Wrap of the vnl_amoeba algorithm. More...
#include <itkAmoebaOptimizer.h>
Wrap of the vnl_amoeba algorithm.
AmoebaOptimizer is a wrapper around the vnl_amoeba algorithm which is an implementation of the Nelder-Meade downhill simplex problem. For most problems, it is a few times slower than a Levenberg-Marquardt algorithm but does not require derivatives of its cost function. It works by creating a simplex (n+1 points in ND space). The cost function is evaluated at each corner of the simplex. The simplex is then modified (by reflecting a corner about the opposite edge, by shrinking the entire simplex, by contracting one edge of the simplex, or by expanding the simplex) in searching for the minimum of the cost function.
The methods AutomaticInitialSimplex() and SetInitialSimplexDelta() control whether the optimizer defines the initial simplex automatically (by constructing a very small simplex around the initial position) or uses a user supplied simplex size.
AmoebaOptimizer can only minimize a function.
Definition at line 49 of file itkAmoebaOptimizer.h.
typedef ReceptorMemberCommand< Self > itk::SingleValuedNonLinearVnlOptimizer::CommandType [inherited] |
Command observer that will interact with the ITK-VNL cost-function adaptor in order to generate iteration events. This will allow to overcome the limitation of VNL optimizers not offering callbacks for every iteration
Definition at line 48 of file itkSingleValuedNonLinearVnlOptimizer.h.
typedef SmartPointer<const Self> itk::AmoebaOptimizer::ConstPointer |
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
Definition at line 57 of file itkAmoebaOptimizer.h.
typedef Superclass::CostFunctionAdaptorType itk::AmoebaOptimizer::CostFunctionAdaptorType [protected] |
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
Definition at line 135 of file itkAmoebaOptimizer.h.
typedef CostFunctionType::Pointer itk::SingleValuedNonLinearOptimizer::CostFunctionPointer [inherited] |
Reimplemented in itk::FRPROptimizer, itk::OnePlusOneEvolutionaryOptimizer, itk::PowellOptimizer, and itk::RegularStepGradientDescentOptimizer.
Definition at line 56 of file itkSingleValuedNonLinearOptimizer.h.
typedef SingleValuedCostFunction itk::SingleValuedNonLinearOptimizer::CostFunctionType [inherited] |
Type of the Cost Function
Reimplemented in itk::FRPROptimizer, itk::OnePlusOneEvolutionaryOptimizer, itk::PowellOptimizer, and itk::RegularStepGradientDescentOptimizer.
Definition at line 55 of file itkSingleValuedNonLinearOptimizer.h.
typedef CostFunctionType::DerivativeType itk::SingleValuedNonLinearOptimizer::DerivativeType [inherited] |
Derivative type. It defines a type used to return the cost function derivative.
Definition at line 64 of file itkSingleValuedNonLinearOptimizer.h.
typedef vnl_amoeba itk::AmoebaOptimizer::InternalOptimizerType |
Internal optimizer type.
Definition at line 73 of file itkAmoebaOptimizer.h.
typedef vnl_vector<double> itk::AmoebaOptimizer::InternalParametersType |
InternalParameters typedef.
Definition at line 70 of file itkAmoebaOptimizer.h.
typedef int itk::LightObject::InternalReferenceCountType [protected, inherited] |
Define the type of the reference count according to the target. This allows the use of atomic operations
Definition at line 139 of file itkLightObject.h.
typedef CostFunctionType::MeasureType itk::SingleValuedNonLinearOptimizer::MeasureType [inherited] |
Measure type. It defines a type used to return the cost function value.
Definition at line 60 of file itkSingleValuedNonLinearOptimizer.h.
Parameters type. It defines a position in the optimization search space.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Definition at line 63 of file itkAmoebaOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
Definition at line 56 of file itkAmoebaOptimizer.h.
typedef Superclass::ScalesType itk::NonLinearOptimizer::ScalesType [inherited] |
Scale type. This array defines scale to be applied to parameters before being evaluated in the cost function. This allows to map to a more convenient space. In particular this is used to normalize parameter spaces in which some parameters have a different dynamic range.
