Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

itk::WatershedImageFilter< TInputImage > Class Template Reference
[Watershed-based Segmentation Filters]

A low-level image analysis algorithm that automatically produces a hierarchy of segmented, labeled images from a scalar-valued image input. More...

#include <itkWatershedImageFilter.h>

Collaboration diagram for itk::WatershedImageFilter< TInputImage >:

Collaboration graph
[legend]
List of all members.

Public Types

typedef WatershedImageFilter Self
typedef TInputImage InputImageType
typedef Image< unsigned long,
itkGetStaticConstMacro(ImageDimension) 
OutputImageType )
typedef InputImageType::RegionType RegionType
typedef InputImageType::SizeType SizeType
typedef InputImageType::IndexType IndexType
typedef ImageToImageFilter<
InputImageType, OutputImageType
Superclass
typedef InputImageType::PixelType ScalarType
typedef SmartPointer< SelfPointer

Public Member Functions

 itkStaticConstMacro (ImageDimension, unsigned int, TInputImage::ImageDimension)
virtual const char * GetClassName () const
void GenerateData ()
virtual void SetInput (unsigned int i, const TInputImage *image)
watershed::Segmenter< InputImageType
>::OutputImageType
GetBasicSegmentation ()
watershed::SegmentTreeGenerator<
ScalarType >::SegmentTreeType * 
GetSegmentTree ()
void EnlargeOutputRequestedRegion (DataObject *data)
void SetInput (const InputImageType *input)
void SetThreshold (double)
virtual double GetThreshold ()
void SetLevel (double)
virtual double GetLevel ()

Static Public Member Functions

Pointer New ()

Protected Member Functions

 WatershedImageFilter ()
virtual ~WatershedImageFilter ()
 WatershedImageFilter (const Self &)
void operator= (const Self &)
void PrintSelf (std::ostream &os, Indent indent) const

Detailed Description

template<class TInputImage>
class itk::WatershedImageFilter< TInputImage >

A low-level image analysis algorithm that automatically produces a hierarchy of segmented, labeled images from a scalar-valued image input.

