurement vector (pattern) belong to the class. The third argument is the type of decision rule. The main role of a decision rule is comparing the return values of the membership calculators. However, decision rule can include some prior knowledge that can improve the result.
Before you call the GenerateData method to start the classification process, you should plug in all necessary parts ( one or more membership calculators, a decision rule, and a target sample data). To plug in the decision rule, you use SetDecisionRule method, for the target sample data, SetSample method, and for the membership calculators, use AddMembershipCalculator method.
As the method name indicates, you can have more than one membership calculator. One for each classes. The order you put the membership calculator becomes the class label for the class that is represented by the membership calculator.
The classification result is stored in a vector of Subsample object. Each class has its own class sample (Subsample object) that has InstanceIdentifiers for all measurement vectors belong to the class. The InstanceIdentifiers come from the target sample data. Therefore, the Subsample objects act as separate class masks.
Definition at line 61 of file itkExpectationMaximizationMixtureModelEstimator.h.
Member Typedef Documentation
template<class TSample> |
typedef MixtureModelComponentBase< TSample > itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::ComponentType
|
|
template<class TSample> |
typedef std::vector< ComponentType* > itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::ComponentVectorType
|
|
template<class TSample> |
typedef TSample::MeasurementType itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::MeasurementType
|
|
template<class TSample> |
typedef TSample::MeasurementVectorType itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::MeasurementVectorType
|
|
template<class TSample> |
typedef SmartPointer< Self > itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::Pointer
|
|
template<class TSample> |
typedef Array< double > itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::ProportionVectorType
|
|
template<class TSample> |
typedef ExpectationMaximizationMixtureModelEstimator itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::Self
|
|
template<class TSample> |
typedef Object itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::Superclass
|
|
Member Enumeration Documentation
template<class TSample> |
enum itk::Statistics::ExpectationMaximizationMixtureModelEstimator::TERMINATION_CODE
|
|
Constructor & Destructor Documentation
template<class TSample> |
itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::ExpectationMaximizationMixtureModelEstimator |
( |
|
) |
[protected] |
|
template<class TSample> |
virtual itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::~ExpectationMaximizationMixtureModelEstimator |
( |
|
) |
[inline, protected, virtual] |
|
Member Function Documentation
template<class TSample> |
int itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::AddComponent |
( |
ComponentType * |
component |
) |
|
|
template<class TSample> |
bool itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::CalculateDensities |
( |
|
) |
[protected] |
|
template<class TSample> |
double itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::CalculateExpectation |
( |
|
) |
[protected] |
|
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GenerateData |
( |
|
) |
[protected] |
|
|
Starts the classification process |
template<class TSample> |
virtual const char* itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetClassName |
( |
|
) |
const [virtual] |
|
template<class TSample> |
ComponentMembershipFunctionType* itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetComponentMembershipFunction |
( |
int |
componentIndex |
) |
|
|
template<class TSample> |
int itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetCurrentIteration |
( |
|
) |
[inline] |
|
template<class TSample> |
ProportionVectorType* itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetInitialProportions |
( |
|
) |
|
|
template<class TSample> |
int itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetMaximumIteration |
( |
|
) |
|
|
template<class TSample> |
int itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetNumberOfComponents |
( |
|
) |
|
|
template<class TSample> |
ProportionVectorType* itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetProportions |
( |
|
) |
|
|
template<class TSample> |
TSample* itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetSample |
( |
|
) |
|
|
template<class TSample> |
TERMINATION_CODE itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::GetTerminationCode |
( |
|
) |
|
|
template<class TSample> |
itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::itkStaticConstMacro |
( |
MeasurementVectorSize |
, |
|
|
unsigned |
int, |
|
|
TSample::MeasurementVectorSize |
|
|
) |
|
|
template<class TSample> |
Pointer itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::New |
( |
|
) |
[static] |
|
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::PrintSelf |
( |
std::ostream & |
os, |
|
|
Indent |
indent |
|
) |
const [protected, virtual] |
|
|
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from itk::Object. |
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::SetInitialProportions |
( |
ProportionVectorType & |
propotion |
) |
|
|
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::SetMaximumIteration |
( |
int |
numberOfIterations |
) |
|
|
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::SetSample |
( |
TSample * |
sample |
) |
|
|
|
Sets the target data that will be classified by this |
template<class TSample> |
void itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::Update |
( |
|
) |
|
|
template<class TSample> |
bool itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::UpdateComponentParameters |
( |
|
) |
[protected] |
|
template<class TSample> |
bool itk::Statistics::ExpectationMaximizationMixtureModelEstimator< TSample >::UpdateProportions |
( |
|
) |
[protected] |
|
The documentation for this class was generated from the following file:
Generated at Fri May 21 01:52:31 2004 for ITK by
1.2.15 written by Dimitri van Heesch,
© 1997-2000