#include <itkKdTreeBasedKmeansEstimator.h>
Inheritance diagram for itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >:
Public Types | |
typedef KdTreeBasedKmeansEstimator | Self |
typedef Object | Superclass |
typedef SmartPointer< Self > | Pointer |
typedef SmartPointer< const Self > | ConstPointer |
typedef TKdTree::KdTreeNodeType | KdTreeNodeType |
typedef TKdTree::MeasurementType | MeasurementType |
typedef TKdTree::MeasurementVectorType | MeasurementVectorType |
typedef TKdTree::InstanceIdentifier | InstanceIdentifier |
typedef TKdTree::SampleType | SampleType |
typedef KdTreeNodeType::CentroidType | CentroidType |
typedef FixedArray< double, itkGetStaticConstMacro(MeasurementVectorSize) | ParameterType ) |
typedef std::vector< ParameterType > | InternalParametersType |
typedef Array< double > | ParametersType |
typedef itk::hash_map< InstanceIdentifier, unsigned int > | ClusterLabelsType |
Public Member Functions | |
virtual const char * | GetClassName () const |
itkStaticConstMacro (MeasurementVectorSize, unsigned int, TKdTree::MeasurementVectorSize) | |
void | SetParameters (ParametersType ¶ms) |
ParametersType & | GetParameters () |
void | SetKdTree (TKdTree *tree) |
TKdTree * | GetKdTree () |
virtual int | GetCurrentIteration () const |
virtual double | GetCentroidPositionChanges () const |
void | StartOptimization () |
void | SetUseClusterLabels (bool flag) |
ClusterLabelsType * | GetClusterLabels () |
virtual void | SetMaximumIteration (int _arg) |
virtual int | GetMaximumIteration () const |
virtual void | SetCentroidPositionChangesThreshold (double _arg) |
virtual double | GetCentroidPositionChangesThreshold () const |
Static Public Member Functions | |
Pointer | New () |
Protected Member Functions | |
KdTreeBasedKmeansEstimator () | |
virtual | ~KdTreeBasedKmeansEstimator () |
void | PrintSelf (std::ostream &os, Indent indent) const |
void | FillClusterLabels (KdTreeNodeType *node, int closestIndex) |
double | GetSumOfSquaredPositionChanges (InternalParametersType &previous, InternalParametersType ¤t) |
int | GetClosestCandidate (ParameterType &measurements, std::vector< int > &validIndexes) |
bool | IsFarther (ParameterType &pointA, ParameterType &pointB, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound) |
void | Filter (KdTreeNodeType *node, std::vector< int > validIndexes, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound) |
void | CopyParameters (InternalParametersType &source, InternalParametersType &target) |
void | CopyParameters (ParametersType &source, InternalParametersType &target) |
void | CopyParameters (InternalParametersType &source, ParametersType &target) |
void | PrintPoint (ParameterType &point) |
void | GetPoint (ParameterType &point, MeasurementVectorType measurements) |
It returns k mean vectors that are centroids of k-clusters using pre-generated k-d tree. k-d tree generation is done by the WeightedCentroidKdTreeGenerator. The tree construction needs to be done only once. The resulting k-d tree's non-terminal nodes that have their children nodes have vector sums of measurement vectors that belong to the nodes and the number of measurement vectors in addition to the typical node boundary information and pointers to children nodes. Instead of reassigning every measurement vector to the nearest cluster centroid and recalculating centroid, it maintain a set of cluster centroid candidates and using pruning algorithm that utilizes k-d tree, it updates the means of only relevant candidates at each iterations. It would be faster than traditional implementation of k-means algorithm. However, the k-d tree consumes a large amount of memory. The tree construction time and pruning algorithm's performance are important factors to the whole process's performance. If users want to use k-d tree for some purpose other than k-means estimation, they can use the KdTreeGenerator instead of the WeightedCentroidKdTreeGenerator. It will save the tree construction time and memory usage.
Note: There is a second implementation of k-means algorithm in ITK under the While the Kd tree based implementation is more time efficient, the GLA/LBG based algorithm is more memory efficient.
Definition at line 60 of file itkKdTreeBasedKmeansEstimator.h.
|
Definition at line 82 of file itkKdTreeBasedKmeansEstimator.h. Referenced by itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CandidateVector::CandidateVector(). |
|
Definition at line 127 of file itkKdTreeBasedKmeansEstimator.h. Referenced by itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetKdTree(), and itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetUseClusterLabels(). |
|
Reimplemented from itk::Object. Definition at line 68 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 80 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 89 of file itkKdTreeBasedKmeansEstimator.h. |
|
Types for the KdTree data structure Definition at line 77 of file itkKdTreeBasedKmeansEstimator.h. Referenced by itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::~KdTreeBasedKmeansEstimator(). |
|
Definition at line 78 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 79 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 90 of file itkKdTreeBasedKmeansEstimator.h. |
|
Parameters type. It defines a position in the optimization search space. Definition at line 88 of file itkKdTreeBasedKmeansEstimator.h. |
|
Reimplemented from itk::Object. Definition at line 67 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 81 of file itkKdTreeBasedKmeansEstimator.h. |
|
Standard "Self" typedef. Reimplemented from itk::Object. Definition at line 65 of file itkKdTreeBasedKmeansEstimator.h. |
|
Reimplemented from itk::Object. Definition at line 66 of file itkKdTreeBasedKmeansEstimator.h. |
|
|
|
Definition at line 137 of file itkKdTreeBasedKmeansEstimator.h. References itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::KdTreeNodeType. |
|
copies the source parameters (k-means) to the target |
|
copies the source parameters (k-means) to the target |
|
copies the source parameters (k-means) to the target |
|
|
|
recursive pruning algorithm. the "validIndexes" vector contains only the indexes of the surviving candidates for the "node" |
|
|
|
Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration |
|
Run-time type information (and related methods). Reimplemented from itk::Object.
|
|
get the index of the closest candidate to the "measurements" measurement vector |
|
Definition at line 132 of file itkKdTreeBasedKmeansEstimator.h. |
|
|
|
Definition at line 115 of file itkKdTreeBasedKmeansEstimator.h. References itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ClusterLabelsType. |
|
Set/Get maximum iteration limit. |
|
Get current position of the optimization. Definition at line 97 of file itkKdTreeBasedKmeansEstimator.h. |
|
imports the "measurements" measurement vector data to the "point" Definition at line 256 of file itkKdTreeBasedKmeansEstimator.h. |
|
gets the sum of squared difference between the previous position and current postion of all centroid. This is the primary termination condition for this algorithm. If the return value is less than the value that was set by the SetCentroidPositionChangesThreshold method. |
|
returns true if the "pointA is farther than pointB to the boundary |
|
|
|
Method for creation through the object factory. Reimplemented from itk::Object.
|
|
Definition at line 266 of file itkKdTreeBasedKmeansEstimator.h. |
|
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes. Reimplemented from itk::Object.
|
|
Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration |
|
Set/Get the pointer to the KdTree Definition at line 112 of file itkKdTreeBasedKmeansEstimator.h. |
|
Set/Get maximum iteration limit. |
|
Set the position to initialize the optimization. Definition at line 93 of file itkKdTreeBasedKmeansEstimator.h. |
|
Definition at line 129 of file itkKdTreeBasedKmeansEstimator.h. References itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ClusterLabelsType. |
|
Start optimization Optimization will stop when it meets either of two termination conditions, the maximum iteration limit or epsilon (minimal changes in squared sum of changes in centroid positions) |