00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
#ifndef __itkKdTreeBasedKmeansEstimator_h
00018
#define __itkKdTreeBasedKmeansEstimator_h
00019
00020
#include <vector>
00021
#include "itk_hash_map.h"
00022
00023
#include "itkObject.h"
00024
00025
namespace itk {
00026
namespace Statistics {
00027
00059
template<
class TKdTree >
00060 class ITK_EXPORT KdTreeBasedKmeansEstimator:
00061
public Object
00062 {
00063
public:
00065 typedef KdTreeBasedKmeansEstimator
Self ;
00066 typedef Object Superclass;
00067 typedef SmartPointer<Self> Pointer;
00068 typedef SmartPointer<const Self> ConstPointer;
00069
00071
itkNewMacro(
Self);
00072
00074
itkTypeMacro(KdTreeBasedKmeansEstimator, Obeject);
00075
00077 typedef typename TKdTree::KdTreeNodeType
KdTreeNodeType ;
00078 typedef typename TKdTree::MeasurementType
MeasurementType ;
00079 typedef typename TKdTree::MeasurementVectorType
MeasurementVectorType ;
00080 typedef typename TKdTree::InstanceIdentifier
InstanceIdentifier ;
00081 typedef typename TKdTree::SampleType
SampleType ;
00082 typedef typename KdTreeNodeType::CentroidType
CentroidType ;
00083
itkStaticConstMacro(MeasurementVectorSize,
unsigned int,
00084 TKdTree::MeasurementVectorSize);
00087
typedef FixedArray< double, itkGetStaticConstMacro(MeasurementVectorSize) > ParameterType ;
00088 typedef std::vector< ParameterType >
InternalParametersType;
00089 typedef Array< double > ParametersType;
00090
00092
void SetParameters(
ParametersType& params)
00093 { m_Parameters = params ; }
00094
00096 ParametersType& GetParameters()
00097 {
return m_Parameters ; }
00098
00100
itkSetMacro( MaximumIteration,
int );
00101
itkGetConstMacro( MaximumIteration,
int );
00102
00105
itkSetMacro( CentroidPositionChangesThreshold,
double );
00106
itkGetConstMacro( CentroidPositionChangesThreshold,
double );
00107
00109
void SetKdTree(TKdTree* tree)
00110 { m_KdTree = tree ; }
00111
00112 TKdTree* GetKdTree()
00113 {
return m_KdTree.GetPointer() ; }
00114
00115 itkGetConstMacro( CurrentIteration,
int) ;
00116
itkGetConstMacro( CentroidPositionChanges,
double) ;
00117
00122
void StartOptimization() ;
00123
00124
typedef itk::hash_map< InstanceIdentifier, unsigned int > ClusterLabelsType ;
00125
00126
void SetUseClusterLabels(
bool flag)
00127 { m_UseClusterLabels = flag ; }
00128
00129 ClusterLabelsType* GetClusterLabels()
00130 {
return &m_ClusterLabels ; }
00131
00132 protected:
00133 KdTreeBasedKmeansEstimator() ;
00134
virtual ~KdTreeBasedKmeansEstimator() {}
00135
00136
void PrintSelf(std::ostream& os,
Indent indent)
const;
00137
00138
void FillClusterLabels(
KdTreeNodeType* node,
int closestIndex) ;
00139
00141
class CandidateVector
00142 {
00143
public:
00144 CandidateVector() {}
00145
00146
struct Candidate
00147 {
00148
CentroidType Centroid ;
00149 CentroidType WeightedCentroid ;
00150
int Size ;
00151 } ;
00152
00153 virtual ~
CandidateVector() {}
00154
00156 int Size()
const
00157
{
return static_cast<int>( m_Candidates.size() ); }
00158
00161
void SetCentroids(
InternalParametersType& centroids)
00162 {
00163 m_Candidates.resize(centroids.size()) ;
00164 for (
unsigned int i = 0 ; i < centroids.size() ; i++)
00165 {
00166
Candidate candidate ;
00167 candidate.
