Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree > Class Template Reference

fast k-means algorithm implementation using k-d tree structure More...

#include <itkKdTreeBasedKmeansEstimator.h>

Inheritance diagram for itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >:
Inheritance graph
[legend]
Collaboration diagram for itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >:
Collaboration graph
[legend]

List of all members.

Classes

class  CandidateVector

Public Types

typedef
KdTreeNodeType::CentroidType 
CentroidType
typedef
KdTreeNodeType::CentroidType 
CentroidType
typedef itk::hash_map
< InstanceIdentifier, unsigned
int > 
ClusterLabelsType
typedef itk::hash_map
< InstanceIdentifier, unsigned
int > 
ClusterLabelsType
typedef SmartPointer< const SelfConstPointer
typedef SmartPointer< const SelfConstPointer
typedef
DistanceToCentroidMembershipFunctionType::Pointer 
DistanceToCentroidMembershipFunctionPointer
typedef
DistanceToCentroidMembershipFunction
< MeasurementVectorType
DistanceToCentroidMembershipFunctionType
typedef TKdTree::InstanceIdentifier InstanceIdentifier
typedef TKdTree::InstanceIdentifier InstanceIdentifier
typedef std::vector
< ParameterType
InternalParametersType
typedef std::vector
< ParameterType
InternalParametersType
typedef TKdTree::KdTreeNodeType KdTreeNodeType
typedef TKdTree::KdTreeNodeType KdTreeNodeType
typedef TKdTree::MeasurementType MeasurementType
typedef TKdTree::MeasurementType MeasurementType
typedef unsigned int MeasurementVectorSizeType
typedef unsigned int MeasurementVectorSizeType
typedef
TKdTree::MeasurementVectorType 
MeasurementVectorType
typedef
TKdTree::MeasurementVectorType 
MeasurementVectorType
typedef
MembershipFunctionType::ConstPointer 
MembershipFunctionPointer
typedef MembershipFunctionBase
< MeasurementVectorType
MembershipFunctionType
typedef
MembershipFunctionVectorObjectType::Pointer 
MembershipFunctionVectorObjectPointer
typedef
SimpleDataObjectDecorator
< MembershipFunctionVectorType
MembershipFunctionVectorObjectType
typedef std::vector
< MembershipFunctionPointer
MembershipFunctionVectorType
typedef Array< double > ParametersType
typedef Array< double > ParametersType
typedef Array< double > ParameterType
typedef Array< double > ParameterType
typedef SmartPointer< SelfPointer
typedef SmartPointer< SelfPointer
typedef TKdTree::SampleType SampleType
typedef TKdTree::SampleType SampleType
typedef KdTreeBasedKmeansEstimator Self
typedef KdTreeBasedKmeansEstimator Self
typedef Object Superclass
typedef Object Superclass

Public Member Functions

virtual LightObject::Pointer CreateAnother () const
virtual void DebugOff () const
virtual void DebugOn () const
virtual void Delete ()
virtual double GetCentroidPositionChanges () const
virtual const double & GetCentroidPositionChanges ()
virtual double GetCentroidPositionChangesThreshold () const
ClusterLabelsTypeGetClusterLabels ()
CommandGetCommand (unsigned long tag)
virtual int GetCurrentIteration () const
virtual const int & GetCurrentIteration ()
bool GetDebug () const
TKdTree * GetKdTree ()
virtual MeasurementVectorSizeType GetMeasurementVectorSize () const
virtual const
MeasurementVectorSizeType
GetMeasurementVectorSize ()
const MetaDataDictionaryGetMetaDataDictionary (void) const
MetaDataDictionaryGetMetaDataDictionary (void)
virtual unsigned long GetMTime () const
virtual const char * GetNameOfClass () const
virtual const char * GetNameOfClass () const
const
MembershipFunctionVectorObjectType
GetOutput () const
ParametersTypeGetParameters ()
virtual int GetReferenceCount () const
virtual bool GetUseClusterLabels () const
bool HasObserver (const EventObject &event) const
void InvokeEvent (const EventObject &) const
void InvokeEvent (const EventObject &)
virtual void Modified () const
void Print (std::ostream &os, Indent indent=0) const
virtual void Register () const
void RemoveAllObservers ()
void RemoveObserver (unsigned long tag)
virtual void SetCentroidPositionChangesThreshold (double _arg)
void SetDebug (bool debugFlag) const
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
void SetParameters (ParametersType &params)
virtual void SetReferenceCount (int)
virtual void SetUseClusterLabels (bool _arg)
void SetUseClusterLabels (bool flag)
void StartOptimization ()
void StartOptimization ()
virtual void UnRegister () const