Reimplemented from itk::Optimizer.
Definition at line 52 of file itkNonLinearOptimizer.h.
Standard "Self" typedef.
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
Definition at line 54 of file itkAmoebaOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
Definition at line 55 of file itkAmoebaOptimizer.h.
itk::AmoebaOptimizer::AmoebaOptimizer | ( | ) | [protected] |
virtual itk::AmoebaOptimizer::~AmoebaOptimizer | ( | ) | [protected, virtual] |
unsigned long itk::Object::AddObserver | ( | const EventObject & | event, | |
Command * | ||||
) | [inherited] |
Allow people to add/remove/invoke observers (callbacks) to any ITK object. This is an implementation of the subject/observer design pattern. An observer is added by specifying an event to respond to and an itk::Command to execute. It returns an unsigned long tag which can be used later to remove the event or retrieve the command. The memory for the Command becomes the responsibility of this object, so don't pass the same instance of a command to two different objects
unsigned long itk::Object::AddObserver | ( | const EventObject & | event, | |
Command * | ||||
) | const [inherited] |
Allow people to add/remove/invoke observers (callbacks) to any ITK object. This is an implementation of the subject/observer design pattern. An observer is added by specifying an event to respond to and an itk::Command to execute. It returns an unsigned long tag which can be used later to remove the event or retrieve the command. The memory for the Command becomes the responsibility of this object, so don't pass the same instance of a command to two different objects
virtual void itk::AmoebaOptimizer::AutomaticInitialSimplexOff | ( | ) | [virtual] |
Set/Get the mode which determines how the amoeba algorithm defines the initial simplex. Default is AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the initial simplex is created with a default size. If AutomaticInitialSimplex is off, then InitialSimplexDelta will be used to define the initial simplex, setting the ith corner of the simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ..., x0[d-1]].
virtual void itk::AmoebaOptimizer::AutomaticInitialSimplexOn | ( | ) | [virtual] |
Set/Get the mode which determines how the amoeba algorithm defines the initial simplex. Default is AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the initial simplex is created with a default size. If AutomaticInitialSimplex is off, then InitialSimplexDelta will be used to define the initial simplex, setting the ith corner of the simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ..., x0[d-1]].
static void itk::LightObject::BreakOnError | ( | ) | [static, inherited] |
This method is called when itkExceptionMacro executes. It allows the debugger to break on error.
virtual LightObject::Pointer itk::Object::CreateAnother | ( | ) | const [virtual, inherited] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::LightObject.
Reimplemented in itk::BSplineDeformableTransform< TScalarType, NDimensions, VSplineOrder >, itk::CreateObjectFunction< T >, itk::TransformFactoryBase, itk::AnalyzeImageIOFactory, itk::BioRadImageIOFactory, itk::BMPImageIOFactory, itk::Brains2MaskImageIOFactory, itk::DICOMImageIO2Factory, itk::DicomImageIOFactory, itk::GDCMImageIOFactory, itk::GE4ImageIOFactory, itk::GE5ImageIOFactory, itk::GEAdwImageIOFactory, itk::GiplImageIOFactory, itk::JPEGImageIOFactory, itk::LSMImageIOFactory, itk::MetaImageIOFactory, itk::NiftiImageIOFactory, itk::NrrdImageIOFactory, itk::PNGImageIOFactory, itk::RawImageIOFactory< TPixel, VImageDimension >, itk::SiemensVisionImageIOFactory, itk::StimulateImageIOFactory, itk::TIFFImageIOFactory, itk::VTKImageIOFactory, itk::Bruker2DSEQImageIOFactory, itk::MatlabTransformIOFactory, itk::MINC2ImageIOFactory, itk::MRCImageIOFactory, itk::PhilipsRECImageIOFactory, itk::TxtTransformIOFactory, itk::VoxBoCUBImageIOFactory, itk::VTKImageIO2Factory, and itk::SpatialObjectFactoryBase.
virtual void itk::Object::DebugOff | ( | ) | const [virtual, inherited] |
Turn debugging output off.
