This class encapsulate the finite difference equation which drives a curvature flow denoising algorithm. More...
#include <itkCurvatureFlowFunction.h>
This class encapsulate the finite difference equation which drives a curvature flow denoising algorithm.
This class uses a zero flux Neumann boundary condition when computing derivatives near the data boundary.
This class operates as part of the finite difference solver hierarchy.
Definition at line 41 of file itkCurvatureFlowFunction.h.
typedef SmartPointer<const Self> itk::CurvatureFlowFunction< TImage >::ConstPointer |
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 49 of file itkCurvatureFlowFunction.h.
typedef ZeroFluxNeumannBoundaryCondition<ImageType> itk::FiniteDifferenceFunction< TImage >::DefaultBoundaryConditionType [inherited] |
The default boundary condition for finite difference functions that is used unless overridden in the Evaluate() method.
Definition at line 92 of file itkFiniteDifferenceFunction.h.
typedef Superclass::FloatOffsetType itk::CurvatureFlowFunction< TImage >::FloatOffsetType |
A floating point offset from an image grid location. Used for interpolation among grid values in a neighborhood.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 66 of file itkCurvatureFlowFunction.h.
typedef Superclass::ImageType itk::CurvatureFlowFunction< TImage >::ImageType |
Inherit some parameters from the superclass type.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 56 of file itkCurvatureFlowFunction.h.
typedef int itk::LightObject::InternalReferenceCountType [protected, inherited] |
Define the type of the reference count according to the target. This allows the use of atomic operations
Definition at line 139 of file itkLightObject.h.
typedef Superclass::NeighborhoodScalesType itk::CurvatureFlowFunction< TImage >::NeighborhoodScalesType |
The type of data structure that holds the scales with which the neighborhood is weighted to properly account for spacing and neighborhood radius.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Definition at line 65 of file itkCurvatureFlowFunction.h.
typedef Superclass::NeighborhoodType itk::CurvatureFlowFunction< TImage >::NeighborhoodType |
The type of data structure that is passed to this function object to evaluate at a pixel that does not lie on a data set boundary.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 64 of file itkCurvatureFlowFunction.h.
typedef Superclass::PixelRealType itk::CurvatureFlowFunction< TImage >::PixelRealType |
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Definition at line 63 of file itkCurvatureFlowFunction.h.
typedef Superclass::PixelType itk::CurvatureFlowFunction< TImage >::PixelType |
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 60 of file itkCurvatureFlowFunction.h.
typedef SmartPointer<Self> itk::CurvatureFlowFunction< TImage >::Pointer |
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 48 of file itkCurvatureFlowFunction.h.
typedef Superclass::RadiusType itk::CurvatureFlowFunction< TImage >::RadiusType |
Neighborhood radius type
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 61 of file itkCurvatureFlowFunction.h.
typedef PixelType itk::CurvatureFlowFunction< TImage >::ScalarValueType |
Definition at line 62 of file itkCurvatureFlowFunction.h.
typedef CurvatureFlowFunction itk::CurvatureFlowFunction< TImage >::Self |
Standard class typedefs.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 46 of file itkCurvatureFlowFunction.h.
typedef FiniteDifferenceFunction<TImage> itk::CurvatureFlowFunction< TImage >::Superclass |
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 47 of file itkCurvatureFlowFunction.h.
typedef Superclass::TimeStepType itk::CurvatureFlowFunction< TImage >::TimeStepType |
Define the TimeStepType to always be double.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Definition at line 67 of file itkCurvatureFlowFunction.h.
itk::CurvatureFlowFunction< TImage >::CurvatureFlowFunction | ( | ) | [protected] |
A global data type for this class of equations. Used to store values that are needed in calculating the time step.
itk::CurvatureFlowFunction< TImage >::~CurvatureFlowFunction | ( | ) | [inline, protected] |
A global data type for this class of equations. Used to store values that are needed in calculating the time step.
Definition at line 138 of file itkCurvatureFlowFunction.h.
static void itk::LightObject::BreakOnError | ( | ) | [static, inherited] |
This method is called when itkExceptionMacro executes. It allows the debugger to break on error.
virtual TimeStepType itk::CurvatureFlowFunction< TImage >::ComputeGlobalTimeStep | ( | void * | GlobalData | ) | const [virtual] |
Computes the time step for an update given a global data structure. The data used in the computation may take different forms depending on the nature of the equations. This global data cannot be kept in the instance of the equation object itself since the equation object must remain stateless for thread safety. The global data is therefore managed for each thread by the finite difference solver filters.
