ConditionalConstIterator
ConstNeighborhoodIterator
ConstShapedNeighborhoodIterator
ConstSliceIterator
CorrespondenceDataStructureIterator
FloodFilledFunctionConditionalConstIterator
FloodFilledImageFunctionConditionalConstIterator
FloodFilledImageFunctionConditionalIterator
FloodFilledSpatialFunctionConditionalConstIterator
FloodFilledSpatialFunctionConditionalIterator
ImageConstIterator
ImageConstIteratorWithIndex
ImageIterator
ImageIteratorWithIndex
ImageLinearConstIteratorWithIndex
ImageLinearIteratorWithIndex
ImageRandomConstIteratorWithIndex
ImageRandomIteratorWithIndex
ImageRegionConstIterator
ImageRegionConstIteratorWithIndex
ImageRegionExclusionConstIteratorWithIndex
ImageRegionExclusionIteratorWithIndex
ImageRegionIterator
ImageRegionIteratorWithIndex
ImageRegionReverseConstIterator
ImageRegionReverseIterator
ImageReverseConstIterator
ImageReverseIterator
ImageSliceConstIteratorWithIndex
ImageSliceIteratorWithIndex
NeighborhoodIterator
PathConstIterator
PathIterator
ShapedNeighborhoodIterator
SliceIterator
ImageConstIteratorWithIndex
/*========================================================================= Program: Insight Segmentation & Registration Toolkit Module: $RCSfile: ImageRegionIterator.cxx,v $ Language: C++ Date: $Date: 2005-02-08 03:59:00 $ Version: $Revision: 1.24 $ Copyright (c) Insight Software Consortium. All rights reserved. See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notices for more information. =========================================================================*/ #if defined(_MSC_VER) #pragma warning ( disable : 4786 ) #endif // Software Guide : BeginCommandLineArgs // INPUTS: {FatMRISlice.png} // OUTPUTS: {ImageRegionIteratorOutput.png} // 20 70 210 140 // Software Guide : EndCommandLineArgs // Software Guide : BeginLatex // // \index{Iterators!speed} // The \doxygen{ImageRegionIterator} is optimized for // iteration speed and is the first choice for iterative, pixel-wise operations // when location in the image is not // important. ImageRegionIterator is the least specialized of the ITK // image iterator classes. It implements all of the methods described in the // preceding section. // // The following example illustrates the use of // \doxygen{ImageRegionConstIterator} and ImageRegionIterator. // Most of the code constructs introduced apply to other ITK iterators as // well. This simple application crops a subregion from an image by copying // its pixel values into to a second, smaller image. // // \index{Iterators!and image regions} // \index{itk::ImageRegionIterator!example of using|(} // We begin by including the appropriate header files. // Software Guide : EndLatex #include "itkImage.h" // Software Guide : BeginCodeSnippet #include "itkImageRegionConstIterator.h" #include "itkImageRegionIterator.h" // Software Guide : EndCodeSnippet #include "itkImageFileReader.h" #include "itkImageFileWriter.h" int main( int argc, char *argv[] ) { // Verify the number of parameters on the command line. if ( argc < 7 ) { std::cerr << "Missing parameters. " << std::endl; std::cerr << "Usage: " << std::endl; std::cerr << argv[0] << " inputImageFile outputImageFile startX startY sizeX sizeY" << std::endl; return -1; } // Software Guide : BeginLatex // // Next we define a pixel type and corresponding image type. ITK iterator // classes expect the image type as their template parameter. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet const unsigned int Dimension = 2; typedef unsigned char PixelType; typedef itk::Image< PixelType, Dimension > ImageType; typedef itk::ImageRegionConstIterator< ImageType > ConstIteratorType; typedef itk::ImageRegionIterator< ImageType> IteratorType; // Software Guide : EndCodeSnippet typedef itk::ImageFileReader< ImageType > ReaderType; typedef itk::ImageFileWriter< ImageType > WriterType; // Software Guide : BeginLatex // // Information about the subregion to copy is read from the command line. The // subregion is defined by an \doxygen{ImageRegion} object, with a starting // grid index and a size (Section~\ref{sec:ImageSection}). // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet ImageType::RegionType inputRegion; ImageType::RegionType::IndexType inputStart; ImageType::RegionType::SizeType size; inputStart[0] = ::atoi( argv[3] ); inputStart[1] = ::atoi( argv[4] ); size[0] = ::atoi( argv[5] ); size[1] = ::atoi( argv[6] ); inputRegion.SetSize( size ); inputRegion.SetIndex( inputStart ); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // The destination region in the output image is defined using the input region // size, but a different start index. The starting index for the destination // region is the corner of the newly generated image. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet ImageType::RegionType outputRegion; ImageType::RegionType::IndexType outputStart; outputStart[0] = 0; outputStart[1] = 0; outputRegion.SetSize( size ); outputRegion.SetIndex( outputStart ); // Software Guide : EndCodeSnippet ReaderType::Pointer reader = ReaderType::New(); reader->SetFileName( argv[1] ); try { reader->Update(); } catch ( itk::ExceptionObject &err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return -1; } // Check that the region is contained within the input image. if ( ! reader->GetOutput()->GetRequestedRegion().IsInside( inputRegion ) ) { std::cerr << "Error" << std::endl; std::cerr << "The region " << inputRegion << "is not contained within the input image region " << reader->GetOutput()->GetRequestedRegion() << std::endl; return -1; } // Software Guide : BeginLatex // // After reading the input image and checking that the desired subregion is, // in fact, contained in the input, we allocate an output image. It is // fundamental to set valid values to some of the basic image information // during the copying process. // In particular, the starting index of the output region // is now filled up with zero values and the coordinates of the physical // origin are computed as a shift from the origin of the input image. This is // quite important since it will allow us to later // register the extracted region against the original image. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet ImageType::Pointer outputImage = ImageType::New(); outputImage->SetRegions( outputRegion ); const ImageType::SpacingType& spacing = reader->GetOutput()->GetSpacing(); const ImageType::PointType& inputOrigin = reader->GetOutput()->GetOrigin(); double outputOrigin[ Dimension ]; for(unsigned int i=0; i< Dimension; i++) { outputOrigin[i] = inputOrigin[i] + spacing[i] * inputStart[i]; } outputImage->SetSpacing( spacing ); outputImage->SetOrigin( outputOrigin ); outputImage->Allocate(); // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // \index{Iterators!construction of} \index{Iterators!and image regions} // The necessary images and region definitions are now in place. All that is // left to do is to create the iterators and perform the copy. Note that image // iterators are not accessed via smart pointers so they are light-weight // objects that are instantiated on the stack. Also notice how the input and // output iterators are defined over the \emph{same corresponding region}. Though the // images are different sizes, they both contain the same target subregion. // // Software Guide : EndLatex // Software Guide : BeginCodeSnippet ConstIteratorType inputIt( reader->GetOutput(), inputRegion ); IteratorType outputIt( outputImage, outputRegion ); for ( inputIt.GoToBegin(), outputIt.GoToBegin(); !inputIt.IsAtEnd(); ++inputIt, ++outputIt) { outputIt.Set( inputIt.Get() ); } // Software Guide : EndCodeSnippet // Software Guide : BeginLatex // // \index{Iterators!image dimensionality} // The \code{for} loop above is a common // construct in ITK. The beauty of these four lines of code is that they are // equally valid for one, two, three, or even ten dimensional data, and no // knowledge of the size of the image is necessary. Consider the ugly // alternative of ten nested \code{for} loops for traversing an image. // // Software Guide : EndLatex WriterType::Pointer writer = WriterType::New(); writer->SetFileName( argv[2] ); writer->SetInput( outputImage ); try { writer->Update(); } catch ( itk::ExceptionObject &err) { std::cerr << "ExceptionObject caught !" << std::endl; std::cerr << err << std::endl; return -1; } // Software Guide : BeginLatex // // Let's run this example on the image \code{FatMRISlice.png} found // in \code{Examples/Data}. The command line arguments specify the // input and output file names, then the $x$, $y$ origin and the $x$, $y$ size // of the cropped subregion. // // \small // \begin{verbatim} // ImageRegionIterator FatMRISlice.png ImageRegionIteratorOutput.png 20 70 210 140 // \end{verbatim} // \normalsize // // The output is the cropped subregion shown in // Figure~\ref{fig:ImageRegionIteratorOutput}. // // \begin{figure} // \centering // \includegraphics[width=0.4\textwidth]{FatMRISlice.eps} // \includegraphics[width=0.3\textwidth]{ImageRegionIteratorOutput.eps} // \itkcaption[Copying an image subregion using ImageRegionIterator]{Cropping a // region from an image. The original image is shown at left. The image on // the right is the result of applying the ImageRegionIterator example code.} // \protect\label{fig:ImageRegionIteratorOutput} // \end{figure} // // \index{itk::ImageRegionIterator!example of using|)} // // Software Guide : EndLatex return 0; }