Static Public Member Functions

static void BreakOnError ()
static Pointer New ()
static Pointer New ()

Protected Member Functions

void CopyParameters (InternalParametersType &source, ParametersType &target)
void CopyParameters (ParametersType &source, InternalParametersType &target)
void CopyParameters (InternalParametersType &source, InternalParametersType &target)
void CopyParameters (InternalParametersType &source, ParametersType &target)
void CopyParameters (ParametersType &source, InternalParametersType &target)
void CopyParameters (InternalParametersType &source, InternalParametersType &target)
void FillClusterLabels (KdTreeNodeType *node, int closestIndex)
void FillClusterLabels (KdTreeNodeType *node, int closestIndex)
void Filter (KdTreeNodeType *node, std::vector< int > validIndexes, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
void Filter (KdTreeNodeType *node, std::vector< int > validIndexes, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
int GetClosestCandidate (ParameterType &measurements, std::vector< int > &validIndexes)
int GetClosestCandidate (ParameterType &measurements, std::vector< int > &validIndexes)
void GetPoint (ParameterType &point, MeasurementVectorType measurements)
double GetSumOfSquaredPositionChanges (InternalParametersType &previous, InternalParametersType &current)
double GetSumOfSquaredPositionChanges (InternalParametersType &previous, InternalParametersType &current)
bool IsFarther (ParameterType &pointA, ParameterType &pointB, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
bool IsFarther (ParameterType &pointA, ParameterType &pointB, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
 KdTreeBasedKmeansEstimator ()
 KdTreeBasedKmeansEstimator ()
bool PrintObservers (std::ostream &os, Indent indent) const
void PrintPoint (ParameterType &point)
void PrintPoint (ParameterType &point)
void PrintSelf (std::ostream &os, Indent indent) const
void PrintSelf (std::ostream &os, Indent indent) const
virtual ~KdTreeBasedKmeansEstimator ()
virtual ~KdTreeBasedKmeansEstimator ()

Protected Attributes

InternalReferenceCountType m_ReferenceCount
SimpleFastMutexLock m_ReferenceCountLock



static bool GetGlobalWarningDisplay ()
static void GlobalWarningDisplayOff ()
static void GlobalWarningDisplayOn ()
static void SetGlobalWarningDisplay (bool flag)
unsigned long AddObserver (const EventObject &event, Command *) const
unsigned long AddObserver (const EventObject &event, Command *)



virtual const double & GetCentroidPositionChangesThreshold ()
const TKdTree * GetKdTree () const
virtual int GetMaximumIteration () const
virtual const int & GetMaximumIteration ()
virtual ParametersType GetParameters () const
virtual void SetCentroidPositionChangesThreshold (double _arg)
void SetKdTree (TKdTree *tree)
void SetKdTree (TKdTree *tree)
virtual void SetMaximumIteration (int _arg)
virtual void SetMaximumIteration (int _arg)
virtual void SetParameters (ParametersType _arg)
void GetPoint (ParameterType &point, MeasurementVectorType measurements)



virtual void PrintHeader (std::ostream &os, Indent indent) const
virtual void PrintTrailer (std::ostream &os, Indent indent) const
typedef int InternalReferenceCountType