Overview and terminology
This filter implements a non-streaming version of an image segmentation algorithm commonly known as ``watershed segmentation''. Watershed segmentation gets its name from the manner in which the algorithm segments regions into catchment basins. If a function $ f $ is a continuous height function defined over an image domain, then a catchment basin is defined as the set of points whose paths of steepest descent terminate at the same local minimum of $ f $.
The choice of height function (input) depends on the application, and the basic watershed algorithm operates independently of that choice. For intensity-based image data, you might typically use some sort of gradient magnitude calculation as input. (see itk::GradientMagnitudeImageFilter)
The watershed algorithm proceeds in several steps. First, an initial classification of all points into catchment basin regions is done by tracing each point down its path of steepest descent to a local minima. Next, neighboring regions and the boundaries between them are analyzed according to some saliency measure (such as minimum boundary height) to produce a tree of merges among adjacent regions. These merges occur at different maximum saliency values. The collective set of all possible merges up to a specified saliency ``flood level'' is referred to in this documentation as a ``merge tree''. Metaphorically, the flood level is a value that reflects the amount of precipitation that is rained into the catchment basins. As the flood level rises, boundaries between adjacent segments erode and those segments merge. The minimum value of the flood level is zero and the maximum value is the difference between the highest and lowest values in the input image.
Note that once the initial analysis and segmentation is done to produce the merge tree, it is trivial to produce a hierarchy of labeled images in constant time. The complexity of the algorithm is in the computation of the merge tree. Once that tree has been created, the initial segmented image can be relabeled to reflect any maximum saliency value found in the tree by simply identifying a subset of segment merges from the tree.
Implementational details
This filter is a wrapper for several lower level process objects (watershed algorithm components in the namespace ``watershed''). For a more complete picture of the implementation, refer to the documentation of those components. The component classes were designed to operate in either a data-streaming or a non-data-streaming mode. The pipeline constructed in this class' GenerateData() method does not support streaming, but is the common use case for the components.
Description of the input to this filter
The input to this filter is a scalar itk::Image of any dimensionality. This input image is assumed to represent some sort of height function or edge map based on the original image that you want to segment (such as would be produced by itk::GradientMagnitudeImageFilter). This filter does not do any pre-processing on its input other than a thresholding step. The algorithm does not explicitly require that the input be of any particular data type, but floating point or double precision data is recommended.
The recommended pre-processing for scalar image input to this algorithm is to use one of the itk::AnisotropicDiffusionImageFilter subclasses to smooth the original image and then perform some sort of edge calculation based on gradients or curvature.
Description of the output of this filter
This filter will produce an itk::Image of unsigned long integer type and of the same dimensionality as the input image. The unsigned long output image is referred to as the ``labeled image'' in this documentation. Each pixel in the image is assigned an unsigned long integer label that groups it within a connected region.
Some notes on filter parameters
Two parameters control the output of this filter, Threshold and Level. The units of both parameters are percentage points of the maximum height value in the input.
Threshold is used to set the absolute minimum height value used during processing. Raising this threshold percentage effectively decreases the number of local minima in the input, resulting in an initial segmentation with fewer regions. The assumption is that the shallow regions that thresholding removes are of of less interest.
The Level parameter controls the depth of metaphorical flooding of the image. That is, it sets the maximum saliency value of interest in the result. Raising and lowering the Level influences the number of segments in the basic segmentation that are merged to produce the final output. A level of 1.0 is analogous to flooding the image up to a depth that is 100 percent of the maximum value in the image. A level of 0.0 produces the basic segmentation, which will typically be very oversegmented. Level values of interest are typically low (i.e. less than about 0.40 or 40% ), since higher values quickly start to undersegment the image.
The Level parameter can be used to create a hierarchy of output images in constant time once an initial segmentation is done. A typical scenario might go like this: For the initial execution of the filter, set the Level to the maximum saliency value that you anticipate might be of interest. Once the initial Update() of this process object has finished, the Level can be manipulated anywhere below the initial setting without triggering a full update of the segmentation mini-pipeline. All that is now be required to produce the new output is a simple relabeling of the output image.
Threshold and Level parameters are controlled through the class' Get/SetThreshold() and Get/SetLevel() methods.
Notes on streaming the watershed segmentation code
Coming soon... 12/06/01

Definition at line 152 of file itkWatershedImageFilter.h.


Member Typedef Documentation

template<class TInputImage>
typedef InputImageType::IndexType itk::WatershedImageFilter< TInputImage >::IndexType
 

Definition at line 173 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef TInputImage itk::WatershedImageFilter< TInputImage >::InputImageType
 

The type of input image. Definition at line 161 of file itkWatershedImageFilter.h.

Referenced by itk::WatershedImageFilter< TInputImage >::SetInput().

template<class TInputImage>
typedef Image<unsigned long, itkGetStaticConstMacro(ImageDimension) itk::WatershedImageFilter< TInputImage >::OutputImageType)
 

The type of output image. Definition at line 168 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef SmartPointer<Self> itk::WatershedImageFilter< TInputImage >::Pointer
 

Smart pointer typedef support Definition at line 182 of file itkWatershedImageFilter.h.

Referenced by itk::WatershedImageFilter< TInputImage >::operator=().

template<class TInputImage>
typedef InputImageType::RegionType itk::WatershedImageFilter< TInputImage >::RegionType
 

Other convenient typedefs Definition at line 171 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef InputImageType::PixelType itk::WatershedImageFilter< TInputImage >::ScalarType
 

Typedef support for the input image scalar value type. Definition at line 179 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef WatershedImageFilter itk::WatershedImageFilter< TInputImage >::Self
 

Standard "Self" typedef. Definition at line 158 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef InputImageType::SizeType itk::WatershedImageFilter< TInputImage >::SizeType
 

Definition at line 172 of file itkWatershedImageFilter.h.

template<class TInputImage>
typedef ImageToImageFilter< InputImageType, OutputImageType > itk::WatershedImageFilter< TInputImage >::Superclass
 

Standard super class typedef support. Definition at line 176 of file itkWatershedImageFilter.h.