Currently, this function returns the user specified constant time step.
Implements itk::FiniteDifferenceFunction< TImage >.
const NeighborhoodScalesType itk::FiniteDifferenceFunction< TImage >::ComputeNeighborhoodScales | ( | ) | const [inherited] |
Compute the scales that weight the neighborhood during difference operations to properly account for spacing and neighborhood radius
virtual PixelType itk::CurvatureFlowFunction< TImage >::ComputeUpdate | ( | const NeighborhoodType & | neighborhood, | |
void * | globalData, | |||
const FloatOffsetType & | offset = FloatOffsetType(0.0) | |||
) | [virtual] |
This method computes the solution update for each pixel that does not lie on a the data set boundary.
Implements itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
virtual Pointer itk::LightObject::CreateAnother | ( | ) | const [virtual, inherited] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented in itk::BSplineDeformableTransform< TScalarType, NDimensions, VSplineOrder >, itk::CreateObjectFunction< T >, itk::MetaDataObject< MetaDataObjectType >, itk::Object, itk::TransformFactoryBase, itk::AnalyzeImageIOFactory, itk::BioRadImageIOFactory, itk::BMPImageIOFactory, itk::Brains2MaskImageIOFactory, itk::DICOMImageIO2Factory, itk::DicomImageIOFactory, itk::GDCMImageIOFactory, itk::GE4ImageIOFactory, itk::GE5ImageIOFactory, itk::GEAdwImageIOFactory, itk::GiplImageIOFactory, itk::JPEGImageIOFactory, itk::LSMImageIOFactory, itk::MetaImageIOFactory, itk::NiftiImageIOFactory, itk::NrrdImageIOFactory, itk::PNGImageIOFactory, itk::RawImageIOFactory< TPixel, VImageDimension >, itk::SiemensVisionImageIOFactory, itk::StimulateImageIOFactory, itk::TIFFImageIOFactory, itk::VTKImageIOFactory, itk::Bruker2DSEQImageIOFactory, itk::MatlabTransformIOFactory, itk::MINC2ImageIOFactory, itk::MRCImageIOFactory, itk::PhilipsRECImageIOFactory, itk::TxtTransformIOFactory, itk::VoxBoCUBImageIOFactory, itk::VTKImageIO2Factory, and itk::SpatialObjectFactoryBase.
virtual void itk::LightObject::Delete | ( | ) | [virtual, inherited] |
Delete an itk object. This method should always be used to delete an object when the new operator was used to create it. Using the C delete method will not work with reference counting.
virtual void* itk::CurvatureFlowFunction< TImage >::GetGlobalDataPointer | ( | ) | const [inline, virtual] |
Returns a pointer to a global data structure that is passed to this object from the solver at each calculation. The idea is that the solver holds the state of any global values needed to calculate the time step, while the equation object performs the actual calculations. The global data should also be initialized in this method.
Implements itk::FiniteDifferenceFunction< TImage >.
Definition at line 89 of file itkCurvatureFlowFunction.h.
virtual const char* itk::CurvatureFlowFunction< TImage >::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods)
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
const RadiusType& itk::FiniteDifferenceFunction< TImage >::GetRadius | ( | void | ) | const [inline, inherited] |
Returns the radius of the neighborhood this FiniteDifferenceFunction needs to perform its calculations.
Definition at line 146 of file itkFiniteDifferenceFunction.h.
virtual int itk::LightObject::GetReferenceCount | ( | ) | const [inline, virtual, inherited] |
Gets the reference count on this object.
Definition at line 106 of file itkLightObject.h.
const TimeStepType& itk::CurvatureFlowFunction< TImage >::GetTimeStep | ( | ) | const [inline] |
Get the time step parameter
Definition at line 109 of file itkCurvatureFlowFunction.h.
virtual void itk::FiniteDifferenceFunction< TImage >::InitializeIteration | ( | ) | [inline, virtual, inherited] |
This method allows the function to set its state before each iteration of the finite difference solver (image filter) that uses it. This is a thread-safe time to manipulate the object's state.
An example of how this can be used: the Anisotropic diffusion class of FiniteDifferenceFunctions use this method to pre-calculate an average gradient magnitude across the entire image region. This value is set in the function object and used by the ComputeUpdate methods that are called at each pixel as a constant.