Detailed Description

template<class TKdTree>
class itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >

fast k-means algorithm implementation using k-d tree structure

It returns k mean vectors that are centroids of k-clusters using pre-generated k-d tree. k-d tree generation is done by the WeightedCentroidKdTreeGenerator. The tree construction needs to be done only once. The resulting k-d tree's non-terminal nodes that have their children nodes have vector sums of measurement vectors that belong to the nodes and the number of measurement vectors in addition to the typical node boundary information and pointers to children nodes. Instead of reassigning every measurement vector to the nearest cluster centroid and recalculating centroid, it maintain a set of cluster centroid candidates and using pruning algorithm that utilizes k-d tree, it updates the means of only relevant candidates at each iterations. It would be faster than traditional implementation of k-means algorithm. However, the k-d tree consumes a large amount of memory. The tree construction time and pruning algorithm's performance are important factors to the whole process's performance. If users want to use k-d tree for some purpose other than k-means estimation, they can use the KdTreeGenerator instead of the WeightedCentroidKdTreeGenerator. It will save the tree construction time and memory usage.

Note: There is a second implementation of k-means algorithm in ITK under the While the Kd tree based implementation is more time efficient, the GLA/LBG based algorithm is more memory efficient.

Recent API changes: The static const macro to get the length of a measurement vector, MeasurementVectorSize has been removed to allow the length of a measurement vector to be specified at run time. It is now obtained from the KdTree set as input. You may query this length using the function GetMeasurementVectorSize().

See also:
ImageKmeansModelEstimator
WeightedCentroidKdTreeGenerator, KdTree

Definition at line 67 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.


Member Typedef Documentation

template<class TKdTree >
typedef KdTreeNodeType::CentroidType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CentroidType
template<class TKdTree >
typedef KdTreeNodeType::CentroidType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CentroidType
template<class TKdTree >
typedef itk::hash_map< InstanceIdentifier, unsigned int > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ClusterLabelsType
template<class TKdTree >
typedef itk::hash_map< InstanceIdentifier, unsigned int > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ClusterLabelsType
template<class TKdTree >
typedef SmartPointer<const Self> itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ConstPointer

Reimplemented from itk::Object.

Definition at line 78 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef SmartPointer<const Self> itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ConstPointer

Reimplemented from itk::Object.

Definition at line 75 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

Typedef requried to generate dataobject decorated output that can be plugged into SampleClassifierFilter

Definition at line 108 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef TKdTree::InstanceIdentifier itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::InstanceIdentifier
template<class TKdTree >
typedef TKdTree::InstanceIdentifier itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::InstanceIdentifier
template<class TKdTree >
typedef std::vector< ParameterType > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::InternalParametersType
template<class TKdTree >
typedef std::vector< ParameterType > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::InternalParametersType
typedef int itk::LightObject::InternalReferenceCountType [protected, inherited]

Define the type of the reference count according to the target. This allows the use of atomic operations

Definition at line 139 of file itkLightObject.h.

template<class TKdTree >
typedef TKdTree::KdTreeNodeType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::KdTreeNodeType

Types for the KdTree data structure

Definition at line 84 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef TKdTree::KdTreeNodeType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::KdTreeNodeType

Types for the KdTree data structure

Definition at line 81 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef TKdTree::MeasurementType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementType
template<class TKdTree >
typedef TKdTree::MeasurementType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementType
template<class TKdTree >
typedef unsigned int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementVectorSizeType

Typedef for the length of a measurement vector

Definition at line 96 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef unsigned int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementVectorSizeType

Typedef for the length of a measurement vector

Definition at line 93 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef TKdTree::MeasurementVectorType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementVectorType
template<class TKdTree >
typedef TKdTree::MeasurementVectorType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MeasurementVectorType
template<class TKdTree >
typedef std::vector< MembershipFunctionPointer > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::MembershipFunctionVectorType
template<class TKdTree >
typedef Array< double > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ParametersType
template<class TKdTree >
typedef Array< double > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ParametersType
template<class TKdTree >
typedef Array< double > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ParameterType

Parameters type. It defines a position in the optimization search space.

Definition at line 100 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef Array< double > itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::ParameterType

Parameters type. It defines a position in the optimization search space.

Definition at line 97 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef SmartPointer<Self> itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Pointer

Reimplemented from itk::Object.

Definition at line 77 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef SmartPointer<Self> itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Pointer

Reimplemented from itk::Object.