virtual void itk::Object::DebugOn | ( | ) | const [virtual, inherited] |
Turn debugging output on.
virtual void itk::LightObject::Delete | ( | ) | [virtual, inherited] |
Delete an itk object. This method should always be used to delete an object when the new operator was used to create it. Using the C delete method will not work with reference counting.
virtual bool itk::AmoebaOptimizer::GetAutomaticInitialSimplex | ( | ) | const [virtual] |
Set/Get the mode which determines how the amoeba algorithm defines the initial simplex. Default is AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the initial simplex is created with a default size. If AutomaticInitialSimplex is off, then InitialSimplexDelta will be used to define the initial simplex, setting the ith corner of the simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ..., x0[d-1]].
virtual const ParametersType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedCurrentPosition | ( | ) | [virtual, inherited] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
virtual const DerivativeType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedDerivative | ( | ) | [virtual, inherited] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
virtual const MeasureType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedValue | ( | ) | [virtual, inherited] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
Command* itk::Object::GetCommand | ( | unsigned long | tag | ) | [inherited] |
Get the command associated with the given tag. NOTE: This returns a pointer to a Command, but it is safe to asign this to a Command::Pointer. Since Command inherits from LightObject, at this point in the code, only a pointer or a reference to the Command can be used.
virtual const CostFunctionType* itk::SingleValuedNonLinearOptimizer::GetCostFunction | ( | ) | [virtual, inherited] |
Get the cost function.
const CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetCostFunctionAdaptor | ( | void | ) | const [protected, inherited] |
CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetCostFunctionAdaptor | ( | void | ) | [protected, inherited] |
virtual const ParametersType& itk::Optimizer::GetCurrentPosition | ( | ) | [virtual, inherited] |
Get current position of the optimization.
bool itk::Object::GetDebug | ( | ) | const [inherited] |
Get the value of the debug flag.
virtual double itk::AmoebaOptimizer::GetFunctionConvergenceTolerance | ( | ) | const [virtual] |
The optimization algorithm will terminate when the simplex diameter and the difference in cost function at the corners of the simplex falls below user specified thresholds. The simplex diameter threshold is set via method SetParametersConvergenceTolerance() with the default value being 1e-8. The cost function convergence threshold is set via method SetFunctionConvergenceTolerance() with the default value being 1e-4.
static bool itk::Object::GetGlobalWarningDisplay | ( | ) | [static, inherited] |
This is a global flag that controls whether any debug, warning or error messages are displayed.
virtual const ParametersType& itk::Optimizer::GetInitialPosition | ( | ) | [virtual, inherited] |
Get the position to initialize the optimization.
virtual ParametersType itk::AmoebaOptimizer::GetInitialSimplexDelta | ( | ) | const [virtual] |
Set/Get the deltas that are used to define the initial simplex when AutomaticInitialSimplex is off.
virtual const bool& itk::SingleValuedNonLinearVnlOptimizer::GetMaximize | ( | ) | [virtual, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
virtual unsigned int itk::AmoebaOptimizer::GetMaximumNumberOfIterations | ( | ) | const [virtual] |
Set/Get the maximum number of iterations. The optimization algorithm will terminate after the maximum number of iterations has been reached. The default value is 500.
MetaDataDictionary& itk::Object::GetMetaDataDictionary | ( | void | ) | [inherited] |
const MetaDataDictionary& itk::Object::GetMetaDataDictionary | ( | void | ) | const [inherited] |
bool itk::SingleValuedNonLinearVnlOptimizer::GetMinimize | ( | ) | const [inline, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 72 of file itkSingleValuedNonLinearVnlOptimizer.h.
virtual unsigned long itk::Object::GetMTime | ( | ) | const [virtual, inherited] |
Return this objects modified time.