Reimplemented in itk::CurvatureNDAnisotropicDiffusionFunction< TImage >, itk::GradientNDAnisotropicDiffusionFunction< TImage >, itk::VectorCurvatureNDAnisotropicDiffusionFunction< TImage >, and itk::VectorGradientNDAnisotropicDiffusionFunction< TImage >.
Definition at line 118 of file itkFiniteDifferenceFunction.h.
static Pointer itk::CurvatureFlowFunction< TImage >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::LightObject.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
void itk::LightObject::Print | ( | std::ostream & | os, | |
Indent | indent = 0 | |||
) | const [inherited] |
Cause the object to print itself out.
Referenced by itk::WeakPointer< ProcessObject >::Print().
virtual void itk::LightObject::PrintHeader | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual, inherited] |
void itk::FiniteDifferenceFunction< TImage >::PrintSelf | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual, inherited] |
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from itk::LightObject.
Reimplemented in itk::AnisotropicDiffusionFunction< TImage >, itk::VectorAnisotropicDiffusionFunction< TImage >, and itk::VectorCurvatureNDAnisotropicDiffusionFunction< TImage >.
virtual void itk::LightObject::PrintTrailer | ( | std::ostream & | os, | |
Indent | indent | |||
) | const [protected, virtual, inherited] |
virtual void itk::LightObject::Register | ( | ) | const [virtual, inherited] |
Increase the reference count (mark as used by another object).
Reimplemented in itk::Object.
virtual void itk::CurvatureFlowFunction< TImage >::ReleaseGlobalDataPointer | ( | void * | GlobalData | ) | const [inline, virtual] |
When the finite difference solver filter has finished using a global data pointer, it passes it to this method, which frees the memory. The solver cannot free the memory because it does not know the type to which the pointer points.
Implements itk::FiniteDifferenceFunction< TImage >.
Definition at line 101 of file itkCurvatureFlowFunction.h.
void itk::FiniteDifferenceFunction< TImage >::SetRadius | ( | const RadiusType & | r | ) | [inline, inherited] |
Sets the radius of the neighborhood this FiniteDifferenceFunction needs to perform its calculations.
Definition at line 141 of file itkFiniteDifferenceFunction.h.
virtual void itk::LightObject::SetReferenceCount | ( | int | ) | [virtual, inherited] |
Sets the reference count on this object. This is a dangerous method, use it with care.
Reimplemented in itk::Object.
void itk::FiniteDifferenceFunction< TImage >::SetScaleCoefficients | ( | PixelRealType | vals[ImageDimension] | ) | [inline, inherited] |
Set the ScaleCoefficients for the difference operators. The defaults a 1.0. These can be set to take the image spacing into account.
Definition at line 152 of file itkFiniteDifferenceFunction.h.
void itk::CurvatureFlowFunction< TImage >::SetTimeStep | ( | const TimeStepType & | t | ) | [inline] |
Set the time step parameter
Definition at line 105 of file itkCurvatureFlowFunction.h.
virtual void itk::LightObject::UnRegister | ( | ) | const [virtual, inherited] |
Decrease the reference count (release by another object).
Reimplemented in itk::Object.
const unsigned int itk::CurvatureFlowFunction< TImage >::ImageDimension = Superclass::ImageDimension [static] |
Extract superclass dimension.
Reimplemented from itk::FiniteDifferenceFunction< TImage >.
Reimplemented in itk::BinaryMinMaxCurvatureFlowFunction< TImage >, and itk::MinMaxCurvatureFlowFunction< TImage >.
Definition at line 70 of file itkCurvatureFlowFunction.h.
RadiusType itk::FiniteDifferenceFunction< TImage >::m_Radius [protected, inherited] |
Definition at line 203 of file itkFiniteDifferenceFunction.h.
InternalReferenceCountType itk::LightObject::m_ReferenceCount [mutable, protected, inherited] |
Number of uses of this object by other objects.
Definition at line 144 of file itkLightObject.h.
SimpleFastMutexLock itk::LightObject::m_ReferenceCountLock [mutable, protected, inherited] |
Mutex lock to protect modification to the reference count
Definition at line 147 of file itkLightObject.h.
PixelRealType itk::FiniteDifferenceFunction< TImage >::m_ScaleCoefficients[ImageDimension] [protected, inherited] |
Definition at line 204 of file itkFiniteDifferenceFunction.h.