Definition at line 74 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef TKdTree::SampleType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SampleType
template<class TKdTree >
typedef TKdTree::SampleType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SampleType
template<class TKdTree >
typedef KdTreeBasedKmeansEstimator itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Self

Standard Self typedef.

Reimplemented from itk::Object.

Definition at line 75 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef KdTreeBasedKmeansEstimator itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Self

Standard "Self" typedef.

Reimplemented from itk::Object.

Definition at line 72 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef Object itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Superclass

Reimplemented from itk::Object.

Definition at line 76 of file Review/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
typedef Object itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Superclass

Reimplemented from itk::Object.

Definition at line 73 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.


Constructor & Destructor Documentation

template<class TKdTree >
itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::KdTreeBasedKmeansEstimator (  )  [protected]
template<class TKdTree >
virtual itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::~KdTreeBasedKmeansEstimator (  )  [inline, protected, virtual]
template<class TKdTree >
itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::KdTreeBasedKmeansEstimator (  )  [protected]
template<class TKdTree >
virtual itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::~KdTreeBasedKmeansEstimator (  )  [inline, protected, virtual]

Member Function Documentation

unsigned long itk::Object::AddObserver ( const EventObject event,
Command  
) const [inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

unsigned long itk::Object::AddObserver ( const EventObject event,
Command  
) [inherited]

Allow people to add/remove/invoke observers (callbacks) to any ITK object. This is an implementation of the subject/observer design pattern. An observer is added by specifying an event to respond to and an itk::Command to execute. It returns an unsigned long tag which can be used later to remove the event or retrieve the command. The memory for the Command becomes the responsibility of this object, so don't pass the same instance of a command to two different objects

static void itk::LightObject::BreakOnError (  )  [static, inherited]

This method is called when itkExceptionMacro executes. It allows the debugger to break on error.

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( InternalParametersType source,
ParametersType target 
) [protected]

copies the source parameters (k-means) to the target

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( ParametersType source,
InternalParametersType target 
) [protected]

copies the source parameters (k-means) to the target

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( InternalParametersType source,
InternalParametersType target 
) [protected]

copies the source parameters (k-means) to the target

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( InternalParametersType source,
ParametersType target 
) [protected]

copies the source parameters (k-means) to the target

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( ParametersType source,
InternalParametersType target 
) [protected]

copies the source parameters (k-means) to the target

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CopyParameters ( InternalParametersType source,
InternalParametersType target 
) [protected]

copies the source parameters (k-means) to the target

virtual LightObject::Pointer itk::Object::CreateAnother (  )  const [virtual, inherited]
virtual void itk::Object::DebugOff (  )  const [virtual, inherited]

Turn debugging output off.

virtual void itk::Object::DebugOn (  )  const [virtual, inherited]

Turn debugging output on.

virtual void itk::LightObject::Delete (  )  [virtual, inherited]

Delete an itk object. This method should always be used to delete an object when the new operator was used to create it. Using the C delete method will not work with reference counting.

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::FillClusterLabels ( KdTreeNodeType node,
int  closestIndex 
) [protected]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::FillClusterLabels ( KdTreeNodeType node,
int  closestIndex 
) [protected]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Filter ( KdTreeNodeType node,
std::vector< int >  validIndexes,
MeasurementVectorType lowerBound,
MeasurementVectorType upperBound 
) [protected]

recursive pruning algorithm. the validIndexes vector contains only the indexes of the surviving candidates for the node

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::Filter ( KdTreeNodeType node,
std::vector< int >  validIndexes,
MeasurementVectorType lowerBound,
MeasurementVectorType upperBound 
) [protected]

recursive pruning algorithm. the "validIndexes" vector contains only the indexes of the surviving candidates for the "node"

template<class TKdTree >
virtual double itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCentroidPositionChanges (  )  const [virtual]
template<class TKdTree >
virtual const double& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCentroidPositionChanges (  )  [virtual]
template<class TKdTree >
virtual double itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCentroidPositionChangesThreshold (  )  const [virtual]
template<class TKdTree >
virtual const double& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCentroidPositionChangesThreshold (  )  [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetClosestCandidate ( ParameterType measurements,
std::vector< int > &  validIndexes 
) [protected]

get the index of the closest candidate to the measurements measurement vector

template<class TKdTree >
int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetClosestCandidate ( ParameterType measurements,
std::vector< int > &  validIndexes 
) [protected]

get the index of the closest candidate to the "measurements" measurement vector

template<class TKdTree >
ClusterLabelsType* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetClusterLabels (  )  [inline]
Command* itk::Object::GetCommand ( unsigned long  tag  )  [inherited]