Reimplemented in itk::ImageRegistrationMethod< TFixedImage, TMovingImage >, itk::ImageToSpatialObjectRegistrationMethod< TFixedImage, TMovingSpatialObject >, itk::MultiResolutionImageRegistrationMethod< TFixedImage, TMovingImage >, itk::PointSetToImageRegistrationMethod< TFixedPointSet, TMovingImage >, itk::PointSetToPointSetRegistrationMethod< TFixedPointSet, TMovingPointSet >, itk::DeformationFieldSource< TOutputImage >, itk::InverseDeformationFieldImageFilter< TInputImage, TOutputImage >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::VectorResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::BoundingBox< TPointIdentifier, VPointDimension, TCoordRep, TPointsContainer >, itk::ImageAdaptor< TImage, TAccessor >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::TransformToDeformationFieldSource< TOutputImage, TTransformPrecisionType >, itk::ImageSpatialObject< TDimension, TPixelType >, itk::MeshSpatialObject< TMesh >, itk::SceneSpatialObject< TSpaceDimension >, itk::SpatialObject< TDimension >, itk::ImageAdaptor< TImage, Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< VectorImage< TPixelType, Dimension >, Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AddPixelAccessor< TImage::PixelType > >, itk::ImageSpatialObject< TDimension, unsigned char >, itk::SpatialObject< 3 >, and itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >.
Referenced by itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >::GetObjectMTime().
virtual const char* itk::AmoebaOptimizer::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetNonConstCostFunctionAdaptor | ( | void | ) | const [protected, inherited] |
The purpose of this method is to get around the lack of const-correctness in VNL cost-functions and optimizers
vnl_amoeba* itk::AmoebaOptimizer::GetOptimizer | ( | void | ) |
Method for getting access to the internal optimizer.
virtual double itk::AmoebaOptimizer::GetParametersConvergenceTolerance | ( | ) | const [virtual] |
The optimization algorithm will terminate when the simplex diameter and the difference in cost function at the corners of the simplex falls below user specified thresholds. The simplex diameter threshold is set via method SetParametersConvergenceTolerance() with the default value being 1e-8. The cost function convergence threshold is set via method SetFunctionConvergenceTolerance() with the default value being 1e-4.
virtual int itk::LightObject::GetReferenceCount | ( | ) | const [inline, virtual, inherited] |
Gets the reference count on this object.
Definition at line 106 of file itkLightObject.h.
virtual const ScalesType& itk::Optimizer::GetScales | ( | ) | [virtual, inherited] |
Get current parameters scaling.
const std::string itk::AmoebaOptimizer::GetStopConditionDescription | ( | ) | const [virtual] |
Report the reason for stopping.
Reimplemented from itk::Optimizer.
MeasureType itk::AmoebaOptimizer::GetValue | ( | ) | const |
Return Current Value
MeasureType itk::SingleValuedNonLinearOptimizer::GetValue | ( | const ParametersType & | parameters | ) | const [inherited] |
Get the cost function value at the given parameters.
Reimplemented in itk::SPSAOptimizer.
static void itk::Object::GlobalWarningDisplayOff | ( | ) | [inline, static, inherited] |
This is a global flag that controls whether any debug, warning or error messages are displayed.
Definition at line 100 of file itkObject.h.
References itk::Object::SetGlobalWarningDisplay().
static void itk::Object::GlobalWarningDisplayOn | ( | ) | [inline, static, inherited] |
This is a global flag that controls whether any debug, warning or error messages are displayed.
Definition at line 98 of file itkObject.h.
References itk::Object::SetGlobalWarningDisplay().
bool itk::Object::HasObserver | ( | const EventObject & | event | ) | const [inherited] |
Return true if an observer is registered for this event.
void itk::Object::InvokeEvent | ( | const EventObject & | ) | const [inherited] |
Call Execute on all the Commands observing this event id. The actions triggered by this call doesn't modify this object.
void itk::Object::InvokeEvent | ( | const EventObject & | ) | [inherited] |
Call Execute on all the Commands observing this event id.
virtual void itk::SingleValuedNonLinearVnlOptimizer::MaximizeOff | ( | ) | [virtual, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
virtual void itk::SingleValuedNonLinearVnlOptimizer::MaximizeOn | ( | ) | [virtual, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
void itk::SingleValuedNonLinearVnlOptimizer::MinimizeOff | ( | ) | [inline, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 78 of file itkSingleValuedNonLinearVnlOptimizer.h.
void itk::SingleValuedNonLinearVnlOptimizer::MinimizeOn | ( | ) | [inline, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 76 of file itkSingleValuedNonLinearVnlOptimizer.h.
virtual void itk::Object::Modified | ( | ) | const [virtual, inherited] |
Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data.