Constructor & Destructor Documentation

template<class TInputImage>
itk::WatershedImageFilter< TInputImage >::WatershedImageFilter  )  [protected]
 

template<class TInputImage>
virtual itk::WatershedImageFilter< TInputImage >::~WatershedImageFilter  )  [inline, protected, virtual]
 

Definition at line 243 of file itkWatershedImageFilter.h.

template<class TInputImage>
itk::WatershedImageFilter< TInputImage >::WatershedImageFilter const Self  )  [inline, protected]
 

Definition at line 244 of file itkWatershedImageFilter.h.


Member Function Documentation

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::EnlargeOutputRequestedRegion DataObject data  ) 
 

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::GenerateData  ) 
 

Standard process object method. This filter is not multithreaded.

template<class TInputImage>
watershed::Segmenter<InputImageType>::OutputImageType* itk::WatershedImageFilter< TInputImage >::GetBasicSegmentation  )  [inline]
 

Get the basic segmentation from the Segmenter member filter. Definition at line 226 of file itkWatershedImageFilter.h.

template<class TInputImage>
virtual const char* itk::WatershedImageFilter< TInputImage >::GetClassName  )  const [virtual]
 

Run-time type information (and related methods)

template<class TInputImage>
virtual double itk::WatershedImageFilter< TInputImage >::GetLevel  )  [virtual]
 

Set/Get the flood level for generating the merge tree from the initial segmentation

template<class TInputImage>
watershed::SegmentTreeGenerator<ScalarType>::SegmentTreeType* itk::WatershedImageFilter< TInputImage >::GetSegmentTree  )  [inline]
 

Get the segmentation tree from from the TreeGenerator member filter. Definition at line 233 of file itkWatershedImageFilter.h.

template<class TInputImage>
virtual double itk::WatershedImageFilter< TInputImage >::GetThreshold  )  [virtual]
 

Set/Get the input thresholding parameter. Units are a percentage of the maximum depth in the image.

template<class TInputImage>
itk::WatershedImageFilter< TInputImage >::itkStaticConstMacro ImageDimension  ,
unsigned  int,
TInputImage::ImageDimension 
 

Dimension of the input and output images.

template<class TInputImage>
Pointer itk::WatershedImageFilter< TInputImage >::New  )  [static]
 

Method for creation through the object factory.

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::operator= const Self  )  [inline, protected]
 

Definition at line 245 of file itkWatershedImageFilter.h.

References itk::WatershedImageFilter< TInputImage >::Pointer.

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::PrintSelf std::ostream &  os,
Indent  indent
const [protected]
 

template<class TInputImage>
virtual void itk::WatershedImageFilter< TInputImage >::SetInput unsigned int  i,
const TInputImage *  image
[inline, virtual]
 

Definition at line 205 of file itkWatershedImageFilter.h.

References itkExceptionMacro.

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::SetInput const InputImageType input  )  [inline]
 

Overloaded to link the input to this filter with the input of the mini-pipeline Definition at line 195 of file itkWatershedImageFilter.h.

References itk::WatershedImageFilter< TInputImage >::InputImageType.

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::SetLevel double   ) 
 

Set/Get the flood level for generating the merge tree from the initial segmentation

template<class TInputImage>
void itk::WatershedImageFilter< TInputImage >::SetThreshold double   ) 
 

Set/Get the input thresholding parameter. Units are a percentage of the maximum depth in the image.


The documentation for this class was generated from the following file:
Generated at Sat Mar 31 02:40:22 2007 for ITK by doxygen 1.3.8 written by Dimitri van Heesch, © 1997-2000