Centroid = centroids[i] ;
00168 candidate.
WeightedCentroid.Fill(0.0) ;
00169 candidate.
Size = 0 ;
00170 m_Candidates[i] = candidate ;
00171 }
00172 }
00173
00175
void GetCentroids(InternalParametersType& centroids)
00176 {
00177
unsigned int i ;
00178 centroids.resize(this->Size()) ;
00179 for (i = 0 ; i < (
unsigned int)this->
Size() ; i++)
00180 {
00181 centroids[i] = m_Candidates[i].Centroid ;
00182 }
00183 }
00184
00187
void UpdateCentroids()
00188 {
00189
unsigned int i, j ;
00190
for (i = 0 ; i < (
unsigned int)this->
Size() ; i++)
00191 {
00192 if (m_Candidates[i].Size > 0)
00193 {
00194
for (j = 0 ; j < MeasurementVectorSize ; j++)
00195 {
00196 m_Candidates[i].Centroid[j] =
00197 m_Candidates[i].WeightedCentroid[j] /
00198 double(m_Candidates[i].
Size) ;
00199 }
00200 }
00201 }
00202 }
00203
00205 Candidate& operator[](
int index)
00206 {
return m_Candidates[index] ; }
00207
00208
00209
private:
00211 std::vector< Candidate > m_Candidates ;
00212 } ;
00213
00219
double GetSumOfSquaredPositionChanges(
InternalParametersType &previous,
00220
InternalParametersType ¤t) ;
00221
00224
int GetClosestCandidate(
ParameterType &measurements,
00225 std::vector< int > &validIndexes) ;
00226
00228
bool IsFarther(
ParameterType &pointA,
00229
ParameterType &pointB,
00230
MeasurementVectorType &lowerBound,
00231
MeasurementVectorType &upperBound) ;
00232
00235
void Filter(
KdTreeNodeType* node,
00236 std::vector< int > validIndexes,
00237
MeasurementVectorType &lowerBound,
00238
MeasurementVectorType &upperBound) ;
00239
00241
void CopyParameters(
InternalParametersType &source,
InternalParametersType &target) ;
00242
00244
void CopyParameters(
ParametersType &source,
InternalParametersType &target) ;
00245
00247
void CopyParameters(
InternalParametersType &source,
ParametersType &target) ;
00248
00250
void GetPoint(
ParameterType &point,
00251
MeasurementVectorType measurements)
00252 {
00253
for (
unsigned int i = 0 ; i < MeasurementVectorSize ; i++)
00254 {
00255 point[i] = measurements[i] ;
00256 }
00257 }
00258
00259
void PrintPoint(ParameterType &point)
00260 {
00261 std::cout <<
"[ " ;
00262
for (
unsigned int i = 0 ; i < MeasurementVectorSize ; i++)
00263 {
00264 std::cout << point[i] <<
" " ;
00265 }
00266 std::cout <<
"]" ;
00267 }
00268
00269
private:
00271
int m_CurrentIteration ;
00273
int m_MaximumIteration ;
00275
double m_CentroidPositionChanges ;
00278
double m_CentroidPositionChangesThreshold ;
00280
typename TKdTree::Pointer m_KdTree ;
00282
typename EuclideanDistance< ParameterType >::Pointer m_DistanceMetric ;
00283
00285 ParametersType m_Parameters ;
00286
00287 CandidateVector m_CandidateVector ;
00288
00289 ParameterType m_TempVertex ;
00290
00291
bool m_UseClusterLabels ;
00292
bool m_GenerateClusterLabels ;
00293 ClusterLabelsType m_ClusterLabels ;
00294 } ;
00295
00296 }
00297 }
00298
00299
#ifndef ITK_MANUAL_INSTANTIATION
00300
#include "itkKdTreeBasedKmeansEstimator.txx"
00301
#endif
00302
00303
00304
#endif