Reimplemented in itk::NormalizeImageFilter< TInputImage, TOutputImage >, itk::ImageAdaptor< TImage, TAccessor >, itk::MiniPipelineSeparableImageFilter< TInputImage, TOutputImage, TFilter >, itk::GrayscaleDilateImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleErodeImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleMorphologicalClosingImageFilter< TInputImage, TOutputImage, TKernel >, itk::GrayscaleMorphologicalOpeningImageFilter< TInputImage, TOutputImage, TKernel >, itk::MorphologicalGradientImageFilter< TInputImage, TOutputImage, TKernel >, itk::ImageAdaptor< TImage, Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< VectorImage< TPixelType, Dimension >, Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, Accessor::AddPixelAccessor< TImage::PixelType > >, and itk::MiniPipelineSeparableImageFilter< TInputImage, TOutputImage, RankImageFilter< TInputImage, TInputImage, FlatStructuringElement< ::itk::GetImageDimension< TInputImage >::ImageDimension > > >.
Referenced by itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::InsertNarrowBandNode(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetCenter(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetMatrix(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBand(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandInnerRadius(), itk::NarrowBandImageFilterBase< TInputImage, Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandTotalRadius(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetOffset(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetRealThresholds(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetThresholds(), itk::Statistics::GoodnessOfFitFunctionBase< TInputHistogram >::SetTotalObservedScale(), and itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetTranslation().
static Pointer itk::AmoebaOptimizer::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
void itk::LightObject::Print | ( | std::ostream & | os, | |
Indent | indent = 0 | |||
) | const [inherited] |
Cause the object to print itself out.
Referenced by itk::WeakPointer< ProcessObject >::Print().
virtual void itk::LightObject::PrintHeader | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual, inherited] |
bool itk::Object::PrintObservers | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, inherited] |
void itk::AmoebaOptimizer::PrintSelf | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual] |
Print out internal state
Reimplemented from itk::SingleValuedNonLinearVnlOptimizer.
virtual void itk::LightObject::PrintTrailer | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual, inherited] |
virtual void itk::Object::Register | ( | ) | const [virtual, inherited] |
Increase the reference count (mark as used by another object).
Reimplemented from itk::LightObject.
void itk::Object::RemoveAllObservers | ( | ) | [inherited] |
Remove all observers .
void itk::Object::RemoveObserver | ( | unsigned long | tag | ) | [inherited] |
Remove the observer with this tag value.
virtual void itk::AmoebaOptimizer::SetAutomaticInitialSimplex | ( | bool | _arg | ) | [virtual] |
Set/Get the mode which determines how the amoeba algorithm defines the initial simplex. Default is AutomaticInitialSimplexOn. If AutomaticInitialSimplex is on, the initial simplex is created with a default size. If AutomaticInitialSimplex is off, then InitialSimplexDelta will be used to define the initial simplex, setting the ith corner of the simplex as [x0[0], x0[1], ..., x0[i]+InitialSimplexDelta[i], ..., x0[d-1]].
virtual void itk::AmoebaOptimizer::SetCostFunction | ( | SingleValuedCostFunction * | costFunction | ) | [virtual] |
Plug in a Cost Function into the optimizer
Implements itk::SingleValuedNonLinearVnlOptimizer.
virtual void itk::SingleValuedNonLinearOptimizer::SetCostFunction | ( | CostFunctionType * | costFunction | ) | [virtual, inherited] |
Set the cost function.
void itk::SingleValuedNonLinearVnlOptimizer::SetCostFunctionAdaptor | ( | CostFunctionAdaptorType * | adaptor | ) | [protected, inherited] |
virtual void itk::Optimizer::SetCurrentPosition | ( | const ParametersType & | param | ) | [protected, virtual, inherited] |
Set the current position.
void itk::Object::SetDebug | ( | bool | debugFlag | ) | const [inherited] |
Set the value of the debug flag. A non-zero value turns debugging on.
virtual void itk::AmoebaOptimizer::SetFunctionConvergenceTolerance | ( | double | tol | ) | [virtual] |
The optimization algorithm will terminate when the simplex diameter and the difference in cost function at the corners of the simplex falls below user specified thresholds. The simplex diameter threshold is set via method SetParametersConvergenceTolerance() with the default value being 1e-8. The cost function convergence threshold is set via method SetFunctionConvergenceTolerance() with the default value being 1e-4.
static void itk::Object::SetGlobalWarningDisplay | ( | bool | flag | ) | [static, inherited] |
This is a global flag that controls whether any debug, warning or error messages are displayed.
Referenced by itk::Object::GlobalWarningDisplayOff(), and itk::Object::GlobalWarningDisplayOn().
virtual void itk::Optimizer::SetInitialPosition | ( | const ParametersType & | param | ) | [virtual, inherited] |
Set the position to initialize the optimization.
virtual void itk::AmoebaOptimizer::SetInitialSimplexDelta | ( | ParametersType | _arg | ) | [virtual] |
Set/Get the deltas that are used to define the initial simplex when AutomaticInitialSimplex is off.
virtual void itk::SingleValuedNonLinearVnlOptimizer::SetMaximize | ( | bool | _arg | ) | [virtual, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
virtual void itk::AmoebaOptimizer::SetMaximumNumberOfIterations | ( | unsigned int | n | ) | [virtual] |
Set/Get the maximum number of iterations. The optimization algorithm will terminate after the maximum number of iterations has been reached. The default value is 500.
void itk::Object::SetMetaDataDictionary | ( | const MetaDataDictionary & | rhs | ) | [inherited] |
void itk::SingleValuedNonLinearVnlOptimizer::SetMinimize | ( | bool | v | ) | [inline, inherited] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 74 of file itkSingleValuedNonLinearVnlOptimizer.h.
virtual void itk::AmoebaOptimizer::SetParametersConvergenceTolerance | ( | double | tol | ) | [virtual] |
The optimization algorithm will terminate when the simplex diameter and the difference in cost function at the corners of the simplex falls below user specified thresholds. The simplex diameter threshold is set via method SetParametersConvergenceTolerance() with the default value being 1e-8. The cost function convergence threshold is set via method SetFunctionConvergenceTolerance() with the default value being 1e-4.
virtual void itk::Object::SetReferenceCount | ( | int | ) | [virtual, inherited] |
Sets the reference count (use with care)
Reimplemented from itk::LightObject.
void itk::Optimizer::SetScales | ( | const ScalesType & | scales | ) | [inherited] |
Set current parameters scaling.
void itk::AmoebaOptimizer::StartOptimization | ( | void | ) | [virtual] |
Start optimization with an initial value.
Reimplemented from itk::Optimizer.
virtual void itk::Object::UnRegister | ( | ) | const [virtual, inherited] |
Decrease the reference count (release by another object).
Reimplemented from itk::LightObject.
CostFunctionPointer itk::SingleValuedNonLinearOptimizer::m_CostFunction [protected, inherited] |
Definition at line 80 of file itkSingleValuedNonLinearOptimizer.h.
ParametersType itk::Optimizer::m_CurrentPosition [protected, inherited] |
Definition at line 98 of file itkOptimizer.h.
InternalReferenceCountType itk::LightObject::m_ReferenceCount [mutable, protected, inherited] |
Number of uses of this object by other objects.
Definition at line 144 of file itkLightObject.h.
SimpleFastMutexLock itk::LightObject::m_ReferenceCountLock [mutable, protected, inherited] |
Mutex lock to protect modification to the reference count
Definition at line 147 of file itkLightObject.h.
bool itk::Optimizer::m_ScalesInitialized [protected, inherited] |
Definition at line 93 of file itkOptimizer.h.