Get the command associated with the given tag. NOTE: This returns a pointer to a Command, but it is safe to asign this to a Command::Pointer. Since Command inherits from LightObject, at this point in the code, only a pointer or a reference to the Command can be used.

template<class TKdTree >
virtual int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCurrentIteration (  )  const [virtual]
template<class TKdTree >
virtual const int& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetCurrentIteration (  )  [virtual]
bool itk::Object::GetDebug (  )  const [inherited]

Get the value of the debug flag.

static bool itk::Object::GetGlobalWarningDisplay (  )  [static, inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

template<class TKdTree >
const TKdTree* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetKdTree (  )  const

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
TKdTree* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetKdTree (  )  [inline]
template<class TKdTree >
virtual int itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetMaximumIteration (  )  const [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
virtual const int& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetMaximumIteration (  )  [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
virtual MeasurementVectorSizeType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetMeasurementVectorSize (  )  const [virtual]

Get the length of measurement vectors in the KdTree

template<class TKdTree >
virtual const MeasurementVectorSizeType& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetMeasurementVectorSize (  )  [virtual]

Get the length of measurement vectors in the KdTree

const MetaDataDictionary& itk::Object::GetMetaDataDictionary ( void   )  const [inherited]
Returns:
A constant reference to this objects MetaDataDictionary.
MetaDataDictionary& itk::Object::GetMetaDataDictionary ( void   )  [inherited]
Returns:
A reference to this objects MetaDataDictionary.
Warning:
This reference may be changed.
virtual unsigned long itk::Object::GetMTime (  )  const [virtual, inherited]

Return this objects modified time.

Reimplemented in itk::ImageRegistrationMethod< TFixedImage, TMovingImage >, itk::ImageToSpatialObjectRegistrationMethod< TFixedImage, TMovingSpatialObject >, itk::MultiResolutionImageRegistrationMethod< TFixedImage, TMovingImage >, itk::PointSetToImageRegistrationMethod< TFixedPointSet, TMovingImage >, itk::PointSetToPointSetRegistrationMethod< TFixedPointSet, TMovingPointSet >, itk::DeformationFieldSource< TOutputImage >, itk::InverseDeformationFieldImageFilter< TInputImage, TOutputImage >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::VectorResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::BoundingBox< TPointIdentifier, VPointDimension, TCoordRep, TPointsContainer >, itk::ImageAdaptor< TImage, TAccessor >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::TransformToDeformationFieldSource< TOutputImage, TTransformPrecisionType >, itk::ImageSpatialObject< TDimension, TPixelType >, itk::MeshSpatialObject< TMesh >, itk::SceneSpatialObject< TSpaceDimension >, itk::SpatialObject< TDimension >, itk::ImageAdaptor< TImage, Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, PixelAccessor >, itk::ImageAdaptor< TImage, Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< VectorImage< TPixelType, Dimension >, Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AddPixelAccessor< TImage::PixelType > >, itk::ImageSpatialObject< TDimension, unsigned char >, itk::SpatialObject< 3 >, and itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >.

Referenced by itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >::GetObjectMTime().

template<class TKdTree >
virtual const char* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetNameOfClass (  )  const [virtual]

Run-time type information (and related methods).

Reimplemented from itk::Object.

template<class TKdTree >
virtual const char* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetNameOfClass (  )  const [virtual]

Run-time type information (and related methods).

Reimplemented from itk::Object.

template<class TKdTree >
const MembershipFunctionVectorObjectType* itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetOutput (  )  const

Output Membership function vector containing the membership functions with the final optimized paramters

template<class TKdTree >
virtual ParametersType itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetParameters (  )  const [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
ParametersType& itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetParameters ( void   )  [inline]

Get current position of the optimization.

Definition at line 106 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetPoint ( ParameterType point,
MeasurementVectorType  measurements 
) [protected]

imports the measurements measurement vector data to the point

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetPoint ( ParameterType point,
MeasurementVectorType  measurements 
) [inline, protected]

imports the "measurements" measurement vector data to the "point"

Definition at line 279 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

virtual int itk::LightObject::GetReferenceCount (  )  const [inline, virtual, inherited]

Gets the reference count on this object.

Definition at line 106 of file itkLightObject.h.

template<class TKdTree >
double itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetSumOfSquaredPositionChanges ( InternalParametersType previous,
InternalParametersType current 
) [protected]

gets the sum of squared difference between the previous position and current postion of all centroid. This is the primary termination condition for this algorithm. If the return value is less than the value that was set by the SetCentroidPositionChangesThreshold method.

template<class TKdTree >
double itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetSumOfSquaredPositionChanges ( InternalParametersType previous,
InternalParametersType current 
) [protected]

gets the sum of squared difference between the previous position and current postion of all centroid. This is the primary termination condition for this algorithm. If the return value is less than the value that was set by the SetCentroidPositionChangesThreshold method.

template<class TKdTree >
virtual bool itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::GetUseClusterLabels (  )  const [virtual]
static void itk::Object::GlobalWarningDisplayOff (  )  [inline, static, inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

Definition at line 100 of file itkObject.h.

References itk::Object::SetGlobalWarningDisplay().

static void itk::Object::GlobalWarningDisplayOn (  )  [inline, static, inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

Definition at line 98 of file itkObject.h.

References itk::Object::SetGlobalWarningDisplay().

bool itk::Object::HasObserver ( const EventObject event  )  const [inherited]

Return true if an observer is registered for this event.

void itk::Object::InvokeEvent ( const EventObject  )  const [inherited]

Call Execute on all the Commands observing this event id. The actions triggered by this call doesn't modify this object.

void itk::Object::InvokeEvent ( const EventObject  )  [inherited]

Call Execute on all the Commands observing this event id.

template<class TKdTree >
bool itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::IsFarther ( ParameterType pointA,
ParameterType pointB,
MeasurementVectorType lowerBound,
MeasurementVectorType upperBound 
) [protected]

returns true if the pointA is farther than pointB to the boundary

template<class TKdTree >
bool itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::IsFarther ( ParameterType pointA,
ParameterType pointB,
MeasurementVectorType lowerBound,
MeasurementVectorType upperBound 
) [protected]

returns true if the pointA is farther than pointB to the boundary

virtual void itk::Object::Modified (  )  const [virtual, inherited]

Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data.

Reimplemented in itk::NormalizeImageFilter< TInputImage, TOutputImage >, itk::ImageAdaptor< TImage, TAccessor >, itk::MiniPipelineSeparableImageFilter< TInputImage, TOutputImage, TFilter >, itk::GrayscaleDilateImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleErodeImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleMorphologicalClosingImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleMorphologicalOpeningImageFilter< TInputImage, TOutputImage, TKernel >, itk::MorphologicalGradientImageFilter< TInputImage, TOutputImage, TKernel >, itk::ImageAdaptor< TImage, Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, PixelAccessor >, itk::ImageAdaptor< TImage, Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< VectorImage< TPixelType, Dimension >, Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AddPixelAccessor< TImage::PixelType > >, and itk::MiniPipelineSeparableImageFilter< TInputImage, TOutputImage, RankImageFilter< TInputImage, TInputImage, FlatStructuringElement< ::itk::GetImageDimension< TInputImage >::ImageDimension > > >.

Referenced by itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::InsertNarrowBandNode(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetCenter(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetMatrix(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBand(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandInnerRadius(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandTotalRadius(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetOffset(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetRealThresholds(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetThresholds(), itk::Statistics::GoodnessOfFitFunctionBase< TInputHistogram >::SetTotalObservedScale(), and itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetTranslation().

template<class TKdTree >
static Pointer itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::New (  )  [static]

Method for creation through the object factory.

Reimplemented from itk::Object.

template<class TKdTree >
static Pointer itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::New (  )  [static]

Method for creation through the object factory.

Reimplemented from itk::Object.

void itk::LightObject::Print ( std::ostream &  os,
Indent  indent = 0 
) const [inherited]

Cause the object to print itself out.

Referenced by itk::WeakPointer< ProcessObject >::Print().

virtual void itk::LightObject::PrintHeader ( std::ostream &  os,
Indent  indent 
) const [protected, virtual, inherited]

Define the type of the reference count according to the target. This allows the use of atomic operations

bool itk::Object::PrintObservers ( std::ostream &  os,
Indent  indent 
) const [protected, inherited]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::PrintPoint ( ParameterType point  )  [protected]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::PrintPoint ( ParameterType point  )  [inline, protected]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const [protected, virtual]

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const [protected, virtual]

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

virtual void itk::LightObject::PrintTrailer ( std::ostream &  os,
Indent  indent 
) const [protected, virtual, inherited]

Define the type of the reference count according to the target. This allows the use of atomic operations

virtual void itk::Object::Register (  )  const [virtual, inherited]

Increase the reference count (mark as used by another object).

Reimplemented from itk::LightObject.

void itk::Object::RemoveAllObservers (  )  [inherited]

Remove all observers .

void itk::Object::RemoveObserver ( unsigned long  tag  )  [inherited]

Remove the observer with this tag value.

template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetCentroidPositionChangesThreshold ( double  _arg  )  [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetCentroidPositionChangesThreshold ( double  _arg  )  [virtual]

Set/Get the termination threshold for the squared sum of changes in centroid postions after one iteration

void itk::Object::SetDebug ( bool  debugFlag  )  const [inherited]

Set the value of the debug flag. A non-zero value turns debugging on.

static void itk::Object::SetGlobalWarningDisplay ( bool  flag  )  [static, inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

Referenced by itk::Object::GlobalWarningDisplayOff(), and itk::Object::GlobalWarningDisplayOn().

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetKdTree ( TKdTree *  tree  ) 

Set/Get the pointer to the KdTree

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetKdTree ( TKdTree *  tree  )  [inline]
template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetMaximumIteration ( int  _arg  )  [virtual]

Set/Get maximum iteration limit.

template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetMaximumIteration ( int  _arg  )  [virtual]

Set/Get maximum iteration limit.

void itk::Object::SetMetaDataDictionary ( const MetaDataDictionary rhs  )  [inherited]
Returns:
Set the MetaDataDictionary
template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetParameters ( ParametersType  _arg  )  [virtual]

Set the position to initialize the optimization.

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetParameters ( ParametersType params  )  [inline]

Set the position to initialize the optimization.

Definition at line 102 of file Numerics/Statistics/itkKdTreeBasedKmeansEstimator.h.

virtual void itk::Object::SetReferenceCount ( int   )  [virtual, inherited]

Sets the reference count (use with care)

Reimplemented from itk::LightObject.

template<class TKdTree >
virtual void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetUseClusterLabels ( bool  _arg  )  [virtual]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::SetUseClusterLabels ( bool  flag  )  [inline]
template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::StartOptimization (  ) 

Start optimization Optimization will stop when it meets either of two termination conditions, the maximum iteration limit or epsilon (minimal changes in squared sum of changes in centroid positions)

template<class TKdTree >
void itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::StartOptimization (  ) 

Start optimization Optimization will stop when it meets either of two termination conditions, the maximum iteration limit or epsilon (minimal changes in squared sum of changes in centroid positions)

virtual void itk::Object::UnRegister (  )  const [virtual, inherited]

Decrease the reference count (release by another object).

Reimplemented from itk::LightObject.


Member Data Documentation

Number of uses of this object by other objects.

Definition at line 144 of file itkLightObject.h.

Mutex lock to protect modification to the reference count

Definition at line 147 of file itkLightObject.h.


The documentation for this class was generated from the following files:

Generated at Sat Apr 17 02:04:08 2010 for ITK by doxygen 1.6.1 written by Dimitri van Heesch, © 